What is the maximum length of Double.toString(d)? - java

My experimentation suggests a bound of 24, which is reached by -Double.MIN_NORMAL, which results in
-2.2250738585072014E-308
...but I can't prove it, nor come up with a conclusive reason why no other value should beat -MIN_NORMAL.

It's a 64-bit IEEE-754 float.
The most decimal numbers that can be stored in a 52-bit mantissa is 17 (see page 4: ceil( 1 + N Log10(2) )), so that's 19 characters with the decimal point and negative sign.
The bias is 1023, so the smallest base-2 exponent is 2^-1022, which is around 10^-308, so the longest exponent is 5 characters with the 'E' and negative sign.
19 + 5 == 24

26 seems to be an upper bound, for certain, as follows.
According to GrepCode's version of FloatingDecimal.getChars, OpenJDK7 asserts that the value nDigits is at most 19. Looking at the code, nDigits appears to refer to the digits (not the decimal point) of the mantissa: in the above example, 22250738585072014. Additional characters, then, include
a - sign on the value as a whole
the . decimal point
the E for the exponent
a - sign on the exponent
at most three decimal digits on the exponent
... which makes 19 + 7 = 26.
(Arguments for tighter bounds are still welcome.)

I think this bound is correct. The javadoc says
How many digits must be printed for the fractional part of m or a? There must be at least one digit to represent the fractional part, and beyond that as many, but only as many, more digits as are needed to uniquely distinguish the argument value from adjacent values of type double.
A double has an implied integer part (1) and 52 mantissa bits. Thus, if the base-2 exponent represented by the double is 0, so that x is a double in the range [1,2), then the next higher adjacent double is x + 2-52. 2-52 is about 2.2204 * 10-16. This suggests that the number of fractional digits needed to distinguish a value from the next adjacent value is 16, i.e. the double adjacent to 1 would be represented as 1.0000000000000002 (15 zeroes). Since that matches the number of fractional digits in your experiment, it seems very likely that it's indeed the maximum number that would ever be required. This isn't a rigorous proof, of course; that would take a little more work.

Related

Convert Strings to Floats and sum them up [duplicate]

Why do some numbers lose accuracy when stored as floating point numbers?
For example, the decimal number 9.2 can be expressed exactly as a ratio of two decimal integers (92/10), both of which can be expressed exactly in binary (0b1011100/0b1010). However, the same ratio stored as a floating point number is never exactly equal to 9.2:
32-bit "single precision" float: 9.19999980926513671875
64-bit "double precision" float: 9.199999999999999289457264239899814128875732421875
How can such an apparently simple number be "too big" to express in 64 bits of memory?
In most programming languages, floating point numbers are represented a lot like scientific notation: with an exponent and a mantissa (also called the significand). A very simple number, say 9.2, is actually this fraction:
5179139571476070 * 2 -49
Where the exponent is -49 and the mantissa is 5179139571476070. The reason it is impossible to represent some decimal numbers this way is that both the exponent and the mantissa must be integers. In other words, all floats must be an integer multiplied by an integer power of 2.
9.2 may be simply 92/10, but 10 cannot be expressed as 2n if n is limited to integer values.
Seeing the Data
First, a few functions to see the components that make a 32- and 64-bit float. Gloss over these if you only care about the output (example in Python):
def float_to_bin_parts(number, bits=64):
if bits == 32: # single precision
int_pack = 'I'
float_pack = 'f'
exponent_bits = 8
mantissa_bits = 23
exponent_bias = 127
elif bits == 64: # double precision. all python floats are this
int_pack = 'Q'
float_pack = 'd'
exponent_bits = 11
mantissa_bits = 52
exponent_bias = 1023
else:
raise ValueError, 'bits argument must be 32 or 64'
bin_iter = iter(bin(struct.unpack(int_pack, struct.pack(float_pack, number))[0])[2:].rjust(bits, '0'))
return [''.join(islice(bin_iter, x)) for x in (1, exponent_bits, mantissa_bits)]
There's a lot of complexity behind that function, and it'd be quite the tangent to explain, but if you're interested, the important resource for our purposes is the struct module.
Python's float is a 64-bit, double-precision number. In other languages such as C, C++, Java and C#, double-precision has a separate type double, which is often implemented as 64 bits.
When we call that function with our example, 9.2, here's what we get:
>>> float_to_bin_parts(9.2)
['0', '10000000010', '0010011001100110011001100110011001100110011001100110']
Interpreting the Data
You'll see I've split the return value into three components. These components are:
Sign
Exponent
Mantissa (also called Significand, or Fraction)
Sign
The sign is stored in the first component as a single bit. It's easy to explain: 0 means the float is a positive number; 1 means it's negative. Because 9.2 is positive, our sign value is 0.
Exponent
The exponent is stored in the middle component as 11 bits. In our case, 0b10000000010. In decimal, that represents the value 1026. A quirk of this component is that you must subtract a number equal to 2(# of bits) - 1 - 1 to get the true exponent; in our case, that means subtracting 0b1111111111 (decimal number 1023) to get the true exponent, 0b00000000011 (decimal number 3).
Mantissa
The mantissa is stored in the third component as 52 bits. However, there's a quirk to this component as well. To understand this quirk, consider a number in scientific notation, like this:
6.0221413x1023
The mantissa would be the 6.0221413. Recall that the mantissa in scientific notation always begins with a single non-zero digit. The same holds true for binary, except that binary only has two digits: 0 and 1. So the binary mantissa always starts with 1! When a float is stored, the 1 at the front of the binary mantissa is omitted to save space; we have to place it back at the front of our third element to get the true mantissa:
1.0010011001100110011001100110011001100110011001100110
This involves more than just a simple addition, because the bits stored in our third component actually represent the fractional part of the mantissa, to the right of the radix point.
When dealing with decimal numbers, we "move the decimal point" by multiplying or dividing by powers of 10. In binary, we can do the same thing by multiplying or dividing by powers of 2. Since our third element has 52 bits, we divide it by 252 to move it 52 places to the right:
0.0010011001100110011001100110011001100110011001100110
In decimal notation, that's the same as dividing 675539944105574 by 4503599627370496 to get 0.1499999999999999. (This is one example of a ratio that can be expressed exactly in binary, but only approximately in decimal; for more detail, see: 675539944105574 / 4503599627370496.)
Now that we've transformed the third component into a fractional number, adding 1 gives the true mantissa.
Recapping the Components
Sign (first component): 0 for positive, 1 for negative
Exponent (middle component): Subtract 2(# of bits) - 1 - 1 to get the true exponent
Mantissa (last component): Divide by 2(# of bits) and add 1 to get the true mantissa
Calculating the Number
Putting all three parts together, we're given this binary number:
1.0010011001100110011001100110011001100110011001100110 x 1011
Which we can then convert from binary to decimal:
1.1499999999999999 x 23 (inexact!)
And multiply to reveal the final representation of the number we started with (9.2) after being stored as a floating point value:
9.1999999999999993
Representing as a Fraction
9.2
Now that we've built the number, it's possible to reconstruct it into a simple fraction:
1.0010011001100110011001100110011001100110011001100110 x 1011
Shift mantissa to a whole number:
10010011001100110011001100110011001100110011001100110 x 1011-110100
Convert to decimal:
5179139571476070 x 23-52
Subtract the exponent:
5179139571476070 x 2-49
Turn negative exponent into division:
5179139571476070 / 249
Multiply exponent:
5179139571476070 / 562949953421312
Which equals:
9.1999999999999993
9.5
>>> float_to_bin_parts(9.5)
['0', '10000000010', '0011000000000000000000000000000000000000000000000000']
Already you can see the mantissa is only 4 digits followed by a whole lot of zeroes. But let's go through the paces.
Assemble the binary scientific notation:
1.0011 x 1011
Shift the decimal point:
10011 x 1011-100
Subtract the exponent:
10011 x 10-1
Binary to decimal:
19 x 2-1
Negative exponent to division:
19 / 21
Multiply exponent:
19 / 2
Equals:
9.5
Further reading
The Floating-Point Guide: What Every Programmer Should Know About Floating-Point Arithmetic, or, Why don’t my numbers add up? (floating-point-gui.de)
What Every Computer Scientist Should Know About Floating-Point Arithmetic (Goldberg 1991)
IEEE Double-precision floating-point format (Wikipedia)
Floating Point Arithmetic: Issues and Limitations (docs.python.org)
Floating Point Binary
This isn't a full answer (mhlester already covered a lot of good ground I won't duplicate), but I would like to stress how much the representation of a number depends on the base you are working in.
Consider the fraction 2/3
In good-ol' base 10, we typically write it out as something like
0.666...
0.666
0.667
When we look at those representations, we tend to associate each of them with the fraction 2/3, even though only the first representation is mathematically equal to the fraction. The second and third representations/approximations have an error on the order of 0.001, which is actually much worse than the error between 9.2 and 9.1999999999999993. In fact, the second representation isn't even rounded correctly! Nevertheless, we don't have a problem with 0.666 as an approximation of the number 2/3, so we shouldn't really have a problem with how 9.2 is approximated in most programs. (Yes, in some programs it matters.)
Number bases
So here's where number bases are crucial. If we were trying to represent 2/3 in base 3, then
(2/3)10 = 0.23
In other words, we have an exact, finite representation for the same number by switching bases! The take-away is that even though you can convert any number to any base, all rational numbers have exact finite representations in some bases but not in others.
To drive this point home, let's look at 1/2. It might surprise you that even though this perfectly simple number has an exact representation in base 10 and 2, it requires a repeating representation in base 3.
(1/2)10 = 0.510 = 0.12 = 0.1111...3
Why are floating point numbers inaccurate?
Because often-times, they are approximating rationals that cannot be represented finitely in base 2 (the digits repeat), and in general they are approximating real (possibly irrational) numbers which may not be representable in finitely many digits in any base.
While all of the other answers are good there is still one thing missing:
It is impossible to represent irrational numbers (e.g. π, sqrt(2), log(3), etc.) precisely!
And that actually is why they are called irrational. No amount of bit storage in the world would be enough to hold even one of them. Only symbolic arithmetic is able to preserve their precision.
Although if you would limit your math needs to rational numbers only the problem of precision becomes manageable. You would need to store a pair of (possibly very big) integers a and b to hold the number represented by the fraction a/b. All your arithmetic would have to be done on fractions just like in highschool math (e.g. a/b * c/d = ac/bd).
But of course you would still run into the same kind of trouble when pi, sqrt, log, sin, etc. are involved.
TL;DR
For hardware accelerated arithmetic only a limited amount of rational numbers can be represented. Every not-representable number is approximated. Some numbers (i.e. irrational) can never be represented no matter the system.
There are infinitely many real numbers (so many that you can't enumerate them), and there are infinitely many rational numbers (it is possible to enumerate them).
The floating-point representation is a finite one (like anything in a computer) so unavoidably many many many numbers are impossible to represent. In particular, 64 bits only allow you to distinguish among only 18,446,744,073,709,551,616 different values (which is nothing compared to infinity). With the standard convention, 9.2 is not one of them. Those that can are of the form m.2^e for some integers m and e.
You might come up with a different numeration system, 10 based for instance, where 9.2 would have an exact representation. But other numbers, say 1/3, would still be impossible to represent.
Also note that double-precision floating-points numbers are extremely accurate. They can represent any number in a very wide range with as much as 15 exact digits. For daily life computations, 4 or 5 digits are more than enough. You will never really need those 15, unless you want to count every millisecond of your lifetime.
Why can we not represent 9.2 in binary floating point?
Floating point numbers are (simplifying slightly) a positional numbering system with a restricted number of digits and a movable radix point.
A fraction can only be expressed exactly using a finite number of digits in a positional numbering system if the prime factors of the denominator (when the fraction is expressed in it's lowest terms) are factors of the base.
The prime factors of 10 are 5 and 2, so in base 10 we can represent any fraction of the form a/(2b5c).
On the other hand the only prime factor of 2 is 2, so in base 2 we can only represent fractions of the form a/(2b)
Why do computers use this representation?
Because it's a simple format to work with and it is sufficiently accurate for most purposes. Basically the same reason scientists use "scientific notation" and round their results to a reasonable number of digits at each step.
It would certainly be possible to define a fraction format, with (for example) a 32-bit numerator and a 32-bit denominator. It would be able to represent numbers that IEEE double precision floating point could not, but equally there would be many numbers that can be represented in double precision floating point that could not be represented in such a fixed-size fraction format.
However the big problem is that such a format is a pain to do calculations on. For two reasons.
If you want to have exactly one representation of each number then after each calculation you need to reduce the fraction to it's lowest terms. That means that for every operation you basically need to do a greatest common divisor calculation.
If after your calculation you end up with an unrepresentable result because the numerator or denominator you need to find the closest representable result. This is non-trivil.
Some Languages do offer fraction types, but usually they do it in combination with arbitary precision, this avoids needing to worry about approximating fractions but it creates it's own problem, when a number passes through a large number of calculation steps the size of the denominator and hence the storage needed for the fraction can explode.
Some languages also offer decimal floating point types, these are mainly used in scenarios where it is imporant that the results the computer gets match pre-existing rounding rules that were written with humans in mind (chiefly financial calculations). These are slightly more difficult to work with than binary floating point, but the biggest problem is that most computers don't offer hardware support for them.

What is the worst approximation error occurring using Java float to represent amounts of money? [duplicate]

Why do some numbers lose accuracy when stored as floating point numbers?
For example, the decimal number 9.2 can be expressed exactly as a ratio of two decimal integers (92/10), both of which can be expressed exactly in binary (0b1011100/0b1010). However, the same ratio stored as a floating point number is never exactly equal to 9.2:
32-bit "single precision" float: 9.19999980926513671875
64-bit "double precision" float: 9.199999999999999289457264239899814128875732421875
How can such an apparently simple number be "too big" to express in 64 bits of memory?
In most programming languages, floating point numbers are represented a lot like scientific notation: with an exponent and a mantissa (also called the significand). A very simple number, say 9.2, is actually this fraction:
5179139571476070 * 2 -49
Where the exponent is -49 and the mantissa is 5179139571476070. The reason it is impossible to represent some decimal numbers this way is that both the exponent and the mantissa must be integers. In other words, all floats must be an integer multiplied by an integer power of 2.
9.2 may be simply 92/10, but 10 cannot be expressed as 2n if n is limited to integer values.
Seeing the Data
First, a few functions to see the components that make a 32- and 64-bit float. Gloss over these if you only care about the output (example in Python):
def float_to_bin_parts(number, bits=64):
if bits == 32: # single precision
int_pack = 'I'
float_pack = 'f'
exponent_bits = 8
mantissa_bits = 23
exponent_bias = 127
elif bits == 64: # double precision. all python floats are this
int_pack = 'Q'
float_pack = 'd'
exponent_bits = 11
mantissa_bits = 52
exponent_bias = 1023
else:
raise ValueError, 'bits argument must be 32 or 64'
bin_iter = iter(bin(struct.unpack(int_pack, struct.pack(float_pack, number))[0])[2:].rjust(bits, '0'))
return [''.join(islice(bin_iter, x)) for x in (1, exponent_bits, mantissa_bits)]
There's a lot of complexity behind that function, and it'd be quite the tangent to explain, but if you're interested, the important resource for our purposes is the struct module.
Python's float is a 64-bit, double-precision number. In other languages such as C, C++, Java and C#, double-precision has a separate type double, which is often implemented as 64 bits.
When we call that function with our example, 9.2, here's what we get:
>>> float_to_bin_parts(9.2)
['0', '10000000010', '0010011001100110011001100110011001100110011001100110']
Interpreting the Data
You'll see I've split the return value into three components. These components are:
Sign
Exponent
Mantissa (also called Significand, or Fraction)
Sign
The sign is stored in the first component as a single bit. It's easy to explain: 0 means the float is a positive number; 1 means it's negative. Because 9.2 is positive, our sign value is 0.
Exponent
The exponent is stored in the middle component as 11 bits. In our case, 0b10000000010. In decimal, that represents the value 1026. A quirk of this component is that you must subtract a number equal to 2(# of bits) - 1 - 1 to get the true exponent; in our case, that means subtracting 0b1111111111 (decimal number 1023) to get the true exponent, 0b00000000011 (decimal number 3).
Mantissa
The mantissa is stored in the third component as 52 bits. However, there's a quirk to this component as well. To understand this quirk, consider a number in scientific notation, like this:
6.0221413x1023
The mantissa would be the 6.0221413. Recall that the mantissa in scientific notation always begins with a single non-zero digit. The same holds true for binary, except that binary only has two digits: 0 and 1. So the binary mantissa always starts with 1! When a float is stored, the 1 at the front of the binary mantissa is omitted to save space; we have to place it back at the front of our third element to get the true mantissa:
1.0010011001100110011001100110011001100110011001100110
This involves more than just a simple addition, because the bits stored in our third component actually represent the fractional part of the mantissa, to the right of the radix point.
When dealing with decimal numbers, we "move the decimal point" by multiplying or dividing by powers of 10. In binary, we can do the same thing by multiplying or dividing by powers of 2. Since our third element has 52 bits, we divide it by 252 to move it 52 places to the right:
0.0010011001100110011001100110011001100110011001100110
In decimal notation, that's the same as dividing 675539944105574 by 4503599627370496 to get 0.1499999999999999. (This is one example of a ratio that can be expressed exactly in binary, but only approximately in decimal; for more detail, see: 675539944105574 / 4503599627370496.)
Now that we've transformed the third component into a fractional number, adding 1 gives the true mantissa.
Recapping the Components
Sign (first component): 0 for positive, 1 for negative
Exponent (middle component): Subtract 2(# of bits) - 1 - 1 to get the true exponent
Mantissa (last component): Divide by 2(# of bits) and add 1 to get the true mantissa
Calculating the Number
Putting all three parts together, we're given this binary number:
1.0010011001100110011001100110011001100110011001100110 x 1011
Which we can then convert from binary to decimal:
1.1499999999999999 x 23 (inexact!)
And multiply to reveal the final representation of the number we started with (9.2) after being stored as a floating point value:
9.1999999999999993
Representing as a Fraction
9.2
Now that we've built the number, it's possible to reconstruct it into a simple fraction:
1.0010011001100110011001100110011001100110011001100110 x 1011
Shift mantissa to a whole number:
10010011001100110011001100110011001100110011001100110 x 1011-110100
Convert to decimal:
5179139571476070 x 23-52
Subtract the exponent:
5179139571476070 x 2-49
Turn negative exponent into division:
5179139571476070 / 249
Multiply exponent:
5179139571476070 / 562949953421312
Which equals:
9.1999999999999993
9.5
>>> float_to_bin_parts(9.5)
['0', '10000000010', '0011000000000000000000000000000000000000000000000000']
Already you can see the mantissa is only 4 digits followed by a whole lot of zeroes. But let's go through the paces.
Assemble the binary scientific notation:
1.0011 x 1011
Shift the decimal point:
10011 x 1011-100
Subtract the exponent:
10011 x 10-1
Binary to decimal:
19 x 2-1
Negative exponent to division:
19 / 21
Multiply exponent:
19 / 2
Equals:
9.5
Further reading
The Floating-Point Guide: What Every Programmer Should Know About Floating-Point Arithmetic, or, Why don’t my numbers add up? (floating-point-gui.de)
What Every Computer Scientist Should Know About Floating-Point Arithmetic (Goldberg 1991)
IEEE Double-precision floating-point format (Wikipedia)
Floating Point Arithmetic: Issues and Limitations (docs.python.org)
Floating Point Binary
This isn't a full answer (mhlester already covered a lot of good ground I won't duplicate), but I would like to stress how much the representation of a number depends on the base you are working in.
Consider the fraction 2/3
In good-ol' base 10, we typically write it out as something like
0.666...
0.666
0.667
When we look at those representations, we tend to associate each of them with the fraction 2/3, even though only the first representation is mathematically equal to the fraction. The second and third representations/approximations have an error on the order of 0.001, which is actually much worse than the error between 9.2 and 9.1999999999999993. In fact, the second representation isn't even rounded correctly! Nevertheless, we don't have a problem with 0.666 as an approximation of the number 2/3, so we shouldn't really have a problem with how 9.2 is approximated in most programs. (Yes, in some programs it matters.)
Number bases
So here's where number bases are crucial. If we were trying to represent 2/3 in base 3, then
(2/3)10 = 0.23
In other words, we have an exact, finite representation for the same number by switching bases! The take-away is that even though you can convert any number to any base, all rational numbers have exact finite representations in some bases but not in others.
To drive this point home, let's look at 1/2. It might surprise you that even though this perfectly simple number has an exact representation in base 10 and 2, it requires a repeating representation in base 3.
(1/2)10 = 0.510 = 0.12 = 0.1111...3
Why are floating point numbers inaccurate?
Because often-times, they are approximating rationals that cannot be represented finitely in base 2 (the digits repeat), and in general they are approximating real (possibly irrational) numbers which may not be representable in finitely many digits in any base.
While all of the other answers are good there is still one thing missing:
It is impossible to represent irrational numbers (e.g. π, sqrt(2), log(3), etc.) precisely!
And that actually is why they are called irrational. No amount of bit storage in the world would be enough to hold even one of them. Only symbolic arithmetic is able to preserve their precision.
Although if you would limit your math needs to rational numbers only the problem of precision becomes manageable. You would need to store a pair of (possibly very big) integers a and b to hold the number represented by the fraction a/b. All your arithmetic would have to be done on fractions just like in highschool math (e.g. a/b * c/d = ac/bd).
But of course you would still run into the same kind of trouble when pi, sqrt, log, sin, etc. are involved.
TL;DR
For hardware accelerated arithmetic only a limited amount of rational numbers can be represented. Every not-representable number is approximated. Some numbers (i.e. irrational) can never be represented no matter the system.
There are infinitely many real numbers (so many that you can't enumerate them), and there are infinitely many rational numbers (it is possible to enumerate them).
The floating-point representation is a finite one (like anything in a computer) so unavoidably many many many numbers are impossible to represent. In particular, 64 bits only allow you to distinguish among only 18,446,744,073,709,551,616 different values (which is nothing compared to infinity). With the standard convention, 9.2 is not one of them. Those that can are of the form m.2^e for some integers m and e.
You might come up with a different numeration system, 10 based for instance, where 9.2 would have an exact representation. But other numbers, say 1/3, would still be impossible to represent.
Also note that double-precision floating-points numbers are extremely accurate. They can represent any number in a very wide range with as much as 15 exact digits. For daily life computations, 4 or 5 digits are more than enough. You will never really need those 15, unless you want to count every millisecond of your lifetime.
Why can we not represent 9.2 in binary floating point?
Floating point numbers are (simplifying slightly) a positional numbering system with a restricted number of digits and a movable radix point.
A fraction can only be expressed exactly using a finite number of digits in a positional numbering system if the prime factors of the denominator (when the fraction is expressed in it's lowest terms) are factors of the base.
The prime factors of 10 are 5 and 2, so in base 10 we can represent any fraction of the form a/(2b5c).
On the other hand the only prime factor of 2 is 2, so in base 2 we can only represent fractions of the form a/(2b)
Why do computers use this representation?
Because it's a simple format to work with and it is sufficiently accurate for most purposes. Basically the same reason scientists use "scientific notation" and round their results to a reasonable number of digits at each step.
It would certainly be possible to define a fraction format, with (for example) a 32-bit numerator and a 32-bit denominator. It would be able to represent numbers that IEEE double precision floating point could not, but equally there would be many numbers that can be represented in double precision floating point that could not be represented in such a fixed-size fraction format.
However the big problem is that such a format is a pain to do calculations on. For two reasons.
If you want to have exactly one representation of each number then after each calculation you need to reduce the fraction to it's lowest terms. That means that for every operation you basically need to do a greatest common divisor calculation.
If after your calculation you end up with an unrepresentable result because the numerator or denominator you need to find the closest representable result. This is non-trivil.
Some Languages do offer fraction types, but usually they do it in combination with arbitary precision, this avoids needing to worry about approximating fractions but it creates it's own problem, when a number passes through a large number of calculation steps the size of the denominator and hence the storage needed for the fraction can explode.
Some languages also offer decimal floating point types, these are mainly used in scenarios where it is imporant that the results the computer gets match pre-existing rounding rules that were written with humans in mind (chiefly financial calculations). These are slightly more difficult to work with than binary floating point, but the biggest problem is that most computers don't offer hardware support for them.

Converting double value of 1234567.1234 to float in java

I am trying to convert double to float in java.
Double d = 1234567.1234;
Float f = d.floatValue();
I see that the value of f is
1234567.1
I am not trying to print a string value of float. I just wonder what is the maximum number of digits not to lose any precision when converting double to float. Can i show more than 8 significant digits in java?
float: 32 bits (4 bytes) where 23 bits are used for the mantissa (6 to 9 decimal digits, about 7 on average). 8 bits are used for the exponent, so a float can “move” the decimal point to the right or to the left using those 8 bits. Doing so avoids storing lots of zeros in the mantissa as in 0.0000003 (3 × 10-7) or 3000000 (3 × 107). There is 1 bit used as the sign bit.
double: 64 bits (8 bytes) where 52 bits are used for the mantissa (15 to 17 decimal digits, about 16 on average). 11 bits are used for the exponent and 1 bit is the sign bit.
I believe you hit this limit what cause that problem.
If you change
Double d = 123456789.1234;
Float f = d.floatValue();
You will see that float value will be 1.23456792E8
The precision of a float is about 7 decimals, but since floats are stored in binary, that's an approximation.
To illustrate the actual precision of the float value in question, try this:
double d = 1234567.1234;
float f = (float)d;
System.out.printf("%.9f%n", d);
System.out.printf("%.9f%n", Math.nextDown(f));
System.out.printf("%.9f%n", f);
System.out.printf("%.9f%n", Math.nextUp(f));
Output
1234567.123400000
1234567.000000000
1234567.125000000
1234567.250000000
As you can see, the effective decimal precision is about 1 decimal place for this number, or 8 digits, but if you ran the code with the number 9876543.9876, you get:
9876543.987600000
9876543.000000000
9876544.000000000
9876545.000000000
That's only 7 digits of precision.
This is a simple example in support of the view that there is no safe number of decimal digits.
Consider 0.1.
The closest IEEE 754 64-bit binary floating point number has exact value 0.1000000000000000055511151231257827021181583404541015625. It converts to 32-bit binary floating point as 0.100000001490116119384765625, which is considerably further from 0.1.
There can be loss of precision with even a single significant digit and single decimal place.
Unless you really need the compactness of float, and have very relaxed precision requirements, it is generally better to just stick with double.
I just wonder what is the maximum number of digits not to lose any precision when converting double to float.
Maybe you don't realize it, but the concept of N digits precisions is already ambigous. Doubtlessly you meant "N digits precision in base 10". But unlike humans, our computers work with Base 2.
Its not possible to convert every number from Base X to Base Y (with a limited amount of retained digits) without loss of precision, e.g. the value of 1/3rd is perfectly accurately representable in Base 3 as "0.1". In Base 10 it has an infinite number of digits 0.3333333333333... Likewise, commonly perfectly representable numbers in Base 10, e.g. 0.1 need an infinite number of digits to be represented in Base 2. On the other hand, 0.5 (Base 10) is peferectly accurately representable as 0.1 (Base 2).
So back to
I just wonder what is the maximum number of digits not to lose any precision when converting double to float.
The answer is "it depends on the value". The commonly cited rule of thumb "float has about 6 to 7 digits decimal precision" is just an approximation. It can be much more or much less depending on the value.
When dealing with floating point the concept of relative accuracy is more useful, stop thinking about "digits" and replace it with relative error. Any number N (in range) is representable with an error of (at most) N / accuracy, and the accuracy is the number of mantissa bits in the chosen format (e.g. 23 (+1) for float, 52 (+1) for double). So a decimal number represented as a float is has a maximum approximation error of N / pow(2, 24). The error may be less, even zero, but it is never greater.
The 23+1 comes from the convention that floating point numbers are organized with the exponent chosen such that the first mantissa bit is always a 1 (whenever possible), so it doesn't need to be explicitly stored. The number of physically stored bits, e.g. 23 thus allows for one extra bit of accuracy. (There is an exceptional case where "whenever possible" does not apply, but lets ignore that here).
TL;DR: There is no fixed number of decimal digits accuracy in float or double.
EDIT.
No you cannot get any more precise with a float in Java because floats can only contain 32 bits ( 4 bytes). If you want more precision, then continue to use the Double. This might also be helpful

if 0.1 has no binary representation, why I get 0.1

When I run:
System.out.println(1f - 0.9f);
I get:
0.100000024
This is because 0.1 has no representation in binary.
Then why when I print this:
System.out.println(0.1f);
I get this:
0.1
0.1 can be represented better in floating point than 0.9. Loosely speaking that's because 0.1 is smaller and closer to its nearest dyadic rational.
So the error when subtracting from 1.0 is larger.
Hence the two values differ.
The embedded formatting heuristics in println do a better job with the 0.1
The value of 0.1f
Java’s float uses IEEE-754 basic 32-bit binary floating-point. In binary
floating-point, every representable number is an integer multiple of some
power of two. (This includes non-negative powers 1, 2, 4, 8, 16,…, and it
includes negative powers ½, ¼, ⅛, 1/16, 1/32,…)
For numbers from 1 to 2, the representable numbers are multiples of
2−23, which is 0.00000011920928955078125:
1.00000000000000000000000
1.00000011920928955078125
1.00000023841857910156250
1.00000035762786865234375
1.00000047683715820312500
…
For numbers near 0.1, the representable numbers are multiples of 2−27, which is 0.000000007450580596923828125:
…
0.099999979138374328613281250 (a)
0.099999986588954925537109375 (b)
0.099999994039535522460937500 (c)
0.100000001490116119384765625 (d)
0.100000008940696716308593750 (e)
0.100000016391277313232421875 (f)
…
(I labeled the numbers (a) to (f) to refer to them in text below.)
As we can see, the closest of these to 0.1 is (d), 0.100000001490116119384765625.
Thus, when 0.1 appears in source code, it is converted to this value,
0.100000001490116119384765625.
This is a general rule—any numeral in source code is converted to the nearest representable number.
(Note that 0.1 is not “represented by” 0.100000001490116119384765625, and
0.100000001490116119384765625 does not “represent” 0.1. The float
0.100000001490116119384765625 is exactly that. The 0.1f in source text was
converted to 0.100000001490116119384765625 and is now just that value.)
If 0.1f is not 0.1, why is “0.1” printed?
Java’s default formatting for floating-point numbers uses the fewest
significant decimal digits needed to distinguish the number from nearby
representable numbers.
The rule for Java SE 10 can be found in the documentation for java.lang.float, in
the toString(float d) section. I quote the passage below1. The
critical part says:
How many digits must be printed for the fractional part of m or a? There must be at least one digit to represent the fractional part, and beyond that as many, but only as many, more digits as are needed to uniquely distinguish the argument value from adjacent values of type float. That is, suppose that x is the exact mathematical value represented by the decimal representation produced by this method for a finite nonzero argument f. Then f must be the float value nearest to x; or, if two float values are equally close to x, then f must be one of them and the least significant bit of the significand of f must be 0.
Let us see how this applies while formatting 0.100000001490116119384765625 and
0.099999994039535522460937500.
For 0.100000001490116119384765625, which is (d), we will first consider formatting one digit
after the decimal point: “0.1”. This represents the number 0.1, of course.
Now, we ask: Is this good enough? If we take 0.1 and ask which number in the
list of nearby numbers above is closest, what is the answer? The nearest number
in the list is (d), 0.100000001490116119384765625. That is the number we are
formatting, so we are done, and the result is “0.1”. This does not mean the float is 0.1, just that, when it is converted to a string with default options, the result is the string “0.1”.
Now consider 0.099999994039535522460937500, which is (c). Again, if we consider using just
one digit, the number rounds to 0.1. When we ask which number in the list is
closest to that, the answer is (d), 0.100000001490116119384765625. That is not the
number we are formatting, so we need more digits. If we consider two digits,
rounding would give us 0.10, and that clearly is also not enough. Considering
more and more digits gives us 0.100, 0.1000, and so on, until we get to eight
digits. With eight digits, 0.099999994039535522460937500 rounds to
0.09999999. Now, when we check the list, we see the nearest number is
(b), 0.099999986588954925537109375. (Adding about 0.0000000035 to that produces
0.09999999, whereas the number we are formatting is about 0.0000000040 away,
which is farther.) So we try nine digits, which gives us 0.099999994. Finally,
the closest number in the list is (c), 0.099999994039535522460937500, which is the
number we are formatting, so we are done, and the result is “0.099999994”.
Footnote
1 The documentation for toString(float d) says:
Returns a string representation of the float argument. All characters mentioned below are ASCII characters.
If the argument is NaN, the result is the string "NaN".
Otherwise, the result is a string that represents the sign and magnitude (absolute value) of the argument. If the sign is negative, the first character of the result is '-' ('\u002D'); if the sign is positive, no sign character appears in the result. As for the magnitude m:
If m is infinity, it is represented by the characters "Infinity"; thus, positive infinity produces the result "Infinity" and negative infinity produces the result "-Infinity".
If m is zero, it is represented by the characters "0.0"; thus, negative zero produces the result "-0.0" and positive zero produces the result "0.0".
If m is greater than or equal to 10-3 but less than 107, then it is represented as the integer part of m, in decimal form with no leading zeroes, followed by '.' ('\u002E'), followed by one or more decimal digits representing the fractional part of m.
If m is less than 10-3 or greater than or equal to 107, then it is represented in so-called "computerized scientific notation." Let n be the unique integer such that 10n ≤ m < 10n+1; then let a be the mathematically exact quotient of m and 10n so that 1 ≤ a < 10. The magnitude is then represented as the integer part of a, as a single decimal digit, followed by '.' ('\u002E'), followed by decimal digits representing the fractional part of a, followed by the letter 'E' ('\u0045'), followed by a representation of n as a decimal integer, as produced by the method Integer.toString(int).
How many digits must be printed for the fractional part of m or a? There must be at least one digit to represent the fractional part, and beyond that as many, but only as many, more digits as are needed to uniquely distinguish the argument value from adjacent values of type float. That is, suppose that x is the exact mathematical value represented by the decimal representation produced by this method for a finite nonzero argument f. Then f must be the float value nearest to x; or, if two float values are equally close to x, then f must be one of them and the least significant bit of the significand of f must be 0.
System.out.println, and most methods of converting floating-point numbers to strings, operate using the following rule: they use exactly as many digits are necessary so that the true value of the double is the closest representable number to the printed value.
That is, it only prints out the digits 0.1 because the true value of the double, 0.1000000000000000055511151231257827021181583404541015625, is the closest double to the displayed value.

Calculate the maximum value of a Java Double (5)?

Calculating this value for an long is easy:
It is simply 2 to the power of n-1, and than minus 1. n is the number of bits in the type. For a long this is defined as 64 bits. Because we must use represent negative numbers as well, we use n-1 instead of n. Because 0 must be accounted for, we subtract 1. So the maximum value is:
MAX = 2^(n-1)-1
what it the equivalent thought process, for a double:
Double.MAX_VALUE
comes to be
1.7976931348623157E308
The maximum finite value for a double is, in hexadecimal format, 0x1.fffffffffffffp1023, representing the product of a number just below 2 (1.ff… in hexadecimal notation) by 21023. When written this way, is is easy to see that it is made of the largest possible significand and the largest possible exponent, in a way very similar to the way you build the largest possible long in your question.
If you want a formula where all numbers are written in the decimal notation, here is one:
Double.MAX_VALUE = (2 - 1/252) * 21023
Or if you prefer a formula that makes it clear that Double.MAX_VALUE is an integer:
Double.MAX_VALUE = 21024 - 2971
If we look at the representation provided by Oracle:
0x1.fffffffffffffp1023
or
(2-2^-52)·2^1023
We can see that
fffffffffffff
is 13 hexadecimal digits that can be represented as 52 binary digits ( 13 * 4 ).
If each is set to 1 as it is ( F = 1111 ), we obtain the maximum fractional part.
The fractional part is always 52 bits as defined by
http://en.wikipedia.org/wiki/Double-precision_floating-point_format
1 bit is for sign
and the remaining 11 bits make up the exponent.
Because the exponent must be both positive and negative and it must represent 0, it to can have a maximum value of:
2^10 - 1
or
1023
Doubles (and floats) are represented internally as binary fractions according to the IEEE standard 754
and can therefore not represent decimal fractions exactly:
http://mindprod.com/jgloss/floatingpoint.html
http://www.math.byu.edu/~schow/work/IEEEFloatingPoint.htm
http://en.wikipedia.org/wiki/Computer_numbering_formats
So there is no equivalent calculation.
Just take a look at the documentation. Basically, the MAX_VALUE computation for Double uses a different formula because of the finite number of real numbers that can be represented on 64 bits. For an extensive justification, you can consult this article about data representation.

Categories

Resources