Faking abstract methods using exceptions in Java - java

I've been asked this question and am frankly stumped:
Instead of writing abstract methods we could try to fake them with exceptions, like this:
public int someMethod(int someparameter) {
throws new RuntimeException("unimplemented");
}
What would be the purpose of doing this and can anyone provide an example of code for an abstract method that the above is trying to fake? Any help is greatly appreciated. Thank you.

I can think of one (possibly) valid use case: You have an abstract class, and a number of other classes throughout your project that extended it. (Or the abstract class is in an open-source library, so you have no idea what other classes throughout the universe might be extended from it.) Now, you find that it's useful to add new abstract methods to this class. But if you add abstract methods to the class, this breaks every other class that has already extended it, because those classes need to be changed to contain override for the new methods. So I can see how, in some cases, it might be considered more feasible to add them as non-abstract methods and have them throw exceptions just in case a new class that extends it uses the new methods but forgets to write an overriding method. It won't be caught at compile-time, but at least it might be caught during testing.
I'm not sure how legitimate this reason is, since it's also possible to define a new abstract class NewImprovedWhatever that extends the old one, to contain the new methods. That may pose its own maintenance challenges, though. I'm not sure.
I did notice that Java defines an abstract class java.net.SocketImpl, that contains two non-abstract methods, shutdownInput() and shutdownOutput(), whose default implementation is to throw an exception:
protected void shutdownInput() throws IOException {
throw new IOException("Method not implemented!");
}
The comments indicate that they were added in 1.3, so perhaps that's the exact reason it was done this way, i.e. not to require modification of other classes that already extended SocketImpl. But I don't know for sure.
In any case, a design like this would surely be really bad code, if the class were designed that way from scratch. But the nice O-O concepts we learn about in class aren't always so nice in practice when existing code has to be modified.

I have sometimes thrown UnsupportedOperationException from a method whose functionality has not yet been implemented. (There is also a NotImplementedException in Apache Commons which is a subclass of UnsupportedOperationException.) This was always meant as a placeholder and a message to others using the related class or service that the method is not yet complete. Such code never made it to production, however.

The purpose of doing this would be to purposefully write BAD CODE.
If one wants to confuse its readers and want them to feel the agony of going through their code, then one writes such code.
It also shows lack of designing skills in the code.
A poorly written API will have such code.
Don't do that.

Related

what will happen we don't use #override annotation? [duplicate]

Locked. This question and its answers are locked because the question is off-topic but has historical significance. It is not currently accepting new answers or interactions.
What are the best practices for using Java's #Override annotation and why?
It seems like it would be overkill to mark every single overridden method with the #Override annotation. Are there certain programming situations that call for using the #Override and others that should never use the #Override?
Use it every time you override a method for two benefits. Do it so that you can take advantage of the compiler checking to make sure you actually are overriding a method when you think you are. This way, if you make a common mistake of misspelling a method name or not correctly matching the parameters, you will be warned that you method does not actually override as you think it does. Secondly, it makes your code easier to understand because it is more obvious when methods are overwritten.
Additionally, in Java 1.6 you can use it to mark when a method implements an interface for the same benefits. I think it would be better to have a separate annotation (like #Implements), but it's better than nothing.
I think it is most useful as a compile-time reminder that the intention of the method is to override a parent method. As an example:
protected boolean displaySensitiveInformation() {
return false;
}
You will often see something like the above method that overrides a method in the base class. This is an important implementation detail of this class -- we don't want sensitive information to be displayed.
Suppose this method is changed in the parent class to
protected boolean displaySensitiveInformation(Context context) {
return true;
}
This change will not cause any compile time errors or warnings - but it completely changes the intended behavior of the subclass.
To answer your question: you should use the #Override annotation if the lack of a method with the same signature in a superclass is indicative of a bug.
There are many good answers here, so let me offer another way to look at it...
There is no overkill when you are coding. It doesn't cost you anything to type #override, but the savings can be immense if you misspelled a method name or got the signature slightly wrong.
Think about it this way: In the time you navigated here and typed this post, you pretty much used more time than you will spend typing #override for the rest of your life; but one error it prevents can save you hours.
Java does all it can to make sure you didn't make any mistakes at edit/compile time, this is a virtually free way to solve an entire class of mistakes that aren't preventable in any other way outside of comprehensive testing.
Could you come up with a better mechanism in Java to ensure that when the user intended to override a method, he actually did?
Another neat effect is that if you don't provide the annotation it will warn you at compile time that you accidentally overrode a parent method--something that could be significant if you didn't intend to do it.
I always use the tag. It is a simple compile-time flag to catch little mistakes that I might make.
It will catch things like tostring() instead of toString()
The little things help in large projects.
Using the #Override annotation acts as a compile-time safeguard against a common programming mistake. It will throw a compilation error if you have the annotation on a method you're not actually overriding the superclass method.
The most common case where this is useful is when you are changing a method in the base class to have a different parameter list. A method in a subclass that used to override the superclass method will no longer do so due the changed method signature. This can sometimes cause strange and unexpected behavior, especially when dealing with complex inheritance structures. The #Override annotation safeguards against this.
To take advantage from compiler checking you should always use Override annotation. But don’t forget that Java Compiler 1.5 will not allow this annotation when overriding interface methods. You just can use it to override class methods (abstract, or not).
Some IDEs, as Eclipse, even configured with Java 1.6 runtime or higher, they maintain compliance with Java 1.5 and don’t allow the use #override as described above. To avoid that behaviour you must go to: Project Properties ->Java Compiler -> Check “Enable Project Specific Settings” -> Choose “Compiler Compliance Level” = 6.0, or higher.
I like to use this annotation every time I am overriding a method independently, if the base is an interface, or class.
This helps you avoiding some typical errors, as when you are thinking that you are overriding an event handler and then you see nothing happening. Imagine you want to add an event listener to some UI component:
someUIComponent.addMouseListener(new MouseAdapter(){
public void mouseEntered() {
...do something...
}
});
The above code compiles and run, but if you move the mouse inside someUIComponent the “do something” code will note run, because actually you are not overriding the base method mouseEntered(MouseEvent ev). You just create a new parameter-less method mouseEntered(). Instead of that code, if you have used the #Override annotation you have seen a compile error and you have not been wasting time thinking why your event handler was not running.
#Override on interface implementation is inconsistent since there is no such thing as "overriding an interface" in java.
#Override on interface implementation is useless since in practise it catches no bugs that the compilation wouldn't catch anyway.
There is only one, far fetched scenario where override on implementers actually does something: If you implement an interface, and the interface REMOVES methods, you will be notified on compile time that you should remove the unused implementations. Notice that if the new version of the interface has NEW or CHANGED methods you'll obviously get a compile error anyways as you're not implementing the new stuff.
#Override on interface implementers should never have been permitted in 1.6, and with eclipse sadly choosing to auto-insert the annotations as default behavior, we get a lot of cluttered source files. When reading 1.6 code, you cannot see from the #Override annotation if a method actually overrides a method in the superclass or just implements an interface.
Using #Override when actually overriding a method in a superclass is fine.
Its best to use it for every method intended as an override, and Java 6+, every method intended as an implementation of an interface.
First, it catches misspellings like "hashcode()" instead of "hashCode()" at compile-time. It can be baffling to debug why the result of your method doesn't seem to match your code when the real cause is that your code is never invoked.
Also, if a superclass changes a method signature, overrides of the older signature can be "orphaned", left behind as confusing dead code. The #Override annotation will help you identify these orphans so that they can be modified to match the new signature.
If you find yourself overriding (non-abstract) methods very often, you probably want to take a look at your design. It is very useful when the compiler would not otherwise catch the error. For instance trying to override initValue() in ThreadLocal, which I have done.
Using #Override when implementing interface methods (1.6+ feature) seems a bit overkill for me. If you have loads of methods some of which override and some don't, that probably bad design again (and your editor will probably show which is which if you don't know).
#Override on interfaces actually are helpful, because you will get warnings if you change the interface.
Another thing it does is it makes it more obvious when reading the code that it is changing the behavior of the parent class. Than can help in debugging.
Also, in Joshua Block's book Effective Java (2nd edition), item 36 gives more details on the benefits of the annotation.
It makes absolutely no sense to use #Override when implementing an interface method. There's no advantage to using it in that case--the compiler will already catch your mistake, so it's just unnecessary clutter.
Whenever a method overrides another method, or a method implements a signature in an interface.
The #Override annotation assures you that you did in fact override something. Without the annotation you risk a misspelling or a difference in parameter types and number.
I use it every time. It's more information that I can use to quickly figure out what is going on when I revisit the code in a year and I've forgotten what I was thinking the first time.
The best practive is to always use it (or have the IDE fill them for you)
#Override usefulness is to detect changes in parent classes which has not been reported down the hierarchy.
Without it, you can change a method signature and forget to alter its overrides, with #Override, the compiler will catch it for you.
That kind of safety net is always good to have.
I use it everywhere.
On the topic of the effort for marking methods, I let Eclipse do it for me so, it's no additional effort.
I'm religious about continuous refactoring.... so, I'll use every little thing to make it go more smoothly.
Used only on method declarations.
Indicates that the annotated method
declaration overrides a declaration
in supertype.
If used consistently, it protects you from a large class of nefarious bugs.
Use #Override annotation to avoid these bugs:
(Spot the bug in the following code:)
public class Bigram {
private final char first;
private final char second;
public Bigram(char first, char second) {
this.first = first;
this.second = second;
}
public boolean equals(Bigram b) {
return b.first == first && b.second == second;
}
public int hashCode() {
return 31 * first + second;
}
public static void main(String[] args) {
Set<Bigram> s = new HashSet<Bigram>();
for (int i = 0; i < 10; i++)
for (char ch = 'a'; ch <= 'z'; ch++)
s.add(new Bigram(ch, ch));
System.out.println(s.size());
}
}
source: Effective Java
Be careful when you use Override, because you can't do reverse engineer in starUML afterwards; make the uml first.
It seems that the wisdom here is changing. Today I installed IntelliJ IDEA 9 and noticed that its "missing #Override inspection" now catches not just implemented abstract methods, but implemented interface methods as well. In my employer's code base and in my own projects, I've long had the habit to only use #Override for the former -- implemented abstract methods. However, rethinking the habit, the merit of using the annotations in both cases becomes clear. Despite being more verbose, it does protect against the fragile base class problem (not as grave as C++-related examples) where the interface method name changes, orphaning the would-be implementing method in a derived class.
Of course, this scenario is mostly hyperbole; the derived class would no longer compile, now lacking an implementation of the renamed interface method, and today one would likely use a Rename Method refactoring operation to address the entire code base en masse.
Given that IDEA's inspection is not configurable to ignore implemented interface methods, today I'll change both my habit and my team's code review criteria.
The annotation #Override is used for helping to check whether the developer what to override the correct method in the parent class or interface. When the name of super's methods changing, the compiler can notify that case, which is only for keep consistency with the super and the subclass.
BTW, if we didn't announce the annotation #Override in the subclass, but we do override some methods of the super, then the function can work as that one with the #Override. But this method can not notify the developer when the super's method was changed. Because it did not know the developer's purpose -- override super's method or define a new method?
So when we want to override that method to make use of the Polymorphism, we have better to add #Override above the method.
I use it as much as can to identify when a method is being overriden. If you look at the Scala programming language, they also have an override keyword. I find it useful.
It does allow you (well, the compiler) to catch when you've used the wrong spelling on a method name you are overriding.
Override annotation is used to take advantage of the compiler, for checking whether you actually are overriding a method from parent class. It is used to notify if you make any mistake like mistake of misspelling a method name, mistake of not correctly matching the parameters
i think it's best to code the #override whenever allowed. it helps for coding. however, to be noted, for ecipse Helios, either sdk 5 or 6, the #override annotation for implemented interface methods is allowed. as for Galileo, either 5 or 6, #override annotation is not allowed.
Annotations do provide meta data about the code to the Compiler and the annotation #Override is used in case of inheritance when we are overriding any method of base class. It just tells the compiler that you are overriding method. It can avoide some kinds common mistakes we can do like not following the proper signature of the method or mispelling in name of the method etc. So its a good practice to use #Override annotation.
For me the #Override ensures me I have the signature of the method correct. If I put in the annotation and the method is not correctly spelled, then the compiler complains letting me know something is wrong.
Simple–when you want to override a method present in your superclass, use #Override annotation to make a correct override. The compiler will warn you if you don't override it correctly.

Why should I write "#Override"? [duplicate]

Locked. This question and its answers are locked because the question is off-topic but has historical significance. It is not currently accepting new answers or interactions.
What are the best practices for using Java's #Override annotation and why?
It seems like it would be overkill to mark every single overridden method with the #Override annotation. Are there certain programming situations that call for using the #Override and others that should never use the #Override?
Use it every time you override a method for two benefits. Do it so that you can take advantage of the compiler checking to make sure you actually are overriding a method when you think you are. This way, if you make a common mistake of misspelling a method name or not correctly matching the parameters, you will be warned that you method does not actually override as you think it does. Secondly, it makes your code easier to understand because it is more obvious when methods are overwritten.
Additionally, in Java 1.6 you can use it to mark when a method implements an interface for the same benefits. I think it would be better to have a separate annotation (like #Implements), but it's better than nothing.
I think it is most useful as a compile-time reminder that the intention of the method is to override a parent method. As an example:
protected boolean displaySensitiveInformation() {
return false;
}
You will often see something like the above method that overrides a method in the base class. This is an important implementation detail of this class -- we don't want sensitive information to be displayed.
Suppose this method is changed in the parent class to
protected boolean displaySensitiveInformation(Context context) {
return true;
}
This change will not cause any compile time errors or warnings - but it completely changes the intended behavior of the subclass.
To answer your question: you should use the #Override annotation if the lack of a method with the same signature in a superclass is indicative of a bug.
There are many good answers here, so let me offer another way to look at it...
There is no overkill when you are coding. It doesn't cost you anything to type #override, but the savings can be immense if you misspelled a method name or got the signature slightly wrong.
Think about it this way: In the time you navigated here and typed this post, you pretty much used more time than you will spend typing #override for the rest of your life; but one error it prevents can save you hours.
Java does all it can to make sure you didn't make any mistakes at edit/compile time, this is a virtually free way to solve an entire class of mistakes that aren't preventable in any other way outside of comprehensive testing.
Could you come up with a better mechanism in Java to ensure that when the user intended to override a method, he actually did?
Another neat effect is that if you don't provide the annotation it will warn you at compile time that you accidentally overrode a parent method--something that could be significant if you didn't intend to do it.
I always use the tag. It is a simple compile-time flag to catch little mistakes that I might make.
It will catch things like tostring() instead of toString()
The little things help in large projects.
Using the #Override annotation acts as a compile-time safeguard against a common programming mistake. It will throw a compilation error if you have the annotation on a method you're not actually overriding the superclass method.
The most common case where this is useful is when you are changing a method in the base class to have a different parameter list. A method in a subclass that used to override the superclass method will no longer do so due the changed method signature. This can sometimes cause strange and unexpected behavior, especially when dealing with complex inheritance structures. The #Override annotation safeguards against this.
To take advantage from compiler checking you should always use Override annotation. But don’t forget that Java Compiler 1.5 will not allow this annotation when overriding interface methods. You just can use it to override class methods (abstract, or not).
Some IDEs, as Eclipse, even configured with Java 1.6 runtime or higher, they maintain compliance with Java 1.5 and don’t allow the use #override as described above. To avoid that behaviour you must go to: Project Properties ->Java Compiler -> Check “Enable Project Specific Settings” -> Choose “Compiler Compliance Level” = 6.0, or higher.
I like to use this annotation every time I am overriding a method independently, if the base is an interface, or class.
This helps you avoiding some typical errors, as when you are thinking that you are overriding an event handler and then you see nothing happening. Imagine you want to add an event listener to some UI component:
someUIComponent.addMouseListener(new MouseAdapter(){
public void mouseEntered() {
...do something...
}
});
The above code compiles and run, but if you move the mouse inside someUIComponent the “do something” code will note run, because actually you are not overriding the base method mouseEntered(MouseEvent ev). You just create a new parameter-less method mouseEntered(). Instead of that code, if you have used the #Override annotation you have seen a compile error and you have not been wasting time thinking why your event handler was not running.
#Override on interface implementation is inconsistent since there is no such thing as "overriding an interface" in java.
#Override on interface implementation is useless since in practise it catches no bugs that the compilation wouldn't catch anyway.
There is only one, far fetched scenario where override on implementers actually does something: If you implement an interface, and the interface REMOVES methods, you will be notified on compile time that you should remove the unused implementations. Notice that if the new version of the interface has NEW or CHANGED methods you'll obviously get a compile error anyways as you're not implementing the new stuff.
#Override on interface implementers should never have been permitted in 1.6, and with eclipse sadly choosing to auto-insert the annotations as default behavior, we get a lot of cluttered source files. When reading 1.6 code, you cannot see from the #Override annotation if a method actually overrides a method in the superclass or just implements an interface.
Using #Override when actually overriding a method in a superclass is fine.
Its best to use it for every method intended as an override, and Java 6+, every method intended as an implementation of an interface.
First, it catches misspellings like "hashcode()" instead of "hashCode()" at compile-time. It can be baffling to debug why the result of your method doesn't seem to match your code when the real cause is that your code is never invoked.
Also, if a superclass changes a method signature, overrides of the older signature can be "orphaned", left behind as confusing dead code. The #Override annotation will help you identify these orphans so that they can be modified to match the new signature.
If you find yourself overriding (non-abstract) methods very often, you probably want to take a look at your design. It is very useful when the compiler would not otherwise catch the error. For instance trying to override initValue() in ThreadLocal, which I have done.
Using #Override when implementing interface methods (1.6+ feature) seems a bit overkill for me. If you have loads of methods some of which override and some don't, that probably bad design again (and your editor will probably show which is which if you don't know).
#Override on interfaces actually are helpful, because you will get warnings if you change the interface.
Another thing it does is it makes it more obvious when reading the code that it is changing the behavior of the parent class. Than can help in debugging.
Also, in Joshua Block's book Effective Java (2nd edition), item 36 gives more details on the benefits of the annotation.
It makes absolutely no sense to use #Override when implementing an interface method. There's no advantage to using it in that case--the compiler will already catch your mistake, so it's just unnecessary clutter.
Whenever a method overrides another method, or a method implements a signature in an interface.
The #Override annotation assures you that you did in fact override something. Without the annotation you risk a misspelling or a difference in parameter types and number.
I use it every time. It's more information that I can use to quickly figure out what is going on when I revisit the code in a year and I've forgotten what I was thinking the first time.
The best practive is to always use it (or have the IDE fill them for you)
#Override usefulness is to detect changes in parent classes which has not been reported down the hierarchy.
Without it, you can change a method signature and forget to alter its overrides, with #Override, the compiler will catch it for you.
That kind of safety net is always good to have.
I use it everywhere.
On the topic of the effort for marking methods, I let Eclipse do it for me so, it's no additional effort.
I'm religious about continuous refactoring.... so, I'll use every little thing to make it go more smoothly.
Used only on method declarations.
Indicates that the annotated method
declaration overrides a declaration
in supertype.
If used consistently, it protects you from a large class of nefarious bugs.
Use #Override annotation to avoid these bugs:
(Spot the bug in the following code:)
public class Bigram {
private final char first;
private final char second;
public Bigram(char first, char second) {
this.first = first;
this.second = second;
}
public boolean equals(Bigram b) {
return b.first == first && b.second == second;
}
public int hashCode() {
return 31 * first + second;
}
public static void main(String[] args) {
Set<Bigram> s = new HashSet<Bigram>();
for (int i = 0; i < 10; i++)
for (char ch = 'a'; ch <= 'z'; ch++)
s.add(new Bigram(ch, ch));
System.out.println(s.size());
}
}
source: Effective Java
Be careful when you use Override, because you can't do reverse engineer in starUML afterwards; make the uml first.
It seems that the wisdom here is changing. Today I installed IntelliJ IDEA 9 and noticed that its "missing #Override inspection" now catches not just implemented abstract methods, but implemented interface methods as well. In my employer's code base and in my own projects, I've long had the habit to only use #Override for the former -- implemented abstract methods. However, rethinking the habit, the merit of using the annotations in both cases becomes clear. Despite being more verbose, it does protect against the fragile base class problem (not as grave as C++-related examples) where the interface method name changes, orphaning the would-be implementing method in a derived class.
Of course, this scenario is mostly hyperbole; the derived class would no longer compile, now lacking an implementation of the renamed interface method, and today one would likely use a Rename Method refactoring operation to address the entire code base en masse.
Given that IDEA's inspection is not configurable to ignore implemented interface methods, today I'll change both my habit and my team's code review criteria.
The annotation #Override is used for helping to check whether the developer what to override the correct method in the parent class or interface. When the name of super's methods changing, the compiler can notify that case, which is only for keep consistency with the super and the subclass.
BTW, if we didn't announce the annotation #Override in the subclass, but we do override some methods of the super, then the function can work as that one with the #Override. But this method can not notify the developer when the super's method was changed. Because it did not know the developer's purpose -- override super's method or define a new method?
So when we want to override that method to make use of the Polymorphism, we have better to add #Override above the method.
I use it as much as can to identify when a method is being overriden. If you look at the Scala programming language, they also have an override keyword. I find it useful.
It does allow you (well, the compiler) to catch when you've used the wrong spelling on a method name you are overriding.
Override annotation is used to take advantage of the compiler, for checking whether you actually are overriding a method from parent class. It is used to notify if you make any mistake like mistake of misspelling a method name, mistake of not correctly matching the parameters
i think it's best to code the #override whenever allowed. it helps for coding. however, to be noted, for ecipse Helios, either sdk 5 or 6, the #override annotation for implemented interface methods is allowed. as for Galileo, either 5 or 6, #override annotation is not allowed.
Annotations do provide meta data about the code to the Compiler and the annotation #Override is used in case of inheritance when we are overriding any method of base class. It just tells the compiler that you are overriding method. It can avoide some kinds common mistakes we can do like not following the proper signature of the method or mispelling in name of the method etc. So its a good practice to use #Override annotation.
For me the #Override ensures me I have the signature of the method correct. If I put in the annotation and the method is not correctly spelled, then the compiler complains letting me know something is wrong.
Simple–when you want to override a method present in your superclass, use #Override annotation to make a correct override. The compiler will warn you if you don't override it correctly.

How to change a method's behavior according to the application which is calling it?

I have a common jar that uses some unmarshaling of a String object. The method should act differently depending on which application it is called from, how can I do that besides from the fact that I can identify the application by trying to load some unique class it has (don't like that). Is there some design pattern that solves this issue?
As I alluded to in my comment, the best thing to do is to break that uber-method up into different methods that encapsulate the specific behaviors, and likely also another method (used by all of the app-specific ones) that deals with the common behaviors.
The most important thing to remember is that behavior matters. If something is behaving differently in different scenarios, a calling application effectively cannot use that method because it doesn't have any control over what happens.
If you still really want to have a single method that all of your applications call that behaves differently in each one, you can do it, using a certain design pattern, in a way that makes sense and is maintainable. The pattern is called "Template Method".
The general idea of it is that the calling application passes in a chunk of logic that the called method wraps around and calls when it needs to. This is very similar to functional programming or programming using closures, where you are passing around chunks of logic as if it were data. While Java proper doesn't support closures, other JVM-based languages like Groovy, Scala, Clojure, JRuby, etc. do support closures.
This same general idea is very powerful in certain circumstances, and may apply in your case, but such a question requires very intimate knowledge of the application domain and architecture and there really isn't enough information in your posted question do dig too much deeper.
Actually, I think a good OO oriented solution is, in the common jar, to have one base class, and several derived classes. The base class would contain the common logic for the method being called, and each derived class would contain specific behavior.
So, in your jar, you might have the following:
public abstact class JarClass {
public method jarMethod() {
//common code here
}
}
public class JarClassVersion1 extends JarClass {
public method jarMethod() {
// initiailzation code specific to JarClassVerion1
super.jarMethod();
// wrapup code specific to JarClassVerion1
}
}
public class JarClassVersion2 extends JarClass {
public method jarMethod() {
// initiailzation code specific to JarClassVerion2
super.jarMethod();
// wrapup code specific to JarClassVerion2
}
}
As to how the caller works, if you are willing to design your code so that the knowledge of which derived class to use resides with the caller, then you obviously just have the caller create the appropriate derived class and call jarMethod.
However, I take it from your question, you want the knowledge of which class to use to reside in the jar. In that case, there are several solutions. But a fairly easy one is to define a factory method inside the jar which creates the appropriate derived class. So, inside the abstract JarClass, you might define the following method:
public static JarClass createJarClass(Class callerClass) {
if (callerClass.equals(CallerClassType1.class)) {
return new JarClassVersion1();
} else if (callerClass.equals(CallerClassType2.class)) {
return new JarClassVersion1();
// etc. for all derived classess
}
And then the caller would simply do the following:
JarClass.createJarClass(this.getClass()).jarMethod();

How to organize Exception classes without code duplication?

I have a number of custom Exception-inheriting classes in my package, which do not differ from their base class. The only purpose I have them is to distinguish one exception cause from the other, when it is thrown. This is how one of my Exception class looks like:
package com.XXX;
/**
* Thrown when query format is invalid.
*/
public class InvalidFormatException extends Exception {
/**
* Public ctor.
* #param m Supplementary message
*/
public InvalidFormatException(final String m) {
super(m);
}
}
The problem is that all classes are absolutely identical, like twins. The only thing which is different is their names. I don't like this situation, since it's an obvious code duplication. In other languages (like PHP, Python, etc.) I would declare these classes on-fly during runtime, but Java doesn't allow this, as well as I understand. Is there any workaround?
You may create a generic class with a code property settable with the controller. This way you can have only one class and instance when thrown.
That said, I don't agree when you say classes are twins. They represent totally different functional exception. Based on the separation of concerns pattern, the current implementation is the correct one. Using my generic class will mix concerns in your class and that should be forbidden.
Moreover, I see you inherit from Exception... I will not explains a lot but you should use RuntimeException for functional exceptions in your application. Look around on the web, there is a lot of literature about it.
The simple answer is "no", you cannot easily declare on the fly classes with Java. That noted, if you really wanted to do this, it is possible, you'll need to study how Java can compile classes at runtime. Another simplification is if all your exception classes are the same, excepting their names, you could define a base Exception class of your own that they extend.
Another thought, what value are you getting from having all these different Exception classes? Are you clients going to handle things differently depending on what Exception's thrown? If not, I'd suggest examining the Exception hierarchy you've created and simplifying.
Then, if you go that far, consider using RuntimeException as well. This might be grounds for a holy war, but if you really don't do anything special with what's thrown, there's not much value in forcing you client to deal with it. See Bruce Eckel's article on the subject for some perspective.

Java abstract static Workaround

I understand that neither a abstract class nor an interface can contain a method that is both abstract and static because of ambiguity problems, but is there a workaround?
I want to have either an abstract class or an interface that mandates the inclusion of a static method in all of the classes that extend/implement this class/interface. Is there a way to do this in Java? If not, this may be my final straw with Java...
EDIT 1: The context of this problem is that I have a bunch of classes, call them Stick, Ball, and Toy for now, that have a bunch of entries in a database. I want to create a superclass/interface called Fetchable that requires a static method getFetchables() in each of the classes below it. The reason the methods in Stick, Ball, and Toy have to be static is because they will be talking to a database to retrieve all of the entries in the database for each class.
EDIT 2: To those who say you cannot do this in any language, that is not true. You can certainly do this in Ruby where class methods are inherited. This is not a case of someone not getting OO, this is a case of missing functionality in the Java language. You can try to argue that you should never need to inherit static (class) methods, but that is utterly wrong and I will ignore any answers that make such points.
You have a couple of options:
Use reflection to see if the method exists and then call it.
Create an annotation for the static method named something like #GetAllWidgetsMethod.
As others have said, try to not use a static method.
There are lots of answers about 'this does'nt make sense..' but indeed I met a similar problem just yesterday.
I wanted to use inheritance with my unit tests. I have an API and several its implementations. So I need only 1 set of unit tests for all implementations but with different setUp methods which are static.
Workaround: all tests are abstract classes, with some static fields with protected access modifier. In all implementations I added static methods which set these static fields. It works rather nice, and I avoided copy and paste.
I too am dealing with this problem. For those that insist that it "doesn't make sense", I would invite you to think outside of that semantic box for a moment. The program I am working with is inherently about reflection.
Reflection, as you know, can take three orders of magnitude longer than straight-up binary function calling. That is an inevitable problem, and the software needs to port to as many machines as possible, some of which will be 32 bit and slower than my development machine to begin with. Thus, the applicability of a class to the requested operation needs to be checked via a static method, and all of the reflective methods are run at once during module booting.
Everything works, first and foremost. I've built the entire thing. The only catch is that a module can be compiled in a .class without compile time checking to see if the identifying static function exists at all, resulting in an innately useless class. Without the identifier, and its included information, for security's sake the module is not loaded.
I clearly understand the issue with the complete definition of "abstract" and "static", and understand that they don't make sense together. However, the ability to have a class method that is compiler-enforced for inclusion is lacking in Java, and as much as I like the language, I miss it. Thus, this is a human constraint on every programmer that ever works on the software, which I'm sure we can all agree is a pain.
There's a lot of 'this makes no sense' or 'this can't be because' and 'why do you want it?' (or worse: 'you don't have to want it!') in all those answers. However, these answers also indirectly give reasons why it should be possible.
It must be differentiated between the concept and the implementation.
Sure, overriding a static method makes no sense. And it also isn't what the question was about.
It was asked for a way to force implementation of a certain static method (or constant or whatever) in every derived class of an abstract class. Why this is required it the matter of the one who wants to write an appllication with Jave, and no business of anyone else.
This has nothing to do with how the compiler compiles the method and how it is done at runtime.
Why shoudl it be possible? because there are things that are class specific (and not instance specific) and therefore should be static, while they NEED to be impleented in every single subclass (or class that implements an interface).
Let's say there is an abstract class 'Being'. Now there are subclasses like 'animals' and 'plants'.
Now there are only mammals and fishes allowed for animals. This information is specific to the animals class, not to any instance nor doe sit belong to any superclass or subclass. However, this information must be provided by teh class, not an instance, because it is required to properly construct an animal instance. So it MUST be there and it CANNOT be in the instance.
In fact, Java has such a thing- Every object has a class specific field 'class'. It is class-specific, not inherited, no override and it must be there. Well the compiler creates it implicitly, but obviously the compiler CAN do it. So why not allowing this for own fields too.
After all, it is just a matter of definition how the combination 'abstract static' is interpreted when the compiler checks the intheritance chain for abstract functions.
Nobody was ever demanding that there should be an inheritance of the superclass class functions (which could still make some sense, depending on what this function actually does - after all classes inherit static functions of their superclasses, even though you might get a warning that you should access it directly when you call it by the subclass))
But to summarize: the Java language offers no way to do it at compile time while there is no reason (othe rthan plain dogmatic) to not doing so.
The only way is to write a static final function to the abstract class that tries to find the static function/field of the subclass when it is loaded (or loads all existing subclasses and checks them). If properly made, it gives a runtime error on first use. Complex and dirty but better than nothing. At least it prevents bugs where you get the information from the wrong superclass.
It won't work for interfaces, though.
A type system allows you to express some constraints among types, but it's limited. That's why javadocs are littered with constraints in human language, asking people to follow rules that the compiler cannot check.
if you want to extend it beyond what language provides natively, you can write your own static analysis tool. that is not uncommon. for example: findbug. also IDEs do that too, they checking thing beyond what language dictates. you can write a plug in to enforce that a subclass must have a static method of such signature.
in your case, it's not worth it. have javadoc in the superclass urge implementors to include a static method, that's good enough.
I'll provide a convoluted way of expressing your constraint anyway, but DO NO DO IT. people get really carried away of make everything checkable at compile time, at the price of making code unreadable.
interface WidgetEnumerator
{
List getAllWidgets();
}
public class Abs<T extends WidgetEnumerator>
{
static List getAllWidgets(Class<? extends Abs> clazz){ ... }
}
public class Sub extends Abs<SubWidgetEnumerator>
{
}
public class SubWidgetEnumerator implements WidgetEnumerator
{
public List getAllWidgets() { ... }
}
How it works: for any subclass of Abs, it is forced to provide an implementation of WidgetEnumerator. subclass author cannot forget that. Now invocation Abs.getAllWidgets(Sub.class) contains sufficient information to resolve that implementation, i.e. SubWidgetEnumerator. It is done through reflection, but it is type safe, there are no string literals involved.
I think I can give you a better answer after seeing your edits--your best bet is probably a factory pattern. (Not lovely, but better than singleton).
abstract class Widget
public static Widget[] getAllWidgetsOfType(Class widgetType) {
if(widgetType instanceof ...)
}
class Ball extends Widget
class Stick extends Widget
class Toy extends Widget
This is not a very good way to do it, but it's typical. Hibernate is the tool you would normally use to solve this problem, this is exactly what it's designed for.
The big problem is that it requires editing the base class whenever you add a new class of a given type. This can't be gotten around without reflection. If you want to use reflection, then you can implement it this way (Psuedocode, I'm not going to look up the exact syntax for the reflection, but it's not much more complex than this):
public static Widget[] getAllWidgetsOfType(Class widgetType) {
Method staticMethod=widgetType.getStaticMethod("getAllInstances");
return staticMethod.invoke();
}
This would give the solution you were asking for (to be bothered by the need to modify the base class each time you add a child class is a good instinct).
You could also make it an instance method instead of a static. It's not necessary, but you could then prototype the method (abstract) in Widget.
Again, all this is unnecessary and sloppy compared to Hibernate...
Edit: If you passed in a live "Empty" instance of a ball, stick or toy instead of it's "Class" object, you could then just call an inherited method and not use reflection at all. This would also work but you have to expand the definition of a Widget to include an "Empty" instance used as a key.
Static methods are relevant to an entire class of object, not the individual instances. Allowing a static method to be overridden breaks this dictum.
The first thing I would consider is to access your database from a non-static context. This is actually the norm for Java apps.
If you absolutely must use a static method, then have it parameterised with instance specific arguments (of a generic type) to allow the different subclasses to interact with it. Then call that single static method from you polymorphic methods.
No. You can't do that. If you're willing to compromise and make the method non-static or provide an implementation of the static method in your abstract class, you'll be able to code this in Java.
Is there a way to do this in Java?
I don't think there is a way to do this in any language. There's no point to it, since static methods belong to a class and can't be called polymorphically. And enabling polymorphic calls is the only reason for interfaces and abstract classes to exist.
Create a context interface containing your method with a name that matches your problem domain. (Name it "World" if you absolutely have to, but most of the time there's a better name)
Pass around implementation instances of the context object.
Ok, maybe my question was poorly asked, it seems like most of you didn't get what I was trying to do. Nonetheless, I have a solution that is somewhat satisfactory.
In the abstract super class, I am going to have a static method getAllWidgets(Class type). In it I'll check the class you passed it and do the correct fetching based on that. Generally I like to avoid passing around classes and using switches on stuff like this, but I'll make an exception here.
static methods can't be abstract because they aren't virtual. Therefore anywhere that calls them has to have the concrete type with the implementation. If you want to enforce that all implementations of an interface have a certain static method, then that suggests a unit test is required.
abstract class A
{
public static void foo()
{
java.lang.System.out.println("A::foo");
}
public void bar()
{
java.lang.System.out.println("A::bar");
}
}
class B extends A
{
public static void foo()
{
java.lang.System.out.println("B::foo");
}
public void bar()
{
java.lang.System.out.println("B::bar");
}
}
public class Main
{
public static void main(String[] args)
{
B b = new B();
b.foo();
b.bar();
A a = b;
a.foo();
a.bar();
}
}
For what it is worth I know exactly what you are trying to do.
I found this article while searching for the reasons I can't do it either.
In my case I have HUNDREDS of classes that inherit from a central base base and I want simply to get a reference like this:
ValueImSearchingFor visf = StaticClass.someArbitraryValue()
I do NOT want to write/maintain someArbitraryValue() for each and every one of hundreds of the inherited classes -- I just want to write logic once and have it calc a Unique Class-Sepcific value for each and every future written class WITHOUT touching the base class.
Yes I completely get OO - I've been writing Java for about as long as it's been available.
These specific classes are more like "Definitions" as opposed to actual Objects and I don't want to instantiate one every time I just need to see what someArbitraryValue() actually is.
Think of it as a PUBLIC STATIC FINAL that allows you to run a Method ONCE to set it initially. (Kinda like you can do when you define an Enum actually...)
I'd make a WidgetCollection class with an abstract Widget inner class.
You can extend the WidgetCollection.Widget class for each of your types of Widget.
No static methods necessary.
Example (not compiled or tested):
class WidgetCollection<W extends Widget> {
Set<W> widgets = new HashSet<W>();
Set<W> getAll() {
return widgets;
}
abstract class Widget {
Widget() {
widgets.add(this);
}
abstract String getName();
}
public static void main(String[] args) {
WidgetCollection<AWidget> aWidgets = new WidgetCollection<AWidget>();
a.new AWidget();
Set<AWidget> widgets = aWidgets.getAll();
}
}
class AWidget extends Widget {
String getName() {
return "AWidget";
}
}
It doesn't make sense to do what you're asking:
Why can't static methods be abstract in Java

Categories

Resources