java increment/decrement operator inside call - java

We're learning about quickSort. The book provides the code at the end of my question.
I'm curious about this call at the end of the findPivot method:
swap(array, left++, right--);
Why have the "++" and "--" in there? It's not incrementing/decrementing either variable (before or after the swap) and it's not accessing (for example) array[left + 1].
So what gives?
EDIT
So before I posted the question I wrote the following test code:
public static void main(String[] args) {
int a = 0;
int b = 2;
int[] array = {1,10,20,30};
swap(array, a++,b--);
}
public static void swap(int[]array,int a, int b)
{
for(int i = 0; i < 10; i++)
{
Integer temp = array[a];
array[a] = array[b];
array[b] = temp;
System.out.println("a = " + a + "\nb = " + b + "\narray a: " + array[a] + "\narray b: " + array[b]);
}
The results are as follows:
a = 0
b = 2
array a: 20
array b: 1
a = 0
b = 2
array a: 1
array b: 20
a = 0
b = 2
array a: 20
array b: 1
The variable isn't post-incrementing at all when used in the method. That's why I asked the question.
Thanks. Here's the code:
private static void swap(Integer[] array, int i, int j)
{
Integer temp = array[i];
array[i] = array[j];
array[j] = temp;
}
public static void quickSort(Integer[] array, int left, int right)
{
if(left < right)
{
int pivot = findPivot(array, left, right);
quickSort(array, left, pivot - 1);
quickSort(array, pivot + 1, right);
}
}//quickSort
public static int findPivot(Integer[] array, int left, int right)
{
int first = left++;
while (left <= right)
{
while (left <= right && array[first].compareTo(array[left]) > 0)
{
left++;
}
while (left <= right && array[first].compareTo(array[right]) < 0)
{
right--;
}
if (left < right)
swap(array, left++, right--);
}
swap(array, first, right);
return right;
}

It are post-increment (§15.14.2) (++) and post-decrement (§15.14.3) (--) operations. These will change the values for the next iteration in your while loop.
You basically have this:
while (left <= right)
{
// ...
if (left < right)
  {
swap(array, left, right);
left++;
right--;
}
}
As you can see, the "post" means that the values are not affected for that particular statement. After evaluating the post increment operation, it will the variable will be increased, but the value passed to the method was still the old one. For the advanced readers, you could write the post-increment operator like this (pseudo code):
public int operator this++()
{
int temp = this;
++this; // regular pre-increment (JLS §15.15.1)
return temp;
}
For a read about the pre-increment operator, you can check JLS §15.15.1.

swap(array, left++, right--); is inside of a while loop, so the updated values will be used in the next loop iteration.

java increment(++) and decrement(--)
lets suppose i++; this means i+1 and i-- means i-1
in programming
int i = 1;
System.out.println("i : "+(i++)); // this means first print then add `1` into i;
//and
System.out.println("i : "+(++i)); // this means first add one and then print it;
// same for '--'

They are the post increment (++) and post decrement (--) operation, so they will change the values in the next iteration in your while loop
In your code at this line
swap(array, left++, right--);//left++ , right-- are post increment (++) and post decrement (--) operation

Related

Quicksort doesn't run Java [duplicate]

This question already has answers here:
What causes a java.lang.ArrayIndexOutOfBoundsException and how do I prevent it?
(26 answers)
Closed 4 years ago.
Im trying to make a Quicksort but it always showing up the Error ArrayIndexOutOfBoundsException.
public class Quicksort
{
void sort(int[] arr)
{
_quicksort(arr, 0, arr.length - 1);
}
private void _quicksort(int[] arr, int left, int right)
{
int pivot = (left + right)/2;
int l = left;
int r = right;
while (l <= r)
{
while (arr[l] < pivot)
{
l++;
}
while (arr[r] > pivot)
{
r--;
}
if(l <= r)
{
int temp = l;
l = r;
r = temp;
l++;
r++;
}
}
if(left < r)
{
_quicksort(arr, left, r);
}
if(l < right)
{
_quicksort(arr, l, right);
}
}
}
Does someone know why it doesnt run? It always gives a Error.
The Error message is
java.lang.ArrayIndexOutOfBoundsException: -1
at Quicksort._quicksort(Quicksort.java:18)
at Quicksort._quicksort(Quicksort.java:33)
at Quicksort.sort(Quicksort.java:5)
Error Message
It seems like there are a couple of issues with your code. I've listed them below:
The variable pivot stores the index of the pivot element and not the actual value. So, you can't use pivot for comaparison as you have done in the 2 nested while loops. You need arr[pivot] instead of pivot there.
Imagine arr looks like {1, 1, 1, 3, 2, 2, 2}. Here, pivot will be equal to 3 i.e. arr[pivot] will be equal to 3. Now, after both the nested while loops terminate, l will be equal to 3 and r will remain equal to 6. You then swap arr[l] and arr[r] and increment both l and r. Since l is still less than equal to r, the outer while loop runs for a second time and you'll get an ArrayIndexOutOfBoundsExecption when the control reaches the second nested while loop. This happens because you're trying to access arr[7] (Out of Bounds).
Here's my code:
class Quicksort
{
void sort(int[] arr)
{
myQuicksort(arr, 0, arr.length - 1);
}
private void myQuicksort(int[] arr, int l, int r) {
if (l >= r) {
return;
}
int pivotIndex = (l + r) / 2;
swap (arr, r, pivotIndex);
int pivotValue = arr[r];
int swapIndex = 0;
int currentIndex = 0;
while (currentIndex != r) {
if (arr[currentIndex] < pivotValue) {
swap(arr, currentIndex, swapIndex);
swapIndex++;
}
currentIndex++;
}
swap(arr, r, swapIndex);
myQuicksort(arr, l, swapIndex - 1);
myQuicksort(arr, swapIndex + 1, r);
}
private void swap(int[] arr, int i, int j) {
int temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;
}
}
public class Main{
public static void main(String[] args) {
Quicksort quicksort = new Quicksort();
int[] arr = {3, 7, 1, 0, 4};
quicksort.sort(arr);
for (int i : arr) {
System.out.println(i);
}
}
}
You should read up on Quicksort. But here are the main points:
Choose a random pivot element and swap it with the last element. This makes the implementation much simpler.
Loop over the input array and keep a track of a swapIndex such that everything before the swapIndex is less than the pivotValue and everything from the swapIndex till the currentIndex is greater than (or equal) the pivotValue.
After the loop runs out, swap the element at swapIndex with the pivot. This inserts the pivot in its correct position.
The pivot divides the array into 2 subarrays. Call myQuicksort on these 2 subarrays.

big difference in time between two Implementation of quick Sort

I have two implementation of quick sort the first one uses a median of (fist ,middle , last ) as pivot and the second uses the middle element as pivot
the first Implementation :
public class quickMedian {
public void sort(int array[])
// pre: array is full, all elements are non-null integers
// post: the array is sorted in ascending order
{
quickSort(array, 0, array.length - 1); // quicksort all the elements in the array
}
public void quickSort(int array[], int start, int end)
{
int i = start; // index of left-to-right scan
int k = end; // index of right-to-left scan
if (end - start >= 1) // check that there are at least two elements to sort
{
if (array[start+(end-start)/2]>array[end]){
swap(array,start+(end-start)/2, end);
}
if (array[start]>array[end]){
swap(array,start, end);
}
if (array[start+(end-start)/2]>array[start]){
swap(array, start+(end-start)/2, start);
}
int pivot = array[start]; // set the pivot as the first element in the partition
while (k > i) // while the scan indices from left and right have not met,
{
while (array[i] <= pivot && i <= end && k > i) // from the left, look for the first
i++; // element greater than the pivot
while (array[k] > pivot && k >= start && k >= i) // from the right, look for the first
k--; // element not greater than the pivot
if (k > i) // if the left seekindex is still smaller than
swap(array, i, k); // the right index, swap the corresponding elements
}
swap(array, start, k); // after the indices have crossed, swap the last element in // the left partition with the pivot
quickSort(array, start, k - 1); // quicksort the left partition
quickSort(array, k + 1, end); // quicksort the right partition
}
else // if there is only one element in the partition, do not do any sorting
{
return; // the array is sorted, so exit
}
}
public void swap(int array[], int index1, int index2)
// pre: array is full and index1, index2 < array.length
// post: the values at indices 1 and 2 have been swapped
{
int temp = array[index1]; // store the first value in a temp
array[index1] = array[index2]; // copy the value of the second into the first
array[index2] = temp; // copy the value of the temp into the second
}
}
The second Implementation :
public class quickSort {
private int array[];
private int length;
public void sort(int[] inputArr) {
if (inputArr == null || inputArr.length == 0) {
return;
}
this.array = inputArr;
length = inputArr.length;
quickSorter(0, length - 1);
}
private void quickSorter(int lowerIndex, int higherIndex) {
int i = lowerIndex;
int j = higherIndex;
// calculate pivot number, I am taking pivot as middle index number
int pivot = array[lowerIndex+(higherIndex-lowerIndex)/2];
// Divide into two arrays
while (i <= j) {
/**
* In each iteration, we will identify a number from left side which
* is greater then the pivot value, and also we will identify a number
* from right side which is less then the pivot value. Once the search
* is done, then we exchange both numbers.
*/
while (array[i] < pivot) {
i++;
}
while (array[j] > pivot) {
j--;
}
if (i <= j) {
exchangeNumbers(i, j);
//move index to next position on both sides
i++;
j--;
}
}
// call quickSort() method recursively
if (lowerIndex < j)
quickSorter(lowerIndex, j);
if (i < higherIndex)
quickSorter(i, higherIndex);
}
private void exchangeNumbers(int i, int j) {
int temp = array[i];
array[i] = array[j];
array[j] = temp;
}
}
To obtain the median we need to do extra steps on each recursion which may increase the time a little bit (if the array is totally random) .
I am testing these two classes on an array of size N=10,000,000 randomly generated and I have done the test many times the first Implementation takes around 30 seconds and the second takes around 4 seconds
so this is obviously not caused by the extra overhead to get the median of three numbers .
There must be something wrong with the first implementation, what is it ?
here is the testing code :
public static void main(String[] args) {
File number = new File ("f.txt");
final int size = 10000000;
try{
// quickSort s = new quickSort();
quickMedian s = new quickMedian();
writeTofile(number, size);
int [] arr1 =readFromFile(number, size);
long a=System.currentTimeMillis();
s.sort(arr1);
long b=System.currentTimeMillis();
System.out.println("quickSort: "+(double)(b-a)/1000);
}catch (Exception ex){ex.printStackTrace();}
}

Using quicksort on a string array

I'm a programming student and rather than post the whole assignment I'll just ask for help solving what I've tried for hours now to understand. I'm tasked with sorting an array of strings using the quicksort method. Everything else I've been tasked with as part of this problem is fine but when I tested the sorting method by printing out the String Array, it's completely jumbled up without any seeming rhyme or reason. Please help me pinpoint the error in my code, or the several glaring errors I've overlooked. The array of strings provided is this list of 65 names: http://pastebin.com/jRrgeV1E and the method's code is below:
private static void quickSort(String[] a, int start, int end)
{
// index for the "left-to-right scan"
int i = start;
// index for the "right-to-left scan"
int j = end;
// only examine arrays of 2 or more elements.
if (j - i >= 1)
{
// The pivot point of the sort method is arbitrarily set to the first element int the array.
String pivot = a[i];
// only scan between the two indexes, until they meet.
while (j > i)
{
// from the left, if the current element is lexicographically less than the (original)
// first element in the String array, move on. Stop advancing the counter when we reach
// the right or an element that is lexicographically greater than the pivot String.
while (a[i].compareTo(pivot) < 0 && i <= end && j > i){
i++;
}
// from the right, if the current element is lexicographically greater than the (original)
// first element in the String array, move on. Stop advancing the counter when we reach
// the left or an element that is lexicographically less than the pivot String.
while (a[j].compareTo(pivot) > 0 && j >= start && j >= i){
j--;
}
// check the two elements in the center, the last comparison before the scans cross.
if (j > i)
swap(a, i, j);
}
// At this point, the two scans have crossed each other in the center of the array and stop.
// The left partition and right partition contain the right groups of numbers but are not
// sorted themselves. The following recursive code sorts the left and right partitions.
// Swap the pivot point with the last element of the left partition.
swap(a, start, j);
// sort left partition
quickSort(a, start, j - 1);
// sort right partition
quickSort(a, j + 1, end);
}
}
/**
* This method facilitates the quickSort method's need to swap two elements, Towers of Hanoi style.
*/
private static void swap(String[] a, int i, int j)
{
String temp = a[i];
a[i] = a[j];
a[j] = temp;
}
Ok, i was mistaken that it would work and found your tiny mistake.
Take a look at wikipedias pseudo code
You will notice that your conditions in the while loop are causing the error
if you change (a[i].compareTo(pivot) < 0 && i <= end && j > i) and (a[j].compareTo(pivot) > 0 && j >= start && j >= i) to
(a[i].compareTo(pivot) <= 0 && i < end && j > i) and (a[j].compareTo(pivot) >= 0 && j > start && j >= i).
Thought this would help for those who seek for a string sorting algorithm based on quick sorting method.
public class StringQuickSort {
String names[];
int length;
public static void main(String[] args) {
StringQuickSort sorter = new StringQuickSort();
String words[] = {"zz", "aa", "cc", "hh", "bb", "ee", "ll"}; // the strings need to be sorted are put inside this array
sorter.sort(words);
for (String i : words) {
System.out.print(i);
System.out.print(" ");
}
}
void sort(String array[]) {
if (array == null || array.length == 0) {
return;
}
this.names = array;
this.length = array.length;
quickSort(0, length - 1);
}
void quickSort(int lowerIndex, int higherIndex) {
int i = lowerIndex;
int j = higherIndex;
String pivot = this.names[lowerIndex + (higherIndex - lowerIndex) / 2];
while (i <= j) {
while (this.names[i].compareToIgnoreCase(pivot) < 0) {
i++;
}
while (this.names[j].compareToIgnoreCase(pivot) > 0) {
j--;
}
if (i <= j) {
exchangeNames(i, j);
i++;
j--;
}
}
//call quickSort recursively
if (lowerIndex < j) {
quickSort(lowerIndex, j);
}
if (i < higherIndex) {
quickSort(i, higherIndex);
}
}
void exchangeNames(int i, int j) {
String temp = this.names[i];
this.names[i] = this.names[j];
this.names[j] = temp;
}
}

CompareTo() method in Java

//I know that compareTo() returns an int value.
returns 0 if a equal b
returns -1 if a < b
returns 1 if a > b
//But how does sort method makes use of these 0, 1, -1 values, and how does it arranges the list exactly.
To sort an array with compareTo(),
public void sort(Comparable[] lst)
{
for(int i=0; i<lst.length; i++)
{
for(int j=i; j<lst.length; j++)
{
if(lst[i].compareTo(lst[j]) < 0)
{
//swap elements, sorts in ascending order
Comparable tmp = lst[i];
lst[i] = lst[j];
lst[j] = tmp;
}
}
}
}
Well, here's the code, not sure what more you want. Collections.sort seems to ultimately call this.
private static <T> void binarySort(T[] a, int lo, int hi, int start, Comparator<? super T> c) {
assert lo <= start && start <= hi;
if (start == lo)
start++;
for ( ; start < hi; start++) {
T pivot = a[start];
// Set left (and right) to the index where a[start] (pivot) belongs
int left = lo;
int right = start;
assert left <= right;
/*
* Invariants:
* pivot >= all in [lo, left).
* pivot < all in [right, start).
*/
while (left < right) {
int mid = (left + right) >>> 1;
if (c.compare(pivot, a[mid]) < 0)
right = mid;
else
left = mid + 1;
}
assert left == right;
/*
* The invariants still hold: pivot >= all in [lo, left) and
* pivot < all in [left, start), so pivot belongs at left. Note
* that if there are elements equal to pivot, left points to the
* first slot after them -- that's why this sort is stable.
* Slide elements over to make room for pivot.
*/
int n = start - left; // The number of elements to move
// Switch is just an optimization for arraycopy in default case
switch (n) {
case 2: a[left + 2] = a[left + 1];
case 1: a[left + 1] = a[left];
break;
default: System.arraycopy(a, left, a, left + 1, n);
}
a[left] = pivot;
}
}

Find the Kth smallest element. looping

I try to find k-th minimum element using my code, but can't fix an error in my code.
When it try to make partitioning for [0, 0, 2] with pivot = 0 it's looping.
import java.util.Arrays;
public class OrderStat {
public static void main(String[] args) {
int[] uA = {13, 32, 28, 17, 2, 0, 14, 34, 35, 0};
System.out.println("Initial array: " + Arrays.toString(uA));
int kth = 3; // We will try to find 3rd smallest element(or 2nd if we will count from 0).
int result = getKthSmallestElement(uA, 0, uA.length - 1, kth - 1);
System.out.println(String.format("The %d smallest element is %d", kth, result));
System.out.println("-------------------------------------");
Arrays.sort(uA);
System.out.println("Sorted array for check: " + Arrays.toString(uA));
}
private static int getKthSmallestElement(int[] uA, int start, int end, int kth) {
int l = start;
int r = end;
int pivot = uA[start];
System.out.println("===================");
System.out.println(String.format("start=%d end=%d", start, end));
System.out.println("pivot = " + pivot);
//ERROR HERE: When we will work with [0, 0, 2] part of array with pivot = 0 it will give us infinite loop;
while (l < r) {
while (uA[l] < pivot) {
l++;
}
while (uA[r] > pivot) {
r--;
}
if (l < r) {
int tmp = uA[l];
uA[l] = uA[r];
uA[r] = tmp;
}
}
System.out.println("After partitioning: " + Arrays.toString(uA) + "\n");
if (l < kth)
return getKthSmallestElement(uA, l + 1, end, kth);
else if (l > kth)
return getKthSmallestElement(uA, start, l - 1, kth);
return uA[l];
}
}
Explain me, please, how to fix this problem.
After swapping
if (l < r) {
int tmp = uA[l];
uA[l] = uA[r];
uA[r] = tmp;
}
you need to move l and r (or at least one of them, to make any progress) to the next position (++l; --r;). Otherwise, if both values are equal to the pivot, you loop infinitely.
A correct partitioning that is also usable in a quicksort would be
// make sure to call it only with valid indices, 0 <= start <= end < array.length
private int partition(int[] array, int start, int end) {
// trivial case, single element array - garbage if end < start
if(end <= start) return start;
int pivot = array[start]; // not a good choice of pivot in general, but meh
int left = start+1, right = end;
while(left < right) {
// move left index to first entry larger than pivot or right
while(left < right && array[left] <= pivot) ++left;
// move right index to last entry not larger than pivot or left
while(right > left && array[right] > pivot) --right;
// Now, either
// left == right, or
// left < right and array[right] <= pivot < array[left]
if (left < right) {
int tmp = array[left];
array[left] = array[right];
array[right] = tmp;
// move on
++left;
--right;
}
}
// Now left >= right.
// If left == right, we don't know whether array[left] is larger than the pivot or not,
// but array[left-1] certainly is not larger than the pivot.
// If left > right, we just swapped and incremented before exiting the loop,
// so then left == right+1 and array[right] <= pivot < array[left].
if (left > right || array[left] > pivot) {
--left;
}
// Now array[i] <= pivot for start <= i <= left, and array[j] > pivot for left < j <= end
// swap pivot in its proper place in the sorted array
array[start] = array[left];
array[left] = pivot;
// return pivot position
return left;
}
Then you can find the k-th smallest element in an array
int findKthSmallest(int array, int k) {
if (k < 1) throw new IllegalArgumentException("k must be positive");
if (array.length < k) throw new IllegalArgumentException("Array too short");
int left = 0, right = array.length-1, p;
--k; // 0-based indices
while(true) {
p = partition(array, left, right);
if (p == k) return array[p];
if (p < k) {
left = p+1;
k -= left;
} else {
right = p-1;
}
}
// dummy return, never reached
return 0;
}

Categories

Resources