Can Arquillian run tests in parallel? - java

Situation:
JUnit is capable of running multiple test methods/classes in paralell. We have a bunch of integration tests that use Arquillian. In these tests we use our maven-build war artifact as #Deployment and enrich it with a few test helpers.
Question
Is it possible to enable parallel testing for Arquillian tests? Are there restrictions? If it's not possible: Is there some documentation about that fact?
Concerns
I think running multiple tests in paralell might be problematic. We usually only use the same single deployment for all methods in a Test class. If i run multiple test methods in paralell, will the same deployment be used, or will each method try to re-deploy its deployment?. What if there are different deployments for different methods in the same class, which shall be executed in paralell? Does Arquilian manage this, or will this cause errors?
Why should it cause errors? Because the deployments always contain the whole application. All beans. All Services which might use resources (ports) and whatnot. For example, if multiple deployments want to register the same EJBs, the whole thing must go down the drain.
... right? Does Arquillian handle these problems (can't think of a way how it could)?

It's going to depend on your container. For an embedded container, it should work without an issue (assuming ports don't conflict for any listeners). For a managed or remote, you'll get inconsistent results.

Related

Writing System Tests in JUnit

Preface
I'm deliberatly talking about system tests. We do have a rather exhaustive suite of unit tests, some of which use mocking, and those aren't going anywhere. The system tests are supposed to complement the unit tests and as such mocking is not an option.
The Problem
I have a rather complex system that only communicates via REST and websocket events.
My team has a rather large collection of (historically grown) system tests based JUnit.
I'm currently migrating this codebase to JUnit5.
The tests usually consist of an #BeforeAll in which the system is started in a configuration specific to the test-class, which takes around a minute. Then there is a number of independent tests on this system.
The problem we routinely run into is that booting the system takes a considerable amount of time and may even fail. One could say that the booting itself can be considered a test-case. JUnit handles lifecycle methods kind of weirdly - the time they take isn't shown in the report; if they fail it messes with the count of tests; it's not descriptive; etc.
I'm currently looking for a workaround, but what my team has done over the last few years is kind of orthogonal to the core idea of JUnit (cause it's a unit testing framework).
Those problems would go away if I replaced the #BeforeAllwith a test-method (let's call it #Test public void boot(){...}) and introduce an order-dependency (which is pretty easy using JUnit 5) that enforces boot to run before any other test is run.
So far so good! This looks and works great. The actual problem starts when the tests aren't executed by the CI server but by developers who try to troubleshoot. When I try to start a single test boot is filtered from the test execution and the test fails.
Is there any solution to this in JUnit5? Or is there a completely different approach I should take?
I suspect there may be a solution in using #TestTemplate but I'm really not sure how to procede. Also afaik that would only allow me to generate new named tests that would be filtered as well. Do I have to write a custom test-engine? That doesn't seem compelling.
This more general testing problem then related to Junit5. In order to skip very long boot up you can mock some components if it is possible. Having the booting system as a test does not make sense because there are other tests depending on that. Better to use #beforeAll in this case as it was before. For testing boot up, you can make separate test class for that which will run completely independent from other tests.
Another option is to group this kind of test and separate from the plain unit test and run it only if needed (for example before deployment on CI server). This really depends on specific use case and should those test be part of regular build on your local machine.
The third option is to try to reduce boot time if it possible. This is option if you can't use mocks/stubs or exclude those tests from regular build.

What are integration tests containing and how to set them up

I’m currently learning about unit tests and integration testing and as I understood it, unit tests are used to test the logic of a specific class and integration tests are used to check the cooperation of multiple classes and libraries.
But is it only used to test multiple classes and if they work together as expected, or is it also valid to access databases in an integration test? If so, what if the connection can‘t be established because of a server sided error, wouldn’t the tests fail, although the code itself would work as expected? How do I know what‘s valid to use in this kind of tests?
Second thing I don‘t understand is how they are set up. Unit tests seem to me have a quite common form, like:
public class classTest {
#BeforeEach
public void setUp(){
}
#Test
public void testCase(){
}
}
But how are integration tests written? Is it commonly done the same way, just including more classes and external factors or is there another way that is used for that?
[... ] is it also valid to access databases in an integration test? [...] How do I know what‘s valid to use in this kind of tests?
The distinction between unit-tests and integration tests is not whether or not more than one component is involved: Even in unit-testing you can get along without mocking all your dependencies if these dependencies don't keep you from reaching your unit-testing goals (see https://stackoverflow.com/a/55583329/5747415).
What distinguishes unit-testing and integration testing is the goal of the test. As you wrote, in unit-testing your focus is on finding bugs in the logic of a function, method or class. In integration testing the goal is then, obviously, to detect bugs that could not be found during unit-testing but can be found in the integrated (sub-)system. Always keeping the test goals in mind helps to create better tests and to avoid unnecessary redundancy between integration tests and unit-tests.
One flavor of integration testing is interaction testing: Here, the goal is to find bugs in the interaction between two or more components. (Additional components can be mocked, or not - again this depends on whether the additional components keep you from reaching your testing goals.) Typical questions in the interactions of two components A and B could be, for example if B is a library: Is component A calling the right function of component B, is component B in a proper state to be accessed by A via that function (B might not be initialized yet), is A passing the arguments in the correct order, do the arguments contain the values in the expected form, does B give back the results in the expected way and in the expected format?
Another flavor of integration testing is subsystem testing, where you do not focus on the interactions between components, but look at the boundaries of the subsystem formed by the integrated components. And, again, the goal is to find bugs that could not be found by the previous tests (i.e. unit-tests and interaction tests). For example, are the components integrated in the correct versions, can the desired use-cases be exercised on the integrated subsystem etc.
While unit-tests form the bottom of the test pyramid, integration testing is a concept that applies on different levels of integration and can even focus on interfaces orthogonal to the software integration strategy (for example when doing interaction testing of a driver and its corresponding hardware device).
Second thing I don‘t understand is how they are set up. [...] how are integration tests written?
There is an extreme variation here. For many integration tests you can just use the same testing framework that is used for unit-tests: There is nothing unit-test specific in these frameworks. You will, certainly, in the test cases have to ensure that the setup actually combines the components of interest in their proper versions. And, whether or not additional dependencies are just used or mocked needs to be decided (see above).
Another typical scenario is to perform integration tests in the fully integrated system, using a system-test-like setup. This is often done out of convenience, just to avoid the trouble to create different special setups for the different integration tests: The fully integrated system just has them all combined. Certainly, this has also disadvantages, because it is often impossible or at least impractical to perform all integration tests as desired this way. And, when doing integration testing this way the boundaries between integration testing and system testing get fuzzy. Keeping focused in such a case means you really have to have a good understanding of the different test goals.
There are also mixed forms, but there are too many to describe them here. Just one example, there is a possibility to mock some shared libraries with the help of LD_PRELOAD (What is the LD_PRELOAD trick?).
It would be valid to access a database as part of an integration test, as integration tests are supposed to show whether a feature is working correctly.
If a feature were to not work because of a failed connection to a server side error, you would want the test to fail to inform you that this feature is not working. Integration tests are not there to inform you where the fault lies, just that a feature is not working.
See https://stackoverflow.com/a/7876055/10461045 as this helps to clarify the widely accepted difference.
Using a database (or an external connection to a service you are using) in an integration test is not only valid, but should be done. However, do not rely on integration tests heavily. Unit test every logic element you have and set up integration tests for certain flows.
Integration tests can be written in the same way, except (as you mentioned) they include more methods etc. In fact, the code snippet you've shown above is a common start write-up of an integration test.
You can read up more on tests here: https://softwareengineering.stackexchange.com/questions/301479/are-database-integration-tests-bad

Feign with Ribbon: reset

We are trying to use Feign + Ribbon in one of our projects. In production code, we do not have a problem, but we have a few in JUnit tests.
We are trying to simulate number of situations (failing services, normal runs, exceptions etc.), hence we need to configure Ribbon in our integration test many times. Unfortunately, we noticed that even when we destroy the Spring context, part of the state still survives probably somewhere in static variables (for example: new tests still connect to balancer from the previous suite).
Is there any recommended way, how to purge the static state of both these tools? (something like Hystrix.reset())
Thanks in advance!
We tried to reset JVM after each suite - it works perfectly, but its not very practical (we must set it up in both Gradle and Idea (as Idea test tunner does not honor this out of the box)). We also tried renaming the service between tests - this works on lets say 99% (it sometimes fails for some reason...).
You should submit a bug to Ribbon if it is the case that there is some static state somewhere. Figure out what minimal code causes the issue, if you are not able to do that though then they won't do anything. In your code base you should do a search for any use of static which is not also final and refactor them as well if any exist.
Furthermore you may find it useful to make strong distinctions between the various different types of tests. It doesn't sound like you are doing a unit test to me. Even though you are just simulating these services, and simulating failures, this sort of test is really an integration test, because you are testing if Ribbon is configured correctly with your own components, which is really an integration test. It would be a unit test if you would test only that your component is configuring Ribbon correctly, not sure if I made sense there haha it's a subtle distinction but it has large implications in your test.
On another note don't dismiss what you have now as necessarily a bad idea. It may be very useful to have some heavy weight integration tests checking the behaviour of Feign if this is a mission critical function, IMO it's a great idea in that case. But it's a heavy weight integration test and should be treated as such. You might want to even use some container magic ect to achieve this sort of test, with services which fail in your various different failure scenarios. This would live in CI and usually developers wouldn't run those guys with each commit unless they were working directly with a piece of functionality concerning integration.

Maven-surefire-plugin tests fail in Jenkins build but run successfully locally?

I have a maven project with test execution by the maven-surefire-plugin. An odd phenomenon I've observed and been dealing with is that running locally
mvn clean install
which executes my tests, results in a successful build with 0 Failures and 0 Errors.
Now when I deploy this application to our remote repo that Jenkins attempts to build, I get all sorts of random EasyMock errors, typically of the sort:
java.lang.IllegalStateException: 3 matchers expected, 4 recorded. at org.easymock.internal.ExpectedInvocation.createMissingMatchers
This is a legacy application being inherited, and we are aware that many of these tests are flawed if not plainly using EasyMock incorrectly, but I'm in a state where with test execution I get a successful build locally but not in Jenkins.
I know that the order of execution of these tests is not guaranteed, but I am wondering how I can introspect what is different in the Jenkins build pipeline vs. local to help identify the issue?
Is there anything I can do to force execute the tests in the way they're done locally? At this point, I have simply excluded many troublesome test classes but it seems that no matter how many times I see a Jenkins failure, I either fix the problem or exclude the test class, I'm only to find it complain about some other test class it didn't mention before.
Any ideas how to approach a situation like this?
I have experimented quite a similar situation, and the cause of mine was obviously some concurrency problems with the tests implementations.
And, after reading your comment:
What I actually did that fixed it (like magic am I right?) is for the maven-surefire plugin, I set the property reuseForks=false, and forkCount=1C, which is just 1*(number of CPU's of machine).
... I get more convinced that you have concurrency problems with your tests. Concurrency is not easy to diagnose, specially when your experiment runs OK on one CPU. But race conditions might arise when you run it on another system (which usually is faster or slower).
I recommend you strongly to review your tests one by one and ensure that each one of them is logically isolated:
They should not rely upon an expected previous state (files, database, etc). Instead, they should prepare the proper setup before each execution.
If they modify concurrently a common resource which might interfere other test's execution (files, database, singletons, etc), every assert must be done synchronizing as much as needed, and taking in account that its initial state is unknown:
Wrong test:
MySingleton.getInstance().put(myObject);
assertEquals(1, MySingleton.getInstance().size());
Right test:
synchronized(MySingleton.getInstance())
{
MySingleton.getInstance().put(myObject);
assertTrue(MySingleton.getInstance().contains(myObject));
}
A good start point for the reviewing is checking one of the failing tests and track the execution backwards to find the root cause of the fail.
Setting explicitly the tests' order is not a good practice, and I wouldn't recommend it to you even if I knew it was possible, because it only would hide the actual cause of the problem. Think that, in a real production environment, the executions' order is not usually guranteed.
JUnit test run order is non-deterministic.
Are the versions of Java and Maven the same on the 2 machines? If yes, make sure you're using the most recent maven-surefire-plugin version. Also, make sure to use a Freestyle Jenkins job with a Maven build step instead of the Maven project type. Using the proper Jenkins build type can either fix build problems outright or give you a better error so you can diagnose the actual issue.
You can turn on Maven debug logging to see the order tests are being run in. Each test should set up (and perhaps tear down) its own test data to make sure the tests may run independently. Perhaps seeing the test order will give you some clues as to which classes depend on others inappropriately. And - if the app uses caching, ensure the cache is cleaned out between tests (or explicitly populated depending on what the test needs to do). Also consider running the tests one package at a time to isolate the culprits - multiple surefile plugin executions might be useful.
Also check the app for classpath problems. This answer has some suggestions for cleaning the classpath.
And another possibility: Switching to a later version of JUnit might help - unless the app is using Spring 2.5.6.x. If the app is using Spring 2.5.6.x and cannot upgrade, the highest possible version of JUnit 4.x that may be used is 4.4. Later versions of JUnit are not compatible with Spring Test 2.5.6 and may lead to hard-to-diagnose test errors.

How to manage application data for functional tests?

We are currently improving the test coverage of a set of database-backed applications (or 'services') we are running by introducing functional tests. For me, functional tests treat the system under test (SUT) as a black box and test it through its public interface (be it a Web interface, REST, or our potential adventure into the messaging realm using AMQP).
For that, the test cases either A) bootstrap an instance of the application or B) use an instance that is already running.
The A version allows for test cases to easily test the current version of the system through the test phase of a build tool or inside a CI job. That is what e.g. the Grails functional test phase is for. Or Maven could be set up to do this.
The B version requires the system to already run but the system could be inside (or at least closer to) a production environment. Grails can do this through the -baseUrl option when executing functional tests.
What now puzzles me is how to achieve a required state of the service prior to the execution of every test case?
If I e.g. want to test a REST interface that does basic CRUD, how do I create an entity in the database so that I can test the HTTP GET for it?
I see different possibilities:
Using the same API (e.g. HTTP POST) to create the entity. Downside: Changing the creation method breaks two test cases. Furthermore, there might not be a creation method for all APIs.
Adding an additional CRUD API for testing and only activating that in non-production environments. That API is then used for testing. Downside: adds additional code to the production system, API logic might not be trivial, e.g. creation of complex entity graphs (through aggregation/composition), and we need to make sure the API is not activated for production.
Basically the same approach is followed by the Grails Remote Control plugin. It allows you to "grab into your application" and invoke arbitrary code through serialisation. Downside: Feels "brittle". There might be similar mechanisms for different languages/frameworks (this question is not Grails specific).
Directly accessing the relational database and creating/deleting content, e.g. using DbUnit or just manually creating entities through JDBC. Downside: you duplicate creation/deletion logic and/or ORM inside the test case. Refactoring the DB breaks the test case though the SUT still works.
Besides these possibilities, Grails when using the (-inline) option for functional tests allows accessing Spring services (since the application instance is run inside the same JVM as the test case). Same applies for Spring Boot "integration tests". But I cannot run the tests against an already running application version (as described as option B above).
So how do you do that? Did I miss any option for that?
Also, how do you guarantee that each test case cleans up after itself properly so that the next test case sees the SUT in the same state?
as with unit testing you want to have a "clean" database before you run a functional test. You will need some setup/teardown functionality to bring the database into a defined state.
easiest/fastest solution to clean the database is to delete all content with an sql script. (For debugging it is also useful to run this in the test setup to keep the state of the database after a test failure.) This can be maintained manually (it just contains delete <table> statements). If your database changes often you could try to generate the clean script (disable foreign keys (to avoid ordering problem), delete tables).
to generate test data you can use an sql script too but that will be hard to maintain, or create it by code. The code can be placed in ordinary Services. If you don't need real production data the build-test-data plugin is a great help at simplifying test data creation. If you are on the code side it also makes sense to re-use the production code to create test data to avoid duplication.
to call the test data setup simply use remote-control. I don't think it is more brittle than all the http & ajax stuff ;-). Since we now have all the creation code in a service the only thing you need to call with remote control is the Service that does create the data. It does not have to get more complicated than remote { ctx.testDataService.setupDataForXyz() }. If it is that simple you can even drop remote-control and use a controller/action to run it.
do not test too much detail with functional tests to make it not more complicated as it already is. :)

Categories

Resources