In this question How can I efficiently select a Standard Library container in C++11? is a handy flow chart to use when choosing C++ collections.
I thought that this was a useful resource for people who are not sure which collection they should be using so I tried to find a similar flow chart for Java and was not able to do so.
What resources and "cheat sheets" are available to help people choose the right Collection to use when programming in Java? How do people know what List, Set and Map implementations they should use?
Since I couldn't find a similar flowchart I decided to make one myself.
This flow chart does not try and cover things like synchronized access, thread safety etc or the legacy collections, but it does cover the 3 standard Sets, 3 standard Maps and 2 standard Lists.
This image was created for this answer and is licensed under a Creative Commons Attribution 4.0 International License. The simplest attribution is by linking to either this question or this answer.
Other resources
Probably the most useful other reference is the following page from the oracle documentation which describes each Collection.
HashSet vs TreeSet
There is a detailed discussion of when to use HashSet or TreeSet here:
Hashset vs Treeset
ArrayList vs LinkedList
Detailed discussion: When to use LinkedList over ArrayList?
Summary of the major non-concurrent, non-synchronized collections
Collection: An interface representing an unordered "bag" of items, called "elements". The "next" element is undefined (random).
Set: An interface representing a Collection with no duplicates.
HashSet: A Set backed by a Hashtable. Fastest and smallest memory usage, when ordering is unimportant.
LinkedHashSet: A HashSet with the addition of a linked list to associate elements in insertion order. The "next" element is the next-most-recently inserted element.
TreeSet: A Set where elements are ordered by a Comparator (typically natural ordering). Slowest and largest memory usage, but necessary for comparator-based ordering.
EnumSet: An extremely fast and efficient Set customized for a single enum type.
List: An interface representing a Collection whose elements are ordered and each have a numeric index representing its position, where zero is the first element, and (length - 1) is the last.
ArrayList: A List backed by an array, where the array has a length (called "capacity") that is at least as large as the number of elements (the list's "size"). When size exceeds capacity (when the (capacity + 1)-th element is added), the array is recreated with a new capacity of (new length * 1.5)--this recreation is fast, since it uses System.arrayCopy(). Deleting and inserting/adding elements requires all neighboring elements (to the right) be shifted into or out of that space. Accessing any element is fast, as it only requires the calculation (element-zero-address + desired-index * element-size) to find it's location. In most situations, an ArrayList is preferred over a LinkedList.
LinkedList: A List backed by a set of objects, each linked to its "previous" and "next" neighbors. A LinkedList is also a Queue and Deque. Accessing elements is done starting at the first or last element, and traversing until the desired index is reached. Insertion and deletion, once the desired index is reached via traversal is a trivial matter of re-mapping only the immediate-neighbor links to point to the new element or bypass the now-deleted element.
Map: An interface representing an Collection where each element has an identifying "key"--each element is a key-value pair.
HashMap: A Map where keys are unordered, and backed by a Hashtable.
LinkedhashMap: Keys are ordered by insertion order.
TreeMap: A Map where keys are ordered by a Comparator (typically natural ordering).
Queue: An interface that represents a Collection where elements are, typically, added to one end, and removed from the other (FIFO: first-in, first-out).
Stack: An interface that represents a Collection where elements are, typically, both added (pushed) and removed (popped) from the same end (LIFO: last-in, first-out).
Deque: Short for "double ended queue", usually pronounced "deck". A linked list that is typically only added to and read from either end (not the middle).
Basic collection diagrams:
Comparing the insertion of an element with an ArrayList and LinkedList:
Even simpler picture is here. Intentionally simplified!
Collection is anything holding data called "elements" (of the same type). Nothing more specific is assumed.
List is an indexed collection of data where each element has an index. Something like the array, but more flexible.
Data in the list keep the order of insertion.
Typical operation: get the n-th element.
Set is a bag of elements, each elements just once (the elements are distinguished using their equals() method.
Data in the set are stored mostly just to know what data are there.
Typical operation: tell if an element is present in the list.
Map is something like the List, but instead of accessing the elements by their integer index, you access them by their key, which is any object. Like the array in PHP :)
Data in Map are searchable by their key.
Typical operation: get an element by its ID (where ID is of any type, not only int as in case of List).
The differences
Set vs. Map: in Set you search data by themselves, whilst in Map by their key.
N.B. The standard library Sets are indeed implemented exactly like this: a map where the keys are the Set elements themselves, and with a dummy value.
List vs. Map: in List you access elements by their int index (position in List), whilst in Map by their key which os of any type (typically: ID)
List vs. Set: in List the elements are bound by their position and can be duplicate, whilst in Set the elements are just "present" (or not present) and are unique (in the meaning of equals(), or compareTo() for SortedSet)
It is simple: if you need to store values with keys mapped to them go for the Map interface, otherwise use List for values which may be duplicated and finally use the Set interface if you don’t want duplicated values in your collection.
Here is the complete explanation http://javatutorial.net/choose-the-right-java-collection , including flowchart etc
Map
If choosing a Map, I made this table summarizing the features of each of the ten implementations bundled with Java 11.
Common collections, Common collections
Related
I am currently studying about Algorithms & Data Structures and while I was reading over the Book of Algorithms 4th edition, I discovered the Bag data-structure together with the Stack and Queue.
After reading the the explanation of it, it is still unclear to me why would I prefer using a Bag (which has no remove() method) over other data-structures such as Stack, Queue, LinkedList or a Set?
As far as I can understand from the Book, the implementation of a Bag, is the same as for a Stack, just replacing the name of push() to add() and remove the pop() method.
So the idea of a Bag is basically having the ability to collect items and then iterate through the collected items, check if a bag is empty and find the number of items in it.
But under which circumstances I would better using a Bag over one of the mentioned above Collections? And why a Bag doesn't have a remove() method basically? is there a specific reason for it?
Thanks in advance.
Stack is ADT of the collection of elements with specific remove order = LIFO (last-in-first-out), allows duplicates,
Queue is ADT of the collection of elements with specific remove order = FIFO (first-in-first-out), allows duplicates,
LinkedList is implementation of the list,
Set is ADT of the collection of elements which disallows duplicates,
Bag is ADT of the collection of elements which allows duplicates.
In general, anything that holds an elements is Collection.
Any collection which allows duplicates is Bag, otherwise it is Set.
Any bag which access elements via index is List.
Bag which appends new element after the last one and has a method to remove element from the head (first index) is Queue.
Bag which appends new element after the last one and has a method to remove element from the tail (last index) is Stack.
Example: In Java, LinkedList is a collection, bag, list, queue and also you can work with it as it was a stack since it support stack operations (add~addLast~push, peekLast, removeLast~pop), so you can call it also stack. The reason, why it does not implement Stack interface is, that peek method is reserved by Queue implementation which retrieves the head of the list (first element). Therefore in case of LinkedList, the "stack methods" are derived from Deque.
Whether Bag contains remove(Object) or not may depend on the implementation e. g. you can implement your own Bag type which supports this operation. Also you can implement get(int) operation to access object on specified index. Time complexity of the get(int) would depend on your implementation e. g. one can implement Bag via linked-list so the complexity would be at average O(n/2), other one via resizable array (array-list) with direct access to the element via index, so the complexity would be O(1).
But the main idea of the Bag is, that it allows duplicates and iteration through this collection. Whether it supports another useful operations depends on implementator's design decision.
Which one of the collection type to use dependes on your needs, if duplicates are not desired, you would use Set instead of Bag. Moreover, if you care about remove order you would pick Stack or Queue which are basically Bags with specific remove order. You can think of Bag as super-type of the Stack and Queue which extends its api by specific operations.
Most of the time, you just need to collect objects and process them in some way (iteration + element processing). So you will use the most simple Bag implementation which is one directional linked-list.
Bag is an unordered collection of values that may have duplicates. When comparing a stack to a bag, the first difference is that for stacks,
order matters.
Bag only supports the add and iterate operations. You cannot remove items from a bag-it’s possible to remove elements from a stack.-. After checking if the container is actually empty, clients can iterate through its elements; since the actual order is unspecified by definition, clients must not rely on it.
Bags are useful when you need to collect objects and process them as a whole set rather than individually. For example, you could collect samples and then, later, compute statistics on them, such as average or standard deviation—the order is
irrelevant in that case.
in terms of priority queues, a bag is a Priority queue for which element
removal (top()-Returns and extracts the element with the highest priority. ) is disabled. Priority Queue api has, top, peek,insert,remove and update methods. it’s possible to peek one element at a time, and the
priority of each element is given by a random number from a uniform distribution. Priorities also change at every iteration.
In java, List and Map are using in collections. But i couldn't understand at which situations we should use List and which time use Map. What is the major difference between both of them?
Now would be a good time to read the Java collections tutorial - but fundamentally, a list is an ordered sequence of elements which you can access by index, and a map is a usually unordered mapping from keys to values. (Some maps preserve insertion order, but that's implementation-specific.)
It's usually fairly obvious when you want a key/value mapping and when you just want a collection of elements. It becomes less clear if the key is part of the value, but you want to be able to get at an item by that key efficiently. That's still a good use case for a map, even though in some senses you don't have a separate collection of keys.
There's also Set, which is a (usually unordered) collection of distinct elements.
Map is for Key:Value pair kind of data.for instance if you want to map student roll numbers to their names.
List is for simple ordered collection of elements which allow duplicates.
for instance to represent list of student names.
Map Interface
A Map cares about unique identifiers. You map a unique key (the ID) to a specific
value, where both the key and the value are, of course, objects.
The Map implementations let you do things like search for a
value based on the key, ask for a collection of just the values, or ask for a collection
of just the keys. Like Sets, Maps rely on the equals() method to determine whether
two keys are the same or different.
List Interface
A List cares about the index. The one thing that List has that non-lists don't have
is a set of methods related to the index. Those key methods include things like
get(int index), indexOf(Object o), add(int index, Object obj), and so
on. All three List implementations are ordered by index position—a position that
you determine either by setting an object at a specific index or by adding it without
specifying position, in which case the object is added to the end.
list is a linked list, where every object is connected to the next one via pointers. the time it takes to insert a new object to the list is O(1) but the rest of operations on it take longer.
the good thing about it is that it takes exactly the amount of memory you need and not even on byte more than that.
Maps are a data structure that has an array and each entry to the array is calculated with a hashFunction(key) that calculates the location according to the key. almost every operation in a Map taks O(1) (except inserting when there are 2 identical keys) but the space complexity is fairly large.
for more reading try wikipedia's HashMap and linked list
HashList is a data structure storing objects in a hash table and a list.it is a combination of hashmap and doubly linked list. acess will be faster. HashMap is hash table implementation of map interface it is same as HashTable except that it is unsynchronized and allow null values. List is an ordered collection and it allow nulls and duplicates in it. positional acess is possible. Set is a collection that doesn't allow duplicates, it may allow at most one null element. same as our mathematical set.
List is just an ordered collectiom(a sequence). Check this list documentation .You can access elements by their integer index (position in the list), and search for elements in the list.
Also lists allow duplicate elements and multiple NULL elements.
Map is an object that maps the values to the keys. Check this map documentation. A map cannot contain duplicate keys; each key can map to at most one value.
List - This datastructure is used to contain list of elements.
In case you need list of elements and the list may contain duplicate values,
then you have to use List.
Map - It contains data as key value pair. When you have to store data
in key value pair,so that latter you can retrieve data using the key,
you have to use Map data structure.
List implementation - ArrayList, LinkedList
Map implementation - HashMap, TreeMap
In comparison HashMap to ArrayList -
A hash map is the fastest data structure if you want to get all nodes for a page. The list of nodes can be fetched in constant time (O(1)) while with lists the time is O(n) (n=number of pages, faster on sorted lists but never getting near O(1))
What is the reason why we cannot always use a HashMap, even though it is much more efficient than ArrayList or LinkedList in add,remove operations, also irrespective of the number of the elements.
I googled it and found some reasons, but there was always a workaround for using HashMap, with advantages still alive.
Lists represent a sequential ordering of elements.
Maps are used to represent a collection of key / value pairs.
While you could use a map as a list, there are some definite downsides of doing so.
Maintaining order:
A list by definition is ordered. You add items and then you are able to iterate back through the list in the order that you inserted the items. When you add items to a HashMap, you are not guaranteed to retrieve the items in the same order you put them in. There are subclasses of HashMap like LinkedHashMap that will maintain the order, but in general order is not guaranteed with a Map.
Key/Value semantics:
The purpose of a map is to store items based on a key that can be used to retrieve the item at a later point. Similar functionality can only be achieved with a list in the limited case where the key happens to be the position in the list.
Code readability
Consider the following examples.
// Adding to a List
list.add(myObject); // adds to the end of the list
map.put(myKey, myObject); // sure, you can do this, but what is myKey?
map.put("1", myObject); // you could use the position as a key but why?
// Iterating through the items
for (Object o : myList) // nice and easy
for (Object o : myMap.values()) // more code and the order is not guaranteed
Collection functionality
Some great utility functions are available for lists via the Collections class. For example ...
// Randomize the list
Collections.shuffle(myList);
// Sort the list
Collections.sort(myList, myComparator);
Lists and Maps are different data structures. Maps are used for when you want to associate a key with a value and Lists are an ordered collection.
Map is an interface in the Java Collection Framework and a HashMap is one implementation of the Map interface. HashMap are efficient for locating a value based on a key and inserting and deleting values based on a key. The entries of a HashMap are not ordered.
ArrayList and LinkedList are an implementation of the List interface. LinkedList provides sequential access and is generally more efficient at inserting and deleting elements in the list, however, it is it less efficient at accessing elements in a list. ArrayList provides random access and is more efficient at accessing elements but is generally slower at inserting and deleting elements.
I will put here some real case examples and scenarios when to use one or another, it might be of help for somebody else:
HashMap
When you have to use cache in your application. Redis and membase are some type of extended HashMap. (Doesn't matter the order of the elements, you need quick ( O(1) ) read access (a value), using a key).
LinkedList
When the order is important (they are ordered as they were added to the LinkedList), the number of elements are unknown (don't waste memory allocation) and you require quick insertion time ( O(1) ). A list of to-do items that can be listed sequentially as they are added is a good example.
The downfall of ArrayList and LinkedList is that when iterating through them, depending on the search algorithm, the time it takes to find an item grows with the size of the list.
The beauty of hashing is that although you sacrifice some extra time searching for the element, the time taken does not grow with the size of the map. This is because the HashMap finds information by converting the element you are searching for, directly into the index, so it can make the jump.
Long story short...
LinkedList: Consumes a little more memory than ArrayList, low cost for insertions(add & remove)
ArrayList: Consumes low memory, but similar to LinkedList, and takes extra time to search when large.
HashMap: Can perform a jump to the value, making the search time constant for large maps. Consumes more memory and takes longer to find the value than small lists.
What are the advantages of each structure?
In my program I will be performing these steps and I was wondering which data structure above I should be using:
Taking in an unsorted array and
adding them to a sorted structure1.
Traversing through sorted data and removing the right one
Adding data (never removing) and returning that structure as an array
When do you know when to use a TreeSet or LinkedList? What are the advantages of each structure?
In general, you decide on a collection type based on the structural and performance properties that you need it to have. For instance, a TreeSet is a Set, and therefore does not allow duplicates and does not preserve insertion order of elements. By contrast a LinkedList is a List and therefore does allow duplicates and does preserve insertion order. On the performance side, TreeSet gives you O(logN) insertion and deletion, whereas LinkedList gives O(1) insertion at the beginning or end, and O(N) insertion at a selected position or deletion.
The details are all spelled out in the respective class and interface javadocs, but a useful summary may be found in the Java Collections Cheatsheet.
In practice though, the choice of collection type is intimately connected to algorithm design. The two need to be done in parallel. (It is no good deciding that your algorithm requires a collection with properties X, Y and Z, and then discovering that no such collection type exists.)
In your use-case, it looks like TreeSet would be a better fit. There is no efficient way (i.e. better than O(N^2)) to sort a large LinkedList that doesn't involve turning it into some other data structure to do the sorting. There is no efficient way (i.e. better than O(N)) to insert an element into the correct position in a previously sorted LinkedList. The third part (copying to an array) works equally well with a LinkedList or TreeSet; it is an O(N) operation in both cases.
[I'm assuming that the collections are large enough that the big O complexity predicts the actual performance accurately ... ]
The genuine power and advantage of TreeSet lies in interface it realizes - NavigableSet
Why is it so powerfull and in which case?
Navigable Set interface add for example these 3 nice methods:
headSet(E toElement, boolean inclusive)
tailSet(E fromElement, boolean inclusive)
subSet(E fromElement, boolean fromInclusive, E toElement, boolean toInclusive)
These methods allow to organize effective search algorithm(very fast).
Example: we need to find all the names which start with Milla and end with Wladimir:
TreeSet<String> authors = new TreeSet<String>();
authors.add("Andreas Gryphius");
authors.add("Fjodor Michailowitsch Dostojewski");
authors.add("Alexander Puschkin");
authors.add("Ruslana Lyzhichko");
authors.add("Wladimir Klitschko");
authors.add("Andrij Schewtschenko");
authors.add("Wayne Gretzky");
authors.add("Johann Jakob Christoffel");
authors.add("Milla Jovovich");
authors.add("Taras Schewtschenko");
System.out.println(authors.subSet("Milla", "Wladimir"));
output:
[Milla Jovovich, Ruslana Lyzhichko, Taras Schewtschenko, Wayne Gretzky]
TreeSet doesn't go over all the elements, it finds first and last elemenets and returns a new Collection with all the elements in the range.
TreeSet:
TreeSet uses Red-Black tree underlying. So the set could be thought as a dynamic search tree. When you need a structure which is operated read/write frequently and also should keep order, the TreeSet is a good choice.
If you want to keep it sorted and it's append-mostly, TreeSet with a Comparator is your best bet. The JVM would have to traverse the LinkedList from the beginning to decide where to place an item. LinkedList = O(n) for any operations, TreeSet = O(log(n)) for basic stuff.
The most important point when choosing a data structure are its inherent limitations. For example if you use TreeSet to store objects and during run-time your algorithm changes attributes of these objects which affect equal comparisons while the object is an element of the set, get ready for some strange bugs.
The Java Doc for Set interface state that:
Note: Great care must be exercised if mutable objects are used as set elements. The behavior of a set is not specified if the value of an object is changed in a manner that affects equals comparisons while the object is an element in the set. A special case of this prohibition is that it is not permissible for a set to contain itself as an element.
Interface Set Java Doc
Maybe the title is not appropriate but I couldn't think of any other at this moment. My question is what is the difference between LinkedList and ArrayList or HashMap and THashMap .
Is there a tree structure already for Java(ex:AVL,red-black) or balanced or not balanced(linked list). If this kind of question is not appropriate for SO please let me know I will delete it. thank you
ArrayList and LinkedList are implementations of the List abstraction. The first holds the elements of the list in an internal array which is automatically reallocated as necessary to make space for new elements. The second constructs a doubly linked list of holder cells, each of which refers to a list element. While the respective operations have identical semantics, they differ considerably in performance characteristics. For example:
The get(int) operation on an ArrayList takes constant time, but it takes time proportional to the length of the list for a LinkedList.
Removing an element via the Iterator.remove() takes constant time for a LinkedList, but it takes time proportional to the length of the list for an ArrayList.
The HashMap and THashMap are both implementations of the Map abstraction that are use hash tables. The difference is in the form of hash table data structure used in each case. The HashMap class uses closed addressing which means that each bucket in the table points to a separate linked list of elements. The THashMap class uses open addressing which means that elements that hash to the same bucket are stored in the table itself. The net result is that THashMap uses less memory and is faster than HashMap for most operations, but is much slower if you need the map's set of key/value pairs.
For more detail, read a good textbook on data structures. Failing that, look up the concepts in Wikipedia. Finally, take a look at the source code of the respective classes.
Read the API docs for the classes you have mentioned. The collections tutorial also explains the differences fairly well.
java.util.TreeMap is based on a red-black tree.
Regarding the lists:
Both comply with the List interface, but their implementation is different, and they differ in the efficiency of some of their operations.
ArrayList is a list stored internally as an array. It has the advantage of random access, but a single item addition is not guaranteed to run in constant time. Also, removal of items is inefficient.
A LinkedList is implemented as a doubly connected linked list. It does not support random access, but removing an item while iterating through it is efficient.
As I remember, both (LinkedList and ArrayList) are the lists. But they have defferent inner realization.