How to find instance of class which is calling method - java

I know about way how to find which class is calling my method, but this is not sufficient to my.
I have a problem that I have about 200 instances of same class(base class) and they have unique identifier which I can use for analysing problem.
Is there some way, how to find which instances called some method?
I know that debugger allow it, can I do it some how from a code?

You'd pass a reference for that instance to the method being called. For example, say you have two objects:
class ObjectA {
public void methodA() {
new ObjectB().methodB();
}
}
class ObjectB {
public void methodB() {
// How can I know who called me?
}
}
If MethodB needs to know which instance of ObjectA called it, then it would accept that information as a parameter:
class ObjectA {
public void methodA() {
new ObjectB().methodB(this);
}
}
class ObjectB {
public void methodB(ObjectA caller) {
// "caller" is who called me
}
}
There are lots of ways to tweak this. For example, maybe any given instance of ObjectB should have a reference to the ObjectA which created it:
class ObjectA {
public void methodA() {
new ObjectB(this).methodB();
}
}
class ObjectB {
private final ObjectA caller;
public ObjectB(ObjectA caller) {
this.caller = caller;
}
public void methodB() {
// "caller" called me
}
}
Or perhaps you don't want to couple the two objects together and want a more generic approach. You claim that the objects have some kind of identifier, what is that identifier? A String perhaps?
class ObjectA {
private String identifier;
// other code
public void methodA() {
new ObjectB().methodB(identifier);
}
}
class ObjectB {
public void methodB(String callerID) {
// "callerID" identifies who called me
}
}

Related

Passing lambda argument to constructor and using object in lambda

I have this scenario:
class ClassB{
ClassB(){
ClassA a = new ClassA(() -> a.foo());
}
}
class ClassA{
ClassA(Runnable onChange) {
}
public void foo(){
System.out.println("Hello");
}
}
And I get "Variable 'a' might not have been initialized". I understand why this is happening. Is there a work around or do I have to restructure my classes?
Without changing any of your types, this should work:
class ClassB {
ClassB() {
AtomicReference<A> ref = new AtomicReference<>(); // holder for instance
ClassA a = new ClassA(() -> ref.get().foo());
ref.set(a);
}
}
But you cannot invoke your lambda (Runnable#run) in your constructor, because a still has the value null. Only after the constructor has completed, the value is assigned.
Another possibility could be using a Consumer instead of a Runnable:
class ClassB {
ClassB() {
ClassA a = new ClassA(that -> that.foo()); // or maybe even: A::foo
}
}
class ClassA {
ClassA(Consumer<A> onChange) {
}
public void foo() {
System.out.println("Hello");
}
}
// call outside of `A`:
consumer.accept(a);
// or, inside of `A`:
consumer.accept(this);
Without seeing the rest of the code, it is difficult to give a good solution.
I think you should consider refactoring your code and use a different approach.
It's hard to tell without the full code but I suspect the design is not optimal.
With that said, here is something you could do which is similar to your approach.
Make ClassA Runnable and abstract:
abstract class ClassA implements Runnable{
private final Runnable onChange;
protected ClassA() {
this.onChange = this;
}
public void foo(){
System.out.println("Hello");
}
}
In ClassB you can implement an anonymous ClassA:
class ClassB {
ClassB() {
ClassA a = new ClassA() {
#Override
public void run() {
foo();
}
};
}
}

Java: call a class by ID

I have a class "Class1" which implements Observer and contains a thread like this:
class Class1 implements Observer {
String id = null;
Object lockObject = new Object();
public Class1(String id) {
this.id = id;
theThread.start();
}
public void update(Observable arg0, Object arg1) {
lockObject.notify();
}
Thread theThread = new Thread() {
public void run() {
while(true) {
lockObject.wait();
printID();
}
}
};
public void printID() {
System.out.println( /*the ID of this class*/ + " was called");
}
}
and another, "Class2" which extends Observable and calls the first class:
class Class2 extends Observable {
public Class2() {
addObserver("ID_THREAD_ONE"); //Though it takes a class as parameter
setChanged();
notifyObservers();
}
}
public class Main {
public static void main(String[]args) {
new Class1("ID_THREAD_ONE");
new Class2();
}
}
Of course the code wont work because the method addObserver() takes an object of a class as parameter (In this case the object of Class1).
But I wanted to know if there was a way to make the addObserver method add an Object of a class by a before defined "class-id".
I know it would be easier to just do it like: addObserver(new Class1()), but i cant for some reason (which is also why i need to use id's).
Any answers are appreciated and thanks in advance,
cheers,
Julien
You may want to specify why your ID's are necessary. If they're to be used for some sort of mapping I guess they could stay as is.
As for the actual Observer/Observable, since both your classes are instanciated from the Main class, I think this is what you're looking for:
In your Class2 you have to include a Class1 instance in your constructor.
class Class2 extends Observable {
public Class2(Class1 observer) {
addObserver(observer);
setChanged();
notifyObservers();
}
}
Then, in your Main, simply pass the Class1 instance in the Class2 constructor like this:
public class Main {
public static void main(String[] args) {
new Class2(new Class1("someID"));
}
}
"someID" is there just in case you'd need it for something else, but other than that, no need to use ID's in the Observer.

Multiple instanceof in a if statement

I have a if statement, with multiple instanceof checks. Example:
if (object instanceof Object1) {
// do something
} else if (object instanceof Object2) {
// to something else
} else if (object instanceof Object2) {
// and something else
} ...
What would be a more elegant way to solve this if-else-query?
the best practice in OOP is to put the logic in the object itself and make it implement an interface:
the interface:
public interface MyLogic{
public void doLogic();
}
first object:
public class Object1 implements MyLogic{
public void doLogic(){// logic 1 here}
}
second object:
public class Object2 implements MyLogic{
public void doLogic(){// logic 2 here}
}
and now just move your logic to the objects itself and instead all the if statements just use
object.doLogic(); // make sure object is from type MyLogic, if not, cast it
This seems to be polymorphism so you can create an Interface and implement it for every Object.
interface ObjectToBeImplemented{
method();
}
class Object1 implements ObjectToBeImplemented{
#Override
method(){...}
}
class Object2 implements ObjectToBeImplemented{
#Override
method(){...}
}
class Object3 implements ObjectToBeImplemented{
#Override
method(){...}
}
This is a typical usage for interfaces. See interfaces as defining the Type of an instance. Therefore, you know that all instance of a certain Type can do a particular task. At that point, you don't really care about the concrete class of the object, you just know it has that particular interfaces available to you to use.
Example :
public interface Worker {
public void doWork();
}
public class Object1 implements Worker {
public void doWork() {
// work for this specific object
}
}
public class Object2 implements Worker {
public void doWork() {
// work for this specific object
}
}
public class Object3 implements Worker {
public void doWork() {
// work for this specific object
}
}
Then your if statements would be replaced by
obj.doWork();
This feels like a missed opportunity for polymorphism.
This is where a bunch of classes share the same method signatures as their superclass/interface, so the code that calls it doesn't need to know which type it is.
Without polymorphism:
Employee employee = ...;
if(employee instanceof Doctor) {
salary = calcDoctorSalary(...);
} else if(employee instanceof Nurse) {
salary = calcNurseSalary(...);
}
With polymorphism:
Employee employee = ...;
salary = employee.calcSalary(...);
The magic goes into the subclasses. calcSalary() is abstract in a superclass, or a method signature in an interface:
public abstract class Employee {
public abstract int calcSalary(...);
}
... or ...
public interface Employee {
public int calcSalary(...);
}
Then the type-dependent logic goes into the subclasses:
public class Nurse implements Employee {
#Override
public int calcSalary(...) {
// code specific to nurses goes here.
}
}
Whether to extend a class, or implement an interface, is something you'll learn with experience. Often when one doesn't start with an interface, one regrets it later.

Can a custom class know the name of the object that called it?

Is there anyway, when calling a method through an object (instance) for that method to know which instance (object) called it?
Here's an example (pseudo code) of what I mean:
Pseudo code example
public class CustomClass{
public void myMethod(){
if (calling method is object1){
//Do something here
}
else {
//Do something else
}
}//End of method
}//End of class
And then in another class:
public SomeOtherClass{
CustomClass = object1;
public void someOtherMethod(){
object1 = new CustomClass();
object1.myMethod(); //This will call the 1st condition as the calling object is object1, if it were some other object name, it would call the 2nd condition.
}//End of method
}//End of class
Possible work-around
The only way I've found to do this is to get the method to take another argument, say an 'int' and then check the value of that int and perform whichever part of the 'if else' statement relates to it (or 'switch' statement if definitely using an 'int' value) but that just seems a really messy way of doing it.
What you need is the Strategy Pattern
public abstract class CustomClass {
public abstract void MyMethod();
}
public class Impl1 extends CustomClass {
#Override
public void MyMethod() {
// Do something
}
}
public class Impl2 extends CustomClass {
#Override
public void MyMethod() {
// Do something else
}
}
Use it this way
public static void main(String[] args) {
CustomClass myObject = new Impl1();
// or CustomClass myObject = new Impl2();
}
As your comment says what you really need is perhaps the Template method Pattern
public abstract class CustomClass {
public void myMethod(){ // this is the template method
// The common things
theDifferentThings();
}
public abstract void theDifferentThings();
}
public class Impl1 extends CustomClass {
#Override
public void theDifferentThings() {
// Do something
}
}
public class Impl2 extends CustomClass {
#Override
public void theDifferentThings() {
// Do something else
}
}
You can know the name of current class by calling getClass().getName(). However you cannot know the name of object, moreover this does not have any meaning:
MyClass myObject1 = new MyClass();
MyClass myObject2 = myObject1;
myObject1.foo();
myObject2.foo();
Do you wutant foo() to know that it was invoked using myObject1 or myObject1? But both references refer to the same object!
OK, there are extremely complicated ways to know this. You can use byte code engineering using one of popular libraries like javassist, ASM, CGLib and inject missing information about the "object name" into byte code and then read this information. But IMHO this is not what you need.
You can define a new attribute inside CustomClass which will store the identifier of the instance. If there will be only a few instances of CustomClass then you can use an enum type.
Replace:
object1 = new CustomClass();
with:
object1 = new CustomClass(1);
Add a new constructor and an attribute to CustomClass:
private int id;
public CustomClass(int id) {
this.id = id;
}
Then you can replace:
if (calling method is object1){
with:
if (id == 1){
However, please keep in mind that this is a bad design.
You should not have if conditions differing logic depending on the instance which called this method. You should should use polymorphism for such purpose.

Why is super.super.method(); not allowed in Java?

I read this question and thought that would easily be solved (not that it isn't solvable without) if one could write:
#Override
public String toString() {
return super.super.toString();
}
I'm not sure if it is useful in many cases, but I wonder why it isn't and if something like this exists in other languages.
What do you guys think?
EDIT:
To clarify: yes I know, that's impossible in Java and I don't really miss it. This is nothing I expected to work and was surprised getting a compiler error. I just had the idea and like to discuss it.
It violates encapsulation. You shouldn't be able to bypass the parent class's behaviour. It makes sense to sometimes be able to bypass your own class's behaviour (particularly from within the same method) but not your parent's. For example, suppose we have a base "collection of items", a subclass representing "a collection of red items" and a subclass of that representing "a collection of big red items". It makes sense to have:
public class Items
{
public void add(Item item) { ... }
}
public class RedItems extends Items
{
#Override
public void add(Item item)
{
if (!item.isRed())
{
throw new NotRedItemException();
}
super.add(item);
}
}
public class BigRedItems extends RedItems
{
#Override
public void add(Item item)
{
if (!item.isBig())
{
throw new NotBigItemException();
}
super.add(item);
}
}
That's fine - RedItems can always be confident that the items it contains are all red. Now suppose we were able to call super.super.add():
public class NaughtyItems extends RedItems
{
#Override
public void add(Item item)
{
// I don't care if it's red or not. Take that, RedItems!
super.super.add(item);
}
}
Now we could add whatever we like, and the invariant in RedItems is broken.
Does that make sense?
I think Jon Skeet has the correct answer. I'd just like to add that you can access shadowed variables from superclasses of superclasses by casting this:
interface I { int x = 0; }
class T1 implements I { int x = 1; }
class T2 extends T1 { int x = 2; }
class T3 extends T2 {
int x = 3;
void test() {
System.out.println("x=\t\t" + x);
System.out.println("super.x=\t\t" + super.x);
System.out.println("((T2)this).x=\t" + ((T2)this).x);
System.out.println("((T1)this).x=\t" + ((T1)this).x);
System.out.println("((I)this).x=\t" + ((I)this).x);
}
}
class Test {
public static void main(String[] args) {
new T3().test();
}
}
which produces the output:
x= 3
super.x= 2
((T2)this).x= 2
((T1)this).x= 1
((I)this).x= 0
(example from the JLS)
However, this doesn't work for method calls because method calls are determined based on the runtime type of the object.
I think the following code allow to use super.super...super.method() in most case.
(even if it's uggly to do that)
In short
create temporary instance of ancestor type
copy values of fields from original object to temporary one
invoke target method on temporary object
copy modified values back to original object
Usage :
public class A {
public void doThat() { ... }
}
public class B extends A {
public void doThat() { /* don't call super.doThat() */ }
}
public class C extends B {
public void doThat() {
Magic.exec(A.class, this, "doThat");
}
}
public class Magic {
public static <Type, ChieldType extends Type> void exec(Class<Type> oneSuperType, ChieldType instance,
String methodOfParentToExec) {
try {
Type type = oneSuperType.newInstance();
shareVars(oneSuperType, instance, type);
oneSuperType.getMethod(methodOfParentToExec).invoke(type);
shareVars(oneSuperType, type, instance);
} catch (Exception e) {
throw new RuntimeException(e);
}
}
private static <Type, SourceType extends Type, TargetType extends Type> void shareVars(Class<Type> clazz,
SourceType source, TargetType target) throws IllegalArgumentException, IllegalAccessException {
Class<?> loop = clazz;
do {
for (Field f : loop.getDeclaredFields()) {
if (!f.isAccessible()) {
f.setAccessible(true);
}
f.set(target, f.get(source));
}
loop = loop.getSuperclass();
} while (loop != Object.class);
}
}
I don't have enough reputation to comment so I will add this to the other answers.
Jon Skeet answers excellently, with a beautiful example. Matt B has a point: not all superclasses have supers. Your code would break if you called a super of a super that had no super.
Object oriented programming (which Java is) is all about objects, not functions. If you want task oriented programming, choose C++ or something else. If your object doesn't fit in it's super class, then you need to add it to the "grandparent class", create a new class, or find another super it does fit into.
Personally, I have found this limitation to be one of Java's greatest strengths. Code is somewhat rigid compared to other languages I've used, but I always know what to expect. This helps with the "simple and familiar" goal of Java. In my mind, calling super.super is not simple or familiar. Perhaps the developers felt the same?
There's some good reasons to do this. You might have a subclass which has a method which is implemented incorrectly, but the parent method is implemented correctly. Because it belongs to a third party library, you might be unable/unwilling to change the source. In this case, you want to create a subclass but override one method to call the super.super method.
As shown by some other posters, it is possible to do this through reflection, but it should be possible to do something like
(SuperSuperClass this).theMethod();
I'm dealing with this problem right now - the quick fix is to copy and paste the superclass method into the subsubclass method :)
In addition to the very good points that others have made, I think there's another reason: what if the superclass does not have a superclass?
Since every class naturally extends (at least) Object, super.whatever() will always refer to a method in the superclass. But what if your class only extends Object - what would super.super refer to then? How should that behavior be handled - a compiler error, a NullPointer, etc?
I think the primary reason why this is not allowed is that it violates encapsulation, but this might be a small reason too.
I think if you overwrite a method and want to all the super-class version of it (like, say for equals), then you virtually always want to call the direct superclass version first, which one will call its superclass version in turn if it wants.
I think it only makes rarely sense (if at all. i can't think of a case where it does) to call some arbitrary superclass' version of a method. I don't know if that is possible at all in Java. It can be done in C++:
this->ReallyTheBase::foo();
At a guess, because it's not used that often. The only reason I could see using it is if your direct parent has overridden some functionality and you're trying to restore it back to the original.
Which seems to me to be against OO principles, since the class's direct parent should be more closely related to your class than the grandparent is.
Calling of super.super.method() make sense when you can't change code of base class. This often happens when you are extending an existing library.
Ask yourself first, why are you extending that class? If answer is "because I can't change it" then you can create exact package and class in your application, and rewrite naughty method or create delegate:
package com.company.application;
public class OneYouWantExtend extends OneThatContainsDesiredMethod {
// one way is to rewrite method() to call super.method() only or
// to doStuff() and then call super.method()
public void method() {
if (isDoStuff()) {
// do stuff
}
super.method();
}
protected abstract boolean isDoStuff();
// second way is to define methodDelegate() that will call hidden super.method()
public void methodDelegate() {
super.method();
}
...
}
public class OneThatContainsDesiredMethod {
public void method() {...}
...
}
For instance, you can create org.springframework.test.context.junit4.SpringJUnit4ClassRunner class in your application so this class should be loaded before the real one from jar. Then rewrite methods or constructors.
Attention: This is absolute hack, and it is highly NOT recommended to use but it's WORKING! Using of this approach is dangerous because of possible issues with class loaders. Also this may cause issues each time you will update library that contains overwritten class.
#Jon Skeet Nice explanation.
IMO if some one wants to call super.super method then one must be want to ignore the behavior of immediate parent, but want to access the grand parent behavior.
This can be achieved through instance Of. As below code
public class A {
protected void printClass() {
System.out.println("In A Class");
}
}
public class B extends A {
#Override
protected void printClass() {
if (!(this instanceof C)) {
System.out.println("In B Class");
}
super.printClass();
}
}
public class C extends B {
#Override
protected void printClass() {
System.out.println("In C Class");
super.printClass();
}
}
Here is driver class,
public class Driver {
public static void main(String[] args) {
C c = new C();
c.printClass();
}
}
Output of this will be
In C Class
In A Class
Class B printClass behavior will be ignored in this case.
I am not sure about is this a ideal or good practice to achieve super.super, but still it is working.
Look at this Github project, especially the objectHandle variable. This project shows how to actually and accurately call the grandparent method on a grandchild.
Just in case the link gets broken, here is the code:
import lombok.val;
import org.junit.Assert;
import org.junit.Test;
import java.lang.invoke.*;
/*
Your scientists were so preoccupied with whether or not they could, they didn’t stop to think if they should.
Please don't actually do this... :P
*/
public class ImplLookupTest {
private MethodHandles.Lookup getImplLookup() throws NoSuchFieldException, IllegalAccessException {
val field = MethodHandles.Lookup.class.getDeclaredField("IMPL_LOOKUP");
field.setAccessible(true);
return (MethodHandles.Lookup) field.get(null);
}
#Test
public void test() throws Throwable {
val lookup = getImplLookup();
val baseHandle = lookup.findSpecial(Base.class, "toString",
MethodType.methodType(String.class),
Sub.class);
val objectHandle = lookup.findSpecial(Object.class, "toString",
MethodType.methodType(String.class),
// Must use Base.class here for this reference to call Object's toString
Base.class);
val sub = new Sub();
Assert.assertEquals("Sub", sub.toString());
Assert.assertEquals("Base", baseHandle.invoke(sub));
Assert.assertEquals(toString(sub), objectHandle.invoke(sub));
}
private static String toString(Object o) {
return o.getClass().getName() + "#" + Integer.toHexString(o.hashCode());
}
public class Sub extends Base {
#Override
public String toString() {
return "Sub";
}
}
public class Base {
#Override
public String toString() {
return "Base";
}
}
}
Happy Coding!!!!
I would put the super.super method body in another method, if possible
class SuperSuperClass {
public String toString() {
return DescribeMe();
}
protected String DescribeMe() {
return "I am super super";
}
}
class SuperClass extends SuperSuperClass {
public String toString() {
return "I am super";
}
}
class ChildClass extends SuperClass {
public String toString() {
return DescribeMe();
}
}
Or if you cannot change the super-super class, you can try this:
class SuperSuperClass {
public String toString() {
return "I am super super";
}
}
class SuperClass extends SuperSuperClass {
public String toString() {
return DescribeMe(super.toString());
}
protected String DescribeMe(string fromSuper) {
return "I am super";
}
}
class ChildClass extends SuperClass {
protected String DescribeMe(string fromSuper) {
return fromSuper;
}
}
In both cases, the
new ChildClass().toString();
results to "I am super super"
It would seem to be possible to at least get the class of the superclass's superclass, though not necessarily the instance of it, using reflection; if this might be useful, please consider the Javadoc at http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Class.html#getSuperclass()
public class A {
#Override
public String toString() {
return "A";
}
}
public class B extends A {
#Override
public String toString() {
return "B";
}
}
public class C extends B {
#Override
public String toString() {
return "C";
}
}
public class D extends C {
#Override
public String toString() {
String result = "";
try {
result = this.getClass().getSuperclass().getSuperclass().getSuperclass().newInstance().toString();
} catch (InstantiationException ex) {
Logger.getLogger(D.class.getName()).log(Level.SEVERE, null, ex);
} catch (IllegalAccessException ex) {
Logger.getLogger(D.class.getName()).log(Level.SEVERE, null, ex);
}
return result;
}
}
public class Main {
public static void main(String... args) {
D d = new D();
System.out.println(d);
}
}
run:
A
BUILD SUCCESSFUL (total time: 0 seconds)
I have had situations like these when the architecture is to build common functionality in a common CustomBaseClass which implements on behalf of several derived classes.
However, we need to circumvent common logic for specific method for a specific derived class. In such cases, we must use a super.super.methodX implementation.
We achieve this by introducing a boolean member in the CustomBaseClass, which can be used to selectively defer custom implementation and yield to default framework implementation where desirable.
...
FrameworkBaseClass (....) extends...
{
methodA(...){...}
methodB(...){...}
...
methodX(...)
...
methodN(...){...}
}
/* CustomBaseClass overrides default framework functionality for benefit of several derived classes.*/
CustomBaseClass(...) extends FrameworkBaseClass
{
private boolean skipMethodX=false;
/* implement accessors isSkipMethodX() and setSkipMethodX(boolean)*/
methodA(...){...}
methodB(...){...}
...
methodN(...){...}
methodX(...){
if (isSkipMethodX()) {
setSKipMethodX(false);
super.methodX(...);
return;
}
... //common method logic
}
}
DerivedClass1(...) extends CustomBaseClass
DerivedClass2(...) extends CustomBaseClass
...
DerivedClassN(...) extends CustomBaseClass...
DerivedClassX(...) extends CustomBaseClass...
{
methodX(...){
super.setSKipMethodX(true);
super.methodX(...);
}
}
However, with good architecture principles followed in framework as well as app, we could avoid such situations easily, by using hasA approach, instead of isA approach. But at all times it is not very practical to expect well designed architecture in place, and hence the need to get away from solid design principles and introduce hacks like this.
Just my 2 cents...
IMO, it's a clean way to achieve super.super.sayYourName() behavior in Java.
public class GrandMa {
public void sayYourName(){
System.out.println("Grandma Fedora");
}
}
public class Mama extends GrandMa {
public void sayYourName(boolean lie){
if(lie){
super.sayYourName();
}else {
System.out.println("Mama Stephanida");
}
}
}
public class Daughter extends Mama {
public void sayYourName(boolean lie){
if(lie){
super.sayYourName(lie);
}else {
System.out.println("Little girl Masha");
}
}
}
public class TestDaughter {
public static void main(String[] args){
Daughter d = new Daughter();
System.out.print("Request to lie: d.sayYourName(true) returns ");
d.sayYourName(true);
System.out.print("Request not to lie: d.sayYourName(false) returns ");
d.sayYourName(false);
}
}
Output:
Request to lie: d.sayYourName(true) returns Grandma Fedora
Request not to lie: d.sayYourName(false) returns Little girl Masha
I think this is a problem that breaks the inheritance agreement.
By extending a class you obey / agree its behavior, features
Whilst when calling super.super.method(), you want to break your own obedience agreement.
You just cannot cherry pick from the super class.
However, there may happen situations when you feel the need to call super.super.method() - usually a bad design sign, in your code or in the code you inherit !
If the super and super super classes cannot be refactored (some legacy code), then opt for composition over inheritance.
Encapsulation breaking is when you #Override some methods by breaking the encapsulated code.
The methods designed not to be overridden are marked
final.
In C# you can call a method of any ancestor like this:
public class A
internal virtual void foo()
...
public class B : A
public new void foo()
...
public class C : B
public new void foo() {
(this as A).foo();
}
Also you can do this in Delphi:
type
A=class
procedure foo;
...
B=class(A)
procedure foo; override;
...
C=class(B)
procedure foo; override;
...
A(objC).foo();
But in Java you can do such focus only by some gear. One possible way is:
class A {
int y=10;
void foo(Class X) throws Exception {
if(X!=A.class)
throw new Exception("Incorrect parameter of "+this.getClass().getName()+".foo("+X.getName()+")");
y++;
System.out.printf("A.foo(%s): y=%d\n",X.getName(),y);
}
void foo() throws Exception {
System.out.printf("A.foo()\n");
this.foo(this.getClass());
}
}
class B extends A {
int y=20;
#Override
void foo(Class X) throws Exception {
if(X==B.class) {
y++;
System.out.printf("B.foo(%s): y=%d\n",X.getName(),y);
} else {
System.out.printf("B.foo(%s) calls B.super.foo(%s)\n",X.getName(),X.getName());
super.foo(X);
}
}
}
class C extends B {
int y=30;
#Override
void foo(Class X) throws Exception {
if(X==C.class) {
y++;
System.out.printf("C.foo(%s): y=%d\n",X.getName(),y);
} else {
System.out.printf("C.foo(%s) calls C.super.foo(%s)\n",X.getName(),X.getName());
super.foo(X);
}
}
void DoIt() {
try {
System.out.printf("DoIt: foo():\n");
foo();
Show();
System.out.printf("DoIt: foo(B):\n");
foo(B.class);
Show();
System.out.printf("DoIt: foo(A):\n");
foo(A.class);
Show();
} catch(Exception e) {
//...
}
}
void Show() {
System.out.printf("Show: A.y=%d, B.y=%d, C.y=%d\n\n", ((A)this).y, ((B)this).y, ((C)this).y);
}
}
objC.DoIt() result output:
DoIt: foo():
A.foo()
C.foo(C): y=31
Show: A.y=10, B.y=20, C.y=31
DoIt: foo(B):
C.foo(B) calls C.super.foo(B)
B.foo(B): y=21
Show: A.y=10, B.y=21, C.y=31
DoIt: foo(A):
C.foo(A) calls C.super.foo(A)
B.foo(A) calls B.super.foo(A)
A.foo(A): y=11
Show: A.y=11, B.y=21, C.y=31
It is simply easy to do. For instance:
C subclass of B and B subclass of A. Both of three have method methodName() for example.
public abstract class A {
public void methodName() {
System.out.println("Class A");
}
}
public class B extends A {
public void methodName() {
super.methodName();
System.out.println("Class B");
}
// Will call the super methodName
public void hackSuper() {
super.methodName();
}
}
public class C extends B {
public static void main(String[] args) {
A a = new C();
a.methodName();
}
#Override
public void methodName() {
/*super.methodName();*/
hackSuper();
System.out.println("Class C");
}
}
Run class C Output will be:
Class A
Class C
Instead of output:
Class A
Class B
Class C
If you think you are going to be needing the superclass, you could reference it in a variable for that class. For example:
public class Foo
{
public int getNumber()
{
return 0;
}
}
public class SuperFoo extends Foo
{
public static Foo superClass = new Foo();
public int getNumber()
{
return 1;
}
}
public class UltraFoo extends Foo
{
public static void main(String[] args)
{
System.out.println(new UltraFoo.getNumber());
System.out.println(new SuperFoo().getNumber());
System.out.println(new SuperFoo().superClass.getNumber());
}
public int getNumber()
{
return 2;
}
}
Should print out:
2
1
0
public class SubSubClass extends SubClass {
#Override
public void print() {
super.superPrint();
}
public static void main(String[] args) {
new SubSubClass().print();
}
}
class SuperClass {
public void print() {
System.out.println("Printed in the GrandDad");
}
}
class SubClass extends SuperClass {
public void superPrint() {
super.print();
}
}
Output: Printed in the GrandDad
The keyword super is just a way to invoke the method in the superclass.
In the Java tutorial:https://docs.oracle.com/javase/tutorial/java/IandI/super.html
If your method overrides one of its superclass's methods, you can invoke the overridden method through the use of the keyword super.
Don't believe that it's a reference of the super object!!! No, it's just a keyword to invoke methods in the superclass.
Here is an example:
class Animal {
public void doSth() {
System.out.println(this); // It's a Cat! Not an animal!
System.out.println("Animal do sth.");
}
}
class Cat extends Animal {
public void doSth() {
System.out.println(this);
System.out.println("Cat do sth.");
super.doSth();
}
}
When you call cat.doSth(), the method doSth() in class Animal will print this and it is a cat.

Categories

Resources