Related
Atttached is the overview display of my Jconsole
As you can see the Heap Memory Usage Spikes up and the CPU Usage is very spiky as well. However, when the Heap Memory Usage dips(I guess GC happens), the CPU did not spike for a moment.
What could be the possible problem of the Heap Memory increasing, which causes CPU spikes and in-turn, high CPU utilisation.
The standard while loop uses around 50% of cpu so it isnt wise having many while loops at once. So what i designed to combat that is a waitBlock that waits a specific amount of time using an inputStream that blocks until there is an inputStream, and so if the waitBlock waits 0001 millisecond then the loop will run 1000 times a second, so although the cpu usage will be basically 0% it has speed limitations. Whith the memory usage from what i understand, if you are using sockets etc. And you dont close sockets and you keep recreating them,the memory usage just builds and builds. Although I might be able to help more if i know what you have done in your code.
It seems when a Full GC is performed, the CPU utilisation is normalised.
My point is, since there's limited amount of heapsize, does the JVM need to run garbage collection more frequently? and practically, is it a performance killer?
The optimal amount of memory to use might be 2-5x the minimum heap to run the program. How often the GC is run is inversely proportional to the amount of free memory after a GC.
practically, is it a performance killer?
That depends on your application, but I would assume it is.
Given RAM is relative cheap compared to the cost of your time, I tend to make sure I have plenty of RAM. You can buy 16 GB for less than $80.
This kind of depends on the algorithm used for the gc and the jdk you are using. The normal gc is a killer as it stops execution of the other threads. If you are on jdk 1.6 or better you can make this visible using e.g. visualVM.
There are different gc algorithms to overcome this. Here I would send you to the docs as they the differences best
Finding the right balance between the memory requirements of your application and the memory allocation you give it (using Xmx) is a key performance tuning activity.
Yes, you want to make heap big enough so that the JVM does not end up thrashing on constant GC, which can absolutely be a performance killer.
What heap size you need is totally application dependent.
In Bash, I use the commmand java -Xmx8192m -Xms512m -jar jarfile to start a Java process with an initial heap space of 512MB and maximum heap space of 8GB.
I like how the heap space increases based on demand, but once the heap space has been increased, it doesn't release although the process doesn't need the memory. How can I release the memory that isn't being used by the process?
Example: Process starts, and uses 600MB of memory. Heap space increases from 512MB to a little over 600MB. Process then drops down to 400MB RAM usage, but heap allocation stays at 600MB. How would I make the allocation stay near the RAM usage?
You cannot; it's simply not designed to work that way. Note that unused memory pages will simply be mapped out by your hardware, and so won't consume any real memory.
Generally you would not like JVM to return memory to the OS and later claim in back as both operations are not so cheap.
There are a couple XX parameters that may or may not work with your preferred garbage collector, namely
-XX:MaxHeapFreeRatio=70 Maximum percentage of heap free after GC to avoid shrinking.
-XX:MinHeapFreeRatio=40 Minimum percentage of heap free after GC to avoid expansion.
Source
I believe you'd need stop the world collector for them to be enforced.
Other JVMs may have their own parameters.
I'd normally have not replied but the amount of negative/false info ain't cool.
No, it is a required function. I think, the JVM in Android probably can do this, but I'm not sure.
But most of them - including all Java EE VMs - simply doesn't interested about this.
This is not so simple, as it seems - the VM is a process from the OS view, and has somewhere a mapped memory region for it, which is a stack or data segment.
In most cases it needs to be a continous interval. Memory allocation and release from the OS view happens with a system call, which the process uses to ask the OS its new segment limit.
What to do, if you have for example 2 gigabytes of RAM for your JVM, which uses only 500 megs, but this 500 meg is dispersed in some ten-bytes fragment in this 2 gigs? This memory release function would need also a defragmentation step, which would multiply the resource costs of the GC runs.
As Java runs, and Java objects are constructed and destructed by the garbage collector, the free and allocated memory areas are dispersed in the stack/data segment.
When we don't see java, but native OS processes, the situation is the same: if you malloc() ten 1meg block, and then release the first 9, there is no way to give it back to the OS, altough newer libraries and os apis have extensive development about this. Of course, if you later allocates memory again, this allocation will be done from the just-freed regions.
My opinion is, that even if this is a little bit costly and complex (and a quite large programming work), it worths its price, and I think it isn't the best image from our collective programming culture, that it isn't done since decades in everything, included the java vms.
I have heard several people claiming that you can not scale the JVM heap size up. I've heard claims of the practical limit being 4 gigabytes (I heard an IBM consultant say that), 10 gigabytes, 32 gigabytes, and so on... I simply can not believe any of those numbers and have been wondering about the issue now for a while.
So, I have three part question I would hope someone with experience could answer:
Given the following case how would you tune the heap and GC settings?
Would there be noticeable hickups (pauses of JVM etc) that would be noticed by the end users?
Should this really still work? I think it should.
The case:
64 bit platform
64 cores
64 gigabytes of memory
The application server is client facing (ie. Jboss/tomcat web application server) - complete pauses of JVM would probably be noticed by end users
Sun JVM, probably 1.5
To prove I am not asking you guys to do my homework this is what I came up with:
-XX:+UseConcMarkSweepGC -XX:+AggressiveOpts -XX:+UnlockDiagnosticVMOptions -XX:-EliminateZeroing -Xmn768m -Xmx55000m
CMS should reduce the amount of pauses, although it comes with overhead. The other settings for CMS seem to default automatically to the number of CPUs so they seem sane to me. The rest that I added are extras that might do good or bad generally for performance, and they should probably be tested.
Definitely.
I think it's going to be difficult for anybody to give you anything more than general advice, without having further knowledge of your application.
What I would suggest is that you use VisualGC (or the VisualGC plugin for VisualVM) to actually look at what the garbage collection is doing when your app is running. Once you have a greater understanding of how the GC is working alongside your application, it'll be far easier to tune it.
#1. Given the following case how would you tune the heap and GC settings?
First, having 64 gigabytes of memory doesn't imply that you have to use them all for one JVM. Actually, it rather means you can run many of them. Then, it is impossible to answer your question without any access to your machine and application to measure and analyse things (knowing what your application is doing isn't enough). And no, I'm not asking to get access to your environment :)
#2. Would there be noticeable hickups (pauses of JVM etc) that would be noticed by the end users?
The goal of tuning is to find a good compromise between frequency and duration of (major) GCs. With a ~55g heap, GC won't be frequent but will take noticeable time, for sure (the bigger the heap, the longer the major GC). Using a Parallel or Concurrent garbage collector will help on multiprocessor systems but won't entirely solve this issue. Why do you need ~55g (this is mega ultra huge for a webapp IMO), that's my question. I'd rather run many clustered JVMs to handle load if required (at some point, the database will become the bottleneck anyway with a data oriented application).
#3. Should this really still work? I think it should.
Hmm... not sure I get the question. What is "this"? Instantiating a JVM with a big heap? Yes, it should. Is it equivalent to running several JVMs? No, certainly not.
PS: 4G is the maximum theoretical heap limit for the 32-bit JVM running on a 64-bit operating system (see Why can't I get a larger heap with the 32-bit JVM?)
PPS: On 64-bit VMs, you have 64 bits of addressability to work with resulting in a maximum Java heap size limited only by the amount of physical memory and swap space your system provides. (see How large a heap can I create using a 64-bit VM?)
Obviously heap size is not unlimited and the larger is the heap size, the more your JVM will eventually spend on GC. Though I think it is possible to set heap size quite high on 64-bit JVM, I still think it's not really practical. The advice here is better to have several JVMs running with the same parameters i.e. cluster of JBoss/Tomcat nodes running on the same physical machine and you will get better throughput.
EDIT: Also your GC behavior depends on the taxonomy of your heap. If you have a lot of short-living objects and each request to the server creates a lot of those, then your GC will collect a lot of garbage very often and thus on large heap size this will result in longer pauses. If you have very many long-living objects (e.g. caching most of your data in memory) and the amount of short-living objects is not that big, then having bigger heap size is OK.
As Chris Rice already wrote, I wouldn't expect any obvious problems with the GC for heap sizes up to 32-64GB, although there may of course be some point of your application logic, which can cause problems.
Not directly related to GC, but I would still recommend you to perform a realistic load test on your production system. I used to work on a project, where we had a similar setup (relatively large, clustered JBoss/Tomcat setup to serve a public web application) and without exaggeration, JBoss is not behaving very well under high load or with a high number of concurrent calls if you are using EJBs. JBoss is spending a lot of time in synchronized blocks when accessing and managing the EJB instance pools and if you opt for a cluster, it will even wait for intra-cluster network communication within these synchronized blocks. Be especially aware of poorly performing state replication, if you are using SFSBs.
Only to add some more switches I would use by default: -Xms55g can help to reduce the rampup time because it frees Java from the need to check if it can fall back to the initial size and allows also better internal initial sizing of memory areas.
Additionally we made good experiences with NewSize to give you a large young size to get rid of short term garbage: -XX:NewSize=1g Additionally most webapps create a lot of short time garbage that will never survive the request processing. You can even make that bigger. With Xms55g, the VM reserves a large chunk already. Maybe downsizing can help.
-Xincgc helps to clean the young generation incrementally and return the cpu often to the user threads.
-XX:CMSInitiatingOccupancyFraction=70 If you really fill all that memory, try to start CMS garbage collection earlier.
-XX:+CMSIncrementalMode puts the CMS into incremental mode to return the cpu to the user threads more often.
Attach to the process with jstat -gc -h 10 <pid> 1s and watch the GC working.
Will you really fill up the memory? I assume that 64cpus for request processing might even be able to work with less memory. What do you store in there?
Depending on your GC pause analysis, you may wish to implement Incremental mode whereby the long pause may be broken out over a period of time.
I have found memory architecture plays a part in large memory sizes. Applications in general don't perform as well if they use more than one memory bank. The JVM appears to suffer as well, esp the GC which has to sweep the whole memory.
If you have an application which doesn't fit into one memory bank, your application has to pull in memory which is not local to a processor and use memory local to another processor.
On linux you can run numactl --hardware to see the layout of processors and memory banks.
Closed. This question needs to be more focused. It is not currently accepting answers.
Want to improve this question? Update the question so it focuses on one problem only by editing this post.
Closed 8 years ago.
Improve this question
Does anyone have experience with using very large heaps, 12 GB or higher in Java?
Does the GC make the program unusable?
What GC params do you use?
Which JVM, Sun or BEA would be better suited for this?
Which platform, Linux or Windows, performs better under such conditions?
In the case of Windows is there any performance difference to be had between 64 bit Vista and XP under such high memory loads?
If your application is not interactive, and GC pauses are not an issue for you, there shouldn't be any problem for 64-bit Java to handle very large heaps, even in hundreds of GBs. We also haven't noticed any stability issues on either Windows or Linux.
However, when you need to keep GC pauses low, things get really nasty:
Forget the default throughput, stop-the-world GC. It will pause you application for several tens of seconds for moderate heaps (< ~30 GB) and several minutes for large ones (> ~30 GB). And buying faster DIMMs won't help.
The best bet is probably the CMS collector, enabled by -XX:+UseConcMarkSweepGC. The CMS garbage collector stops the application only for the initial marking phase and remarking phases. For very small heaps like < 4 GB this is usually not a problem, but for an application that creates a lot of garbage and a large heap, the remarking phase can take quite a long time - usually much less then full stop-the-world, but still can be a problem for very large heaps.
When the CMS garbage collector is not fast enough to finish operation before the tenured generation fills up, it falls back to standard stop-the-world GC. Expect ~30 or more second long pauses for heaps of size 16 GB. You can try to avoid this keeping the long-lived garbage production rate of you application as low as possible. Note that the higher the number of the cores running your application is, the bigger is getting this problem, because the CMS utilizes only one core. Obviously, beware there is no guarantee the CMS does not fall back to the STW collector. And when it does, it usually happens at the peak loads, and your application is dead for several seconds. You would probably not want to sign an SLA for such a configuration.
Well, there is that new G1 thing. It is theoretically designed to avoid the problems with CMS, but we have tried it and observed that:
Its throughput is worse than that of CMS.
It theoretically should avoid collecting the popular blocks of memory first, however it soon reaches a state where almost all blocks are "popular", and the assumptions it is based on simply stop working.
Finally, the stop-the-world fallback still exists for G1; ask Oracle, when that code is supposed to be run. If they say "never", ask them, why the code is there. So IMHO G1 really doesn't make the huge heap problem of Java go away, it only makes it (arguably) a little smaller.
If you have bucks for a big server with big memory, you have probably also bucks for a good, commercial hardware accelerated, pauseless GC technology, like the one offered by Azul. We have one of their servers with 384 GB RAM and it really works fine - no pauses, 0-lines of stop-the-world code in the GC.
Write the damn part of your application that requires lots of memory in C++, like LinkedIn did with social graph processing. You still won't avoid all the problems by doing this (e.g. heap fragmentation), but it would be definitely easier to keep the pauses low.
I am CEO of Azul Systems so I am obviously biased in my opinion on this topic! :) That being said...
Azul's CTO, Gil Tene, has a nice overview of the problems associated with Garbage Collection and a review of various solutions in his Understanding Java Garbage Collection and What You Can Do about It presentation, and there's additional detail in this article: http://www.infoq.com/articles/azul_gc_in_detail.
Azul's C4 Garbage Collector in our Zing JVM is both parallel and concurrent, and uses the same GC mechanism for both the new and old generations, working concurrently and compacting in both cases. Most importantly, C4 has no stop-the-world fall back. All compaction is performed concurrently with the running application. We have customers running very large (hundreds of GBytes) with worse case GC pause times of <10 msec, and depending on the application often times less than 1-2 msec.
The problem with CMS and G1 is that at some point Java heap memory must be compacted, and both of those garbage collectors stop-the-world/STW (i.e. pause the application) to perform compaction. So while CMS and G1 can push out STW pauses, they don't eliminate them. Azul's C4, however, does completely eliminate STW pauses and that's why Zing has such low GC pauses even for gigantic heap sizes.
We have an application that we allocate 12-16 Gb for but it really only reaches 8-10 during normal operation. We use the Sun JVM (tried IBMs and it was a bit of a disaster but that just might have been ignorance on our part...I have friends that swear by it--that work at IBM). As long as you give your app breathing room, the JVM can handle large heap sizes with not too much GC. Plenty of 'extra' memory is key.
Linux is almost always more stable than Windows and when it is not stable it is a hell of a lot easier to figure out why. Solaris is rock solid as well and you get DTrace too :)
With these kind of loads, why on earth would you be using Vista or XP? You are just asking for trouble.
We don't do anything fancy with the GC params. We do set the minimum allocation to be equal to the maximum so it is not constantly trying to resize but that is it.
I have used over 60 GB heap sizes on two different applications under Linux and Solaris respectively using 64-bit versions (obviously) of the Sun 1.6 JVM.
I never encountered garbage collection problems with the Linux-based application except when pushing up near the heap size limit. To avoid the thrashing problems inherent to that scenario (too much time spent doing garbage collection), I simply optimized memory usage throughout the program so that peak usage was about 5-10% below a 64 GB heap size limit.
With a different application running under Solaris, however, I encountered significant garbage-collection problems which made it necessary to do a lot of tweaking. This consisted primarily of three steps:
Enabling/forcing use of the parallel garbage collector via the -XX:+UseParallelGC -XX:+UseParallelOldGC JVM options, as well as controlling the number of GC threads used via the -XX:ParallelGCThreads option. See "Java SE 6 HotSpot Virtual Machine Garbage Collection Tuning" for more details.
Extensive and seemingly ridiculous setting of local variables to "null" after they are no longer needed. Most of these were variables that should have been eligible for garbage collection after going out of scope, and they were not memory leak situations since the references were not copied. However, this "hand-holding" strategy to aid garbage collection was inexplicably necessary for some reason for this application under the Solaris platform in question.
Selective use of the System.gc() method call in key code sections after extensive periods of temporary object allocation. I'm aware of the standard caveats against using these calls, and the argument that they should normally be unnecessary, but I found them to be critical in taming garbage collection when running this memory-intensive application.
The three above steps made it feasible to keep this application contained and running productively at around 60 GB heap usage instead of growing out of control up into the 128 GB heap size limit that was in place. The parallel garbage collector in particular was very helpful since major garbage-collection cycles are expensive when there are a lot of objects, i.e., the time required for major garbage collection is a function of the number of objects in the heap.
I cannot comment on other platform-specific issues at this scale, nor have I used non-Sun (Oracle) JVMs.
12Gb should be no problem with a decent JVM implementation such as Sun's Hotspot.
I would advice you to use the Concurrent Mark and Sweep colllector ( -XX:+UseConcMarkSweepGC) when using a SUN VM.Otherwies you may face long "stop the world" phases, were all threads are stopped during a GC.
The OS should not make a big difference for the GC performance.
You will need of course a 64 bit OS and a machine with enough physical RAM.
I recommend also considering taking a heap dump and see where memory usage can be improved in your app and analyzing the dump in something such as Eclipse's MAT . There are a few articles on the MAT page on getting started in looking for memory leaks. You can use jmap to obtain the dump with something such as ...
jmap -heap:format=b pid
As mentioned above, if you have a non-interactive program, the default (compacting) garbage collector (GC) should work well. If you have an interactive program, and you (1) don't allocate memory faster than the GC can keep up, and (2) don't create temporary objects (or collections of objects) that are too big (relative to the total maximum JVM memory) for the GC to work around, then CMS is for you.
You run into trouble if you have an interactive program where the GC doesn't have enough breathing room. That's true regardless of how much memory you have, but the more memory you have, the worse it gets. That's because when you get too low on memory, CMS will run out of memory, whereas the compacting GCs (including G1) will pause everything until all the memory has been checked for garbage. This stop-the-world pause gets bigger the more memory you have. Trust me, you don't want your servlets to pause for over a minute. I wrote a detailed StackOverflow answer about these pauses in G1.
Since then, my company has switched to Azul Zing. It still can't handle the case where your app really needs more memory than you've got, but up until that very moment it runs like a dream.
But, of course, Zing isn't free and its special sauce is patented. If you have far more time than money, try rewriting your app to use a cluster of JVMs.
On the horizon, Oracle is working on a high-performance GC for multi-gigabyte heaps. However, as of today that's not an option.
If you switch to 64-bit you will use more memory. Pointers become 8 bytes instead of 4. If you are creating lots of objects this can be noticeable seeing as every object is a reference (pointer).
I have recently allocated 15GB of memory in Java using the Sun 1.6 JVM with no problems. Though it is all only allocated once. Not much more memory is allocated or released after the initial amount. This was on a Linux but I imagine the Sun JVM will work just as well on 64-bit Windows.
You should try running visualgc against your app. It´s a heap visualization tool that´s part of the jvmstat download at http://java.sun.com/performance/jvmstat/
It is a lot easier than reading GC logs.
It quickly helps you understand how the parts (generations) of the heap are working. While your total heap may be 10GB, the various parts of the heap will be much smaller. GCs in the Eden portion of the heap are relatively cheap, while full GCs in the old generation are expensive. Sizing your heap so that that the Eden is large and the old generation is hardly ever touched is a good strategy. This may result in a very large overall heap, but what the heck, if the JVM never touches the page, it´s just a virtual page, and doesn´t have to take up RAM.
A couple of years ago, I compared JRockit and the Sun JVM for a 12G heap. JRockit won, and Linux hugepages support made our test run 20% faster. YMMV as our test was very processor/memory intensive and was primarily single-threaded.
here's an article on gc FROM one of Java Champions --
http://kirk.blog-city.com/is_your_concurrent_collector_failing_you.htm
Kirk, the author writes
"Send me your GC logs
I'm currently interested in studying Sun JVM produced GC logs. Since these logs contain no business relevent information it should be ease concerns about protecting proriatary information. All I ask that with the log you mention the OS, complete version information for the JRE, and any heap/gc related command line switches that you have set. I'd also like to know if you are running Grails/Groovey, JRuby, Scala or something other than or along side Java. The best setting is -Xloggc:. Please be aware that this log does not roll over when it reaches your OS size limit. If I find anything interesting I'll be happy to give you a very quick synopsis in return. "
An article from Sun on Java 6 can help you: https://www.oracle.com/java/technologies/javase/troubleshooting-javase.html
The max memory that XP can address is 4 gig(here). So you may not want to use XP for that(use a 64 bit os).
sun has had an itanium 64-bit jvm for a while although itanium is not a popular destination. The solaris and linux 64-bit JVMs should be what you should be after.
Some questions
1) is your application stable ?
2) have you already tested the app in a 32 bit JVM ?
3) is it OK to run multiple JVMs on the same box ?
I would expect the 64-bit OS from windows to get stable in about a year or so but until then, solaris/linux might be better bet.