Implementing hierarchical data structures with JPA (fixed depth) - java

I have a hierarchical data structure with a fixed depth of 4. For a better understanding, let's assume the following (just an example):
The "root" level is called countries
Each country contains an arbitrary amount of states
Each state countains an arbitrary amount of counties
Each county contains an arbitrary amount of cities
So there are always 1-N relationships between the levels.
A very important usecase (given the id of a country) is to load the whole "content" of a country at once with the smallest possible impact on the performance of the database.
In a first naive approach, I created 4 entitiy classes in Java where the entity "Country" contains a list of the type "State", the entity "State" contains a list of the type "County" and so on...
But what JPA creates afterwards are of course not 4 tables, but 7 (4 for the entities + 3 for the connection between the levels due to 1-N). I don't know if this is a good solution since there is a lot of joining going on under the hood.
I also tried to map the subtypes to their parent types (a city belongs to one county, a county belongs to one state, a state belongs to one country). This results in 4 tables, but makes it more difficult to retrieve all data at once from the application's point of view. If I'm not wrong, I would need 4 different requests instead of one.
How could I solve this problem? Is there a way to combine a simple table layout (with four tables, not seven) with easy to use entity classes (a parent type should know its children)?
If not, how would you realize this?
I'm using JPA with Hibernate and PostgreSQL.

You can avoid the 3 extra mapping tables by using the #JoinColumn annotation rather than the #JoinTable annotation that I suspect you are using.
So for example:
COUNTRY
#OneToMany(cascade = CascadeType.ALL, fetch = FetchType.EAGER, mappedBy="country")
private List<State> stateList;
STATE
#ManyToOne
#JoinColumn(name="country_id")
private Country country
The database tables would be as follows:
Country
country_id => primary key
State
state_id => primary key
country_id => foreign key
This way the mapping tables between all the 4 entities can be avoided.

You can achieve this pretty easily using JPQL:
SELECT DISTINCT country
FROM Country country
JOIN FETCH country.states states
JOIN FETCH states.counties counties
JOIN FETCH counties.cities cities
WHERE country.id = :countryId
Using fetchType = FetchType.EAGER on #OneToMany/#ManyToOne(believe that one is already EAGER by default) will achieve similar results.

It's very simple use bidirectional mapping. Go through that link
How to delete Child or Parent objects from Relationship?
Make some changes like below
Country Entity:
------
#OneToMany(mappedBy="Country ",cascade = CascadeType.ALL)
private List<States > states;
#OneToMany(mappedBy="Country ",cascade = CascadeType.ALL)
private List<Counties> counties;
#OneToMany(mappedBy="Country ",cascade = CascadeType.ALL)
private List<Cities> cities;
-------
setters & getters
States Entity:
-----
#ManyToOne(cascade=CascadeType.ALL, fetch=FetchType.EAGER)
#JoinColumn(name="countryId")
private Country country ;
-----
Counties Entity:
--------
#ManyToOne(cascade=CascadeType.ALL, fetch=FetchType.EAGER)
#JoinColumn(name="countryId")
private Country country ;
-------
Cities Entity:
#ManyToOne(cascade=CascadeType.ALL, fetch=FetchType.EAGER)
#JoinColumn(name="countryId")
private Country country ;
---------
After compilation of all entity's do your insertion . Only 4 will create and read your data by using Country object id.

You already have the solution: four table is the way to go, with bidirectional relationships (use the mappedBy property in the not-owning side of every relationship). If the relationships are EAGER-fetched, than all entities are automatically loaded. If you want to use LAZY fetching, you could try a named query in order to load the entity with all relationships loaded:
SELECT DISTINCT c FROM Country c LEFT JOIN FETCH c.states s LEFT JOIN FETCH s.counties co...

Did you try to declare the fetch type of the relations explicitely to eager with your second approach (default is lazy, that's why you have to do four queries).
E.g.
#OneToMany(cascade=CascadeType.ALL, fetch=FetchType.EAGER)
#JoinColumn ...
private ...;
see here: http://www.concretepage.com/hibernate/fetch_hibernate_annotation

Here is how your entities will look like:(You can use EAGER Loading instead of LAZY as well if you want)
Entity: Country
#Id
private Integer id;
#OneToMany(orphanRemoval=true fetch=FetchType.LAZY)
#JoinColumn(name="COUNTRY_ID")
private List<State> stateList;
Entity: State
This table has COUNTRY_ID that is Foreign Key to Country
#Id
private Integer id;
#OneToMany(orphanRemoval=true fetch=FetchType.LAZY)
#JoinColumn(name="STATE_ID")
private List<County> countyList;
#Column(name="COUNTRY_ID")
private Integer countryId;
Entity: County
This table has STATE_ID that is Foreign Key to State
#Id
private Integer id;
#OneToMany(orphanRemoval=true fetch=FetchType.LAZY)
#JoinColumn(name="COUNTY_ID")
private List<City> cityList;
#Column(name="STATE_ID")
private Integer stateId;
Entity: City
This table has COUNTY_ID that is Foreign Key to County
#Id
private Integer id;
#Column(name="COUNTY_ID")
private Integer countyId;
Your JPQL will be:
Select o from Country o where o.id=10
This will pick The Country Entity along with all the mappings like below.
Country
Holding List of States
Each States Holding List of Counties
Each Counties Holding LIst of Cities

For a requirement like yours, I would suggest to have a tree-like structure to maintain the hierarchical location data. It is relatively easy to implement & maintain and is more scalable & extensible.
In order to implement tree you need to have 2 tables LOCATION_NODE (Location ID, Location Name, Location Type[country, state, county, city]) & LOCATION_REL (Relation ID, Parent ID, Child ID). Below is the basic implementation of the tree idea.
public class LocationRel<T> {
private LocationNode<T> root;
public LocationRel(T rootData) {
root = new LocationNode<T>();
root.data = rootData;
root.children = new ArrayList<LocationNode<T>>();
}
public static class LocationNode<T> {
private T data;
private LocationNode<T> parent;
private List<LocationNode<T>> children;
}
}
This is the basic building block for a tree. You may need to add methods for add to, removing from, traversing, and constructors. But, once implemented, you have the freedom to add any new location type, change the hierarchy, add node, delete node etc with your hierarchical data.
Think out of the box.
Shishir

If you need the performance, I would suggest to de-normalize your tables and create 4 entities with following attributes (columns):
Country: id, name
State: id, countryId, name
County: id, countryId, stateId, name
City: id, countryId, stateId, countyId, name
(mapping is obvious)
Then you will be able to build a simple SQL queries.
If you need performance, prefer named queries as they are compiled at initialization time.
E.g. select all cities by country: "SELECT id, name FROM city WHERE country_id=?"
You may even not declare a references between entities using #ManyToOne, but just declare a simple #Columns. API call will, most likely, accept IDs (countryId, stateId), so you'll be better to pass that IDs as parameters to DAO. Most likely, you have a locations tables filled in once by sql script and the data should not be modified. Create foreign keys to guarantee data integrity.
And do you really need a tree-like structure in memory? If so, create it by hand, it is not very complex.

Searching Online, I found a couple of Links on JPQL which I think might help.
Link 1
Link 2
Anyways,
JPQL is one of the best ways to achieve this, try out this Query
SELECT DISTINCT country FROM Country country JOIN FETCH country.states states JOIN FETCH states.counties counties JOIN FETCH counties.cities cities WHERE country.id = :countryId

A solution that is useful, if you have relations that point to their parent only is the following:
With records:
#Entity
public class Country
{
#Id
private Long id;
}
#Entity
public class State
{
#Id
private Long id;
#ManyToOne(optional = false)
#JoinColumn(name = "country_id", referencedColumnName = "id", nullable = false)
Country country;
}
#Entity
public class County
{
#Id
private Long id;
#ManyToOne(optional = false)
#JoinColumn(name = "state_id", referencedColumnName = "id", nullable = false)
State state;
}
#Entity
public class City
{
#Id
private Long id;
#ManyToOne(optional = false)
#JoinColumn(name = "county_id", referencedColumnName = "id", nullable = false)
County county;
}
You can get all cities of a country with:
public interface CityRepository extends JpaRepository<City, Long>
{
List<City> findByCounty(County county); // county is a direct field of City
#Query("SELECT c FROM City c WHERE c.county.state.country = ?1")
List<City> findByCountry(Country country);
}

Related

Spring/JPA: Entity referenced by a view as a #ManyToOne association

Currently, my database is organized in a way that I have the following relationships(in a simplified manner):
#Entity
class A {
/*... class A columns */
#Id #NotNull
private Long id;
}
#Entity
#Immutable
#Table(name = "b_view")
class B {
/* ... same columns as class A, but no setters */
#Id #NotNull
private Long id;
}
The B entity is actually defined by a VIEW, which is written in this manner(assuming Postgres):
CREATE VIEW b_view AS
SELECT a.* FROM a WHERE EXISTS
(SELECT 1 FROM filter_table ft WHERE a.id = ft.b_id);
The idea here is that B references all elements of A that are present on filter_table. filter_table is another view that isn't really important, but it's the result of joining the A table with another, unrelated table, through a non-trivial comparison of substrings. These views are done so that I don't need to duplicate and control which elements of A also show up in B.
All of these are completely fine. JpaRepository is working great for B(obviously without saving the data, as B is Immutable) and it's all good.
However, at one point we have an entity that has a relationship with B objects:
#Entity
class SortOfRelatedEntity {
/** ... other columns of SortOfRelatedEntity */
#ManyToOne(fetch = FetchType.EAGER, targetEntity = Fornecedor.class)
#JoinColumn(name = "b_id", foreignKey = #ForeignKey(foreignKeyDefinition = "references a(id)"))
private B b;
}
For obvious reasons, I can't make this foreign key reference "b", since B is a view. However, I do want the query for searching this attribute to be defined by the b_view table, and having the foreign key defined by the underlying table(as written above) would be also nice in order to guarantee DB integrity.
However, when applying the above snippet, my sort-of-related-entity table doesn't create a foreign key as I would have expected. For the record, I'm using Hibernate 5.2.16 atm.
What am I doing wrong? Is this even possible? Is there something else I should do that I'm not aware of?
Oh FFS
I realized my mistake now. This:
#JoinColumn(name = "b_id", foreignKey = #ForeignKey(foreignKeyDefinition = "references a(id)"))
Should have been this:
#JoinColumn(name = "b_id", foreignKey = #ForeignKey(foreignKeyDefinition = "foreign key(b_id) references a(id)"))
Notice that the foreignKeyDefinition must include foreign key(), not just the references part.
Hopefully this helps someone in the future.

Mapping multiple tables to one List Hibernate

I've been searching over the web to find out a solution for this. It seems nobody has the answer... I start thinking i'm in wrong way adressing the problem.
Let's see if i can explain easy.
Im developing a contract maintenance. (table: contrat_mercan). For the contract, we will select a category (table: categoria), each category has qualities (table: calidad) in relation 1 - N (relationship table categoria_calidad).
This qualities must have a value for each contract where the category is selected, so I created a table to cover this relationship: contrato_categoria_calidad.
#Entity
#Table(name = "contrato_categoria_calidad")
public class ContratoCategoriaCalidad implements Serializable{
// Constants --------------------------------------------------------
private static final long serialVersionUID = -1821053251702048097L;
// Fields -----------------------------------------------------------
#Id
#GeneratedValue(strategy = GenerationType.AUTO)
#Column(name = "CCC_ID")
private int id;
#Column(name = "CONTRAT_MERCAN_ID")
private int contratoId;
#Column(name = "CATEGORIA_ID")
private int categoriaId;
#Column(name = "CALIDAD_ID")
private int calidadId;
#Column(name = "VALOR")
private double valor;
.... getters/ setters
In this table I wanted to avoid having an Id, three fields are marked as FK in database and first attempts where with #JoinColumn in the three fields. But it does not worked for hibernate.
Anyway, now ContratoCategoriaCalidad is behaving okay as independent entity. But I will need to implement all maintenance, updates, deletes for each case manually... :(
What I really want, (and I think is a better practice) is a cascade when I saveOrUpdate the contract as the other entities do, but I don't find the way to make a List in contrat_mercan table.
This is working perfect for other relationships in same table:
#OneToOne
#JoinColumn(name="CONDICION")
private Condicion condicion;
#OneToMany (cascade = {CascadeType.ALL})
#JoinTable(
name="contrato_mercan_condicion",
joinColumns = #JoinColumn( name="CONTRATO_MERCAN_ID")
,inverseJoinColumns = #JoinColumn( name="CONDICION_ID")
)
private List<Condicion> condiciones;
But all my attempts to map this failed, what i want, is to have in my Java entity contrat_mercan a field like this:
private List<ContratoCategoriaCalidad> relacionContratoCategoriaCalidad;
not a real column in database, just representation of the relationship.
I found solutions to join multiple fields of the same table, here, and here, but not to make a relationship with 3 tables...
Any idea? Im doing something wrong? Maybe i must use intermediate table categoria_calidad to perform this?
Thanks!!
If you want to access a list of related ContratoCategoriaCalidad objects from Contrato entity you need to declare a relationship between those two entities using proper annotations.
In ContratoCategoriaCalidad class change field to:
#ManyToOne
#JoinColumn(name = "CONTRATO_ID")
private Contrato contrato;
In Contrato class add field:
#OneToMany(mappedBy = "contrato")
private List<ContratoCategoriaCalidad> relacionContratoCategoriaCalidad;
If you want to enable cascade updates and removals consider adding cascade = CascadeType.ALL and orphanRemoval = true attributes to #OneToMany annotation.
Hope this helps!

hibernate collection mapping - how can I put the collection owner id as foreign key into a collection's element's table?

I have a class Product and a class Part, where every part can only belong to one one product. Each product has a list of its parts, but a part has no reference to its product.
#Entity
#Table (name= "products")
class Product {
#Id
#GeneratedValue
#Column(name = "Id")
int id;
#Column(name = "Name")
String name;
#???
List<Part> myParts;
parts:
#Entity
#Table (name= "parts")
class Part {
#Id
#GeneratedValue
#Column(name = "Id")
int id;
#Column(name = "Name")
String name;
}
In my database the table 'products' does not store information about its parts, but the 'parts' table keeps track of the products in a row 'product_id'.
products:
| id | name |
parts:
| id | name | procuct_id |
I think it is quite normal to have this contrary approaches of the OO- and the ORM "world", but I can't find out how to persist my objects with Hibernate to this structure!
For the one-to-many annotation I only found examples where the part-id would have been stored in the product table.
For many-to-one it seems as if I needed a reference to the product in my parts objects, isn't it?
I hope that I am wrong! ;)
Does anybody know if there is a way to map this without chaning my class or table structure?
( I would be very, very happy if you could explain it with annotations rather than with xml :) )
I think you mean a one-to-many unidirectional mapping, try something as follows:
#OneToMany
#JoinColumn(name="product_id")
List<Part> myParts;
You can see an example here, #OneToMany. Check out "Example 3" in that link.
Note: Since you have the product_id as foreign key in the parts table, it is advised to also have a Product type field in the Part class.

Hibernate mapping: one column to multiple tables

I have a 'best practice' question for a scenario.
Scenario:
Multiple entities in a DB, for example, Document, BlogPost, Wiki can be shared by individuals. Instead of creating a share table for each entity, a single Share table is created. The issue is, how to map the share table with different entities?
I have three options, please advise which option is best, and if there is a better option.
Option1:
Create table Shares as:
SHARES
id (unique)
entityId (non DB enforced FK to DOCUMENTS, WIKIS, POSTS etc.)
entityType
sharedBy
sharedWith
sharedDate
Here, entityId will be a FK to documentId, wikiId, postId etc. etc. and entityType will identity what type the entityId is.
This has issues in Hibernate modelling, when creating Share to entity mapping, such as share.getDocument() or share.getWiki() etc.
Option 2:
Create table Shares which only holds share information, and then create resolution tables that tie the share to the entity.
SHARES
id(PK)
sharedBy
sharedWith
sharedDate
shareType (helper field for searches)
SHARES_DOCUMENTS
share_id (unique ID and FK, one to one with SHARES)
document_id (FK to DOCUMENTS)
SHARES_POST
share_id (unique ID and FK, one to one with SHARES)
post_id (FK to POSTS)
more share tables here.
So, hibernate wise, Share can have one to one for each of the share types (like share.getDocument(), share.getPost(), and shareType will identify which relationship is 'active' )
Option 3
Similar to option 1, but create individual columns instead of entity id
SHARES
id (unique ID)
documentId (FK to DOCUMENTS, nullable)
postId (FK to POSTS, nullable)
wikiId (FK to WIKIS, nullable)
sharedBy
sharedWith
sharedDate
sharedType
Here, each column could be mapped to respective entity, but they are nullable. sharedType can identify which relationship is 'active'.
So, the question is , which practice is best, both database wise as well as hibernate mapping (and eventual querying, performance wise).
Thanks
M. Rather
As suggested by TheStijn, after looking into different ways to setup inheritance relationships, I went with 'Single Table per class hierarchy' approach, and ended up with the table like:
SHARES
---------
id PK
shared_by FK to User
shared_with FK to User
shared_Date
document_id nullable FK to Document
post_id nullable FK to Posts
... more ids here to link to more entities
type_discriminator (values, DOCUMENT, POST ... )
On Hibernate/Java side,
One Share abstract class as...
#Entity
#Table(name="SHARES")
#Inheritance(strategy=InheritanceType.SINGLE_TABLE)
#DiscriminatorColumn(name="TYPE_DISCRIMINATOR", discriminatorType=DiscriminatorType.STRING)
public abstract class Share {
#Id
#Column( name="ID", nullable=false )
#GeneratedValue(generator="system-uuid")
#GenericGenerator(name="system-uuid", strategy = "uuid")
private String id;
#ManyToOne
#JoinColumn( name="SHARED_BY", nullable=false )
private User sharedBy;
#ManyToOne
#JoinColumn( name="SHARED_WITH", nullable=false )
private User sharedWith;
#Column(name="SHARED_DATE", columnDefinition="TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP", nullable=false)
#Temporal(TemporalType.TIMESTAMP)
private Date sharedDate;
...
}
And two normal classes..
#Entity
#DiscriminatorValue("DOCUMENT")
public class SharedDocument extends Share {
#ManyToOne
#JoinColumn( name="DOCUMENT_ID", nullable=true )
private Document document;
....
}
#Entity
#DiscriminatorValue("POST")
public class SharedPost extends Share {
#ManyToOne
#JoinColumn( name="POST_ID", nullable=true )
private Post post;
....
}
As for usage, use the concrete classes only as:
#Test
public void saveNewDocumentShare(){
SharedDocument sharedDocument = new SharedDocument();
sharedDocument.setDocument(document1);
sharedDocument.setSharedBy(teacher1);
sharedDocument.setSharedWith(teacher2);
sharedDocument.setSharedDate(new Date());
sharedDocument.setCreatedBy("1");
sharedDocument.setCreatedDate(new Date());
sharedDocument.setModifiedBy("1");
sharedDocument.setModifiedDate(new Date());
SharedDocument savedSharedDocument = dao.saveSharedDocument(sharedDocument);
assertNotNull(savedSharedDocument);
assertThat(savedSharedDocument.getId(),notNullValue());
}
#Test
public void saveNewPostShare(){
SharedPost sharedWikiPage = new SharedWikiPage();
sharedPost.setPost(post1);
sharedPost.setSharedBy(teacher1);
sharedPost.setSharedWith(teacher2);
sharedPost.setSharedDate(new Date());
sharedPost.setCreatedBy("1");
sharedPost.setCreatedDate(new Date());
sharedPost.setModifiedBy("1");
sharedPost.setModifiedDate(new Date());
SharedPost savedSharedPost = dao.saveSharedPost(sharedPost);
assertNotNull(savedSharedPost);
assertThat(savedSharedPost.getId(),notNullValue());
}
This is clearly a many-to-many relationship.
Default scenario for mapping those type of things is to use a separate table for connection information.
Something like:
table shared_connections {
number owner_id
,number shared_id
}
All objects that are shareable should extend some basic class ex: AbstractSharedObject. (use #MappedSuperclass annotation and care about #Inheritance strategy).
and inside Individual class :
private Collection<AbstractSharedObject> shares;
map this collection as ManyToMany relationship.
P.S. For this to work you will need to guarantee that the ids of all shareable objects are unique.

Hibernate Criteria Join problem

I have a 2 classes that share a UUID and are uni-directionally mapped. I use the UUID to group related rows, and this group shares many details (this is just an example):
#Entity #Table
class Something {
#Id #Column("something_id")
private Long id;
private String uuid = UUID.randomUUID().toString();
#OneToMany
#JoinColumn("uuid")
private List<Detail> details = new LinkedList<Detail>();
}
#Entity #Table
class Detail {
#Id #Column("detail_id")
private Long id;
private String value;
private String uuid;
}
I'm attempting to use Criteria:
Criteria c = getSession().createCriteria(Something.class).createAlias("details", "detail").add(Restrictions.eq("detail.value", someValue));
This is all fine and dandy, but I'm not getting results because of the join:
inner join DETAIL d1_ on this_.SOMETHING_ID=d1_.UUID
Is it possible to specify:
inner join DETAIL d1 on this_.UUID=d1.UUID
I would have expected the join to use the #JoinColumn annotaiton to find the column to join on. I see that I can specify a join type, but I don't see a way to specify the actual column.
I would have expected the join to use the #JoinColumn annotation to find the column to join on. I see that I can specify a join type, but I don't see a way to specify the actual column.
The join is using the JoinColumn annotation since it's joining on d1_.UUID. However, because you didn't specify the referencedColumnName element, the foreign key is assumed to refer to the primary key of the referenced table (this_.SOMETHING_ID), hence the obtained result.
In other words, try this:
#OneToMany
#JoinColumn(name="uuid", referencedColumnName="uuid")
private List<Detail> details = new LinkedList<Detail>();
I'm not sure to understand the benefit but let's say it's another story.

Categories

Resources