In Java 8, this works:
Stream<Class> stream = Stream.of(ArrayList.class);
HashMap<Class, List<Class>> map = (HashMap)stream.collect(Collectors.groupingBy(Class::getSuperclass));
But this doesn't:
Stream<Class> stream = Stream.of(List.class);
HashMap<Class, List<Class>> map = (HashMap)stream.collect(Collectors.groupingBy(Class::getSuperclass));
Maps allows a null key, and List.class.getSuperclass() returns null. But Collectors.groupingBy emits a NPE, at Collectors.java, line 907:
K key = Objects.requireNonNull(classifier.apply(t), "element cannot be mapped to a null key");
It works if I create my own collector, with this line changed to:
K key = classifier.apply(t);
My questions are:
1) The Javadoc of Collectors.groupingBy doesn't say it shouldn't map a null key. Is this behavior necessary for some reason?
2) Is there another, easier way, to accept a null key, without having to create my own collector?
I had the same kind of problem.
This failed, because groupingBy performs Objects.requireNonNull on the value returned from the classifier:
Map<Long, List<ClaimEvent>> map = events.stream()
.filter(event -> eventTypeIds.contains(event.getClaimEventTypeId()))
.collect(groupingBy(ClaimEvent::getSubprocessId));
Using Optional, this works:
Map<Optional<Long>, List<ClaimEvent>> map = events.stream()
.filter(event -> eventTypeIds.contains(event.getClaimEventTypeId()))
.collect(groupingBy(event -> Optional.ofNullable(event.getSubprocessId())));
For the first question, I agree with skiwi that it shouldn't be throwing a NPE. I hope they will change that (or else at least add it to the javadoc). Meanwhile, to answer the second question I decided to use Collectors.toMap instead of Collectors.groupingBy:
Stream<Class<?>> stream = Stream.of(ArrayList.class);
Map<Class<?>, List<Class<?>>> map = stream.collect(
Collectors.toMap(
Class::getSuperclass,
Collections::singletonList,
(List<Class<?>> oldList, List<Class<?>> newEl) -> {
List<Class<?>> newList = new ArrayList<>(oldList.size() + 1);
newList.addAll(oldList);
newList.addAll(newEl);
return newList;
}));
Or, encapsulating it:
/** Like Collectors.groupingBy, but accepts null keys. */
public static <T, A> Collector<T, ?, Map<A, List<T>>>
groupingBy_WithNullKeys(Function<? super T, ? extends A> classifier) {
return Collectors.toMap(
classifier,
Collections::singletonList,
(List<T> oldList, List<T> newEl) -> {
List<T> newList = new ArrayList<>(oldList.size() + 1);
newList.addAll(oldList);
newList.addAll(newEl);
return newList;
});
}
And use it like this:
Stream<Class<?>> stream = Stream.of(ArrayList.class);
Map<Class<?>, List<Class<?>>> map = stream.collect(groupingBy_WithNullKeys(Class::getSuperclass));
Please note rolfl gave another, more complicated answer, which allows you to specify your own Map and List supplier. I haven't tested it.
Use filter before groupingBy##
Filter out the null instances before groupingBy.
Here is an example
MyObjectlist.stream()
.filter(p -> p.getSomeInstance() != null)
.collect(Collectors.groupingBy(MyObject::getSomeInstance));
To your 1st question, from the docs:
There are no guarantees on the type, mutability, serializability, or thread-safety of the Map or List objects returned.
Because not all Map implementations allow null keys they probably added this to reduce to the most common allowable definition of a map to get maximum flexibility when choosing a type.
To your 2nd question, you just need a supplier, wouldn't a lambda work? I'm still getting acquainted with Java 8, maybe a smarter person can add a better answer.
I figured I would take a moment and try to digest this issue you have. I put together a SSCE for what I would expect if I did it manually, and what the groupingBy implementation actually does.
I don't think this is an answer, but it is a 'wonder why it is a problem' thing. Also, if you want, feel free to hack this code to have a null-friendly collector.
Edit: A generic-friendly implementation:
/** groupingByNF - NullFriendly - allows you to specify your own Map and List supplier. */
private static final <T,K> Collector<T,?,Map<K,List<T>>> groupingByNF (
final Supplier<Map<K,List<T>>> mapsupplier,
final Supplier<List<T>> listsupplier,
final Function<? super T,? extends K> classifier) {
BiConsumer<Map<K,List<T>>, T> combiner = (m, v) -> {
K key = classifier.apply(v);
List<T> store = m.get(key);
if (store == null) {
store = listsupplier.get();
m.put(key, store);
}
store.add(v);
};
BinaryOperator<Map<K, List<T>>> finalizer = (left, right) -> {
for (Map.Entry<K, List<T>> me : right.entrySet()) {
List<T> target = left.get(me.getKey());
if (target == null) {
left.put(me.getKey(), me.getValue());
} else {
target.addAll(me.getValue());
}
}
return left;
};
return Collector.of(mapsupplier, combiner, finalizer);
}
/** groupingByNF - NullFriendly - otherwise similar to Java8 Collections.groupingBy */
private static final <T,K> Collector<T,?,Map<K,List<T>>> groupingByNF (Function<? super T,? extends K> classifier) {
return groupingByNF(HashMap::new, ArrayList::new, classifier);
}
Consider this code (the code groups String values based on the String.length(), (or null if the input String is null)):
public static void main(String[] args) {
String[] input = {"a", "a", "", null, "b", "ab"};
// How we group the Strings
final Function<String, Integer> classifier = (a) -> {return a != null ? Integer.valueOf(a.length()) : null;};
// Manual implementation of a combiner that accumulates a string value based on the classifier.
// no special handling of null key values.
BiConsumer<Map<Integer,List<String>>, String> combiner = (m, v) -> {
Integer key = classifier.apply(v);
List<String> store = m.get(key);
if (store == null) {
store = new ArrayList<String>();
m.put(key, store);
}
store.add(v);
};
// The finalizer merges two maps together (right into left)
// no special handling of null key values.
BinaryOperator<Map<Integer, List<String>>> finalizer = (left, right) -> {
for (Map.Entry<Integer, List<String>> me : right.entrySet()) {
List<String> target = left.get(me.getKey());
if (target == null) {
left.put(me.getKey(), me.getValue());
} else {
target.addAll(me.getValue());
}
}
return left;
};
// Using a manual collector
Map<Integer, List<String>> manual = Arrays.stream(input).collect(Collector.of(HashMap::new, combiner, finalizer));
System.out.println(manual);
// using the groupingBy collector.
Collector<String, ?, Map<Integer, List<String>>> collector = Collectors.groupingBy(classifier);
Map<Integer, List<String>> result = Arrays.stream(input).collect(collector);
System.out.println(result);
}
The above code produces the output:
{0=[], null=[null], 1=[a, a, b], 2=[ab]}
Exception in thread "main" java.lang.NullPointerException: element cannot be mapped to a null key
at java.util.Objects.requireNonNull(Objects.java:228)
at java.util.stream.Collectors.lambda$groupingBy$135(Collectors.java:907)
at java.util.stream.Collectors$$Lambda$10/258952499.accept(Unknown Source)
at java.util.stream.ReduceOps$3ReducingSink.accept(ReduceOps.java:169)
at java.util.Spliterators$ArraySpliterator.forEachRemaining(Spliterators.java:948)
at java.util.stream.AbstractPipeline.copyInto(AbstractPipeline.java:512)
at java.util.stream.AbstractPipeline.wrapAndCopyInto(AbstractPipeline.java:502)
at java.util.stream.ReduceOps$ReduceOp.evaluateSequential(ReduceOps.java:708)
at java.util.stream.AbstractPipeline.evaluate(AbstractPipeline.java:234)
at java.util.stream.ReferencePipeline.collect(ReferencePipeline.java:499)
at CollectGroupByNull.main(CollectGroupByNull.java:49)
First of all, you are using lots of raw objects. This is not a good idea at all, first convert the following:
Class to Class<?>, ie. instead of a raw type, a parametrized type with an unknown class.
Instead of forcefully casting to a HashMap, you should supply a HashMap to the collector.
First the correctly typed code, without caring about a NPE yet:
Stream<Class<?>> stream = Stream.of(ArrayList.class);
HashMap<Class<?>, List<Class<?>>> hashMap = (HashMap<Class<?>, List<Class<?>>>)stream
.collect(Collectors.groupingBy(Class::getSuperclass));
Now we get rid of the forceful cast there, and instead do it correctly:
Stream<Class<?>> stream = Stream.of(ArrayList.class);
HashMap<Class<?>, List<Class<?>>> hashMap = stream
.collect(Collectors.groupingBy(
Class::getSuperclass,
HashMap::new,
Collectors.toList()
));
Here we replace the groupingBy which just takes a classifier, to one that takes a classifier, a supplier and a collector. Essentially this is the same as what there was before, but now it is correctly typed.
You are indeed correct that in the javadoc it is not stated that it will throw a NPE, and I do not think it should be throwing one, as I am allowed to supply whatever map I want, and if my map allows null keys, then it should be allowed.
I do not see any other way to do it simpler as of now, I'll try to look more into it.
You can use Stream#collect(Supplier<R> supplier, BiConsumer<R,? super T> accumulator, BiConsumer<R,R> combiner) instead.
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#collect-java.util.function.Supplier-java.util.function.BiConsumer-java.util.function.BiConsumer-
When you have a list of objects of a self-defined POJO type:
package code;
import static java.util.Arrays.asList;
import static java.util.stream.Collectors.toList;
import static lombok.AccessLevel.PRIVATE;
import java.util.Arrays;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.stream.Stream;
import lombok.Data;
import lombok.experimental.Accessors;
import lombok.experimental.FieldDefaults;
public class MainGroupListIntoMap {
public static void main(String[] args) throws Exception {
final List<Item> items = Arrays.asList(
new Item().setName("One").setType("1"),
new Item().setName("Two").setType("1"),
new Item().setName("Three").setType("1"),
new Item().setName("Four").setType("2"),
new Item().setName("Same").setType(null),
new Item().setName("Same").setType(null),
new Item().setName(null).setType(null)
);
final Map<String, List<Item>> grouped = items
.stream()
.collect(HashMap::new,
(m, v) -> m.merge(v.getType(),
asList(v),
(oldList, newList) -> Stream.concat(oldList.stream(),
newList.stream())
.collect(toList())),
HashMap::putAll);
grouped.entrySet().forEach(System.out::println);
}
}
#Data
#Accessors(chain = true)
#FieldDefaults(level = PRIVATE)
class Item {
String name;
String type;
}
Output:
null=[Item(name=Same, type=null), Item(name=Same, type=null), Item(name=null, type=null)]
1=[Item(name=One, type=1), Item(name=Two, type=1), Item(name=Three, type=1)]
2=[Item(name=Four, type=2)]
In your case:
package code;
import static java.util.Arrays.asList;
import static java.util.stream.Collectors.toList;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.stream.Stream;
public class MainGroupListIntoMap2 {
public static void main(String[] args) throws Exception {
group(asList(ArrayList.class, List.class))
.entrySet()
.forEach(System.out::println);
}
private static Map<Class<?>, List<Class<?>>> group(List<Class<?>> classes) {
final Map<Class<?>, List<Class<?>>> grouped = classes
.stream()
.collect(HashMap::new,
(m, v) -> m.merge(v.getSuperclass(),
asList(v),
(oldList, newList) -> Stream.concat(oldList.stream(),
newList.stream())
.collect(toList())),
HashMap::putAll);
return grouped;
}
}
Output:
null=[interface java.util.List]
class java.util.AbstractList=[class java.util.ArrayList]
Related
In Java 8 how can I filter a collection using the Stream API by checking the distinctness of a property of each object?
For example I have a list of Person object and I want to remove people with the same name,
persons.stream().distinct();
Will use the default equality check for a Person object, so I need something like,
persons.stream().distinct(p -> p.getName());
Unfortunately the distinct() method has no such overload. Without modifying the equality check inside the Person class is it possible to do this succinctly?
Consider distinct to be a stateful filter. Here is a function that returns a predicate that maintains state about what it's seen previously, and that returns whether the given element was seen for the first time:
public static <T> Predicate<T> distinctByKey(Function<? super T, ?> keyExtractor) {
Set<Object> seen = ConcurrentHashMap.newKeySet();
return t -> seen.add(keyExtractor.apply(t));
}
Then you can write:
persons.stream().filter(distinctByKey(Person::getName))
Note that if the stream is ordered and is run in parallel, this will preserve an arbitrary element from among the duplicates, instead of the first one, as distinct() does.
(This is essentially the same as my answer to this question: Java Lambda Stream Distinct() on arbitrary key?)
An alternative would be to place the persons in a map using the name as a key:
persons.collect(Collectors.toMap(Person::getName, p -> p, (p, q) -> p)).values();
Note that the Person that is kept, in case of a duplicate name, will be the first encontered.
You can wrap the person objects into another class, that only compares the names of the persons. Afterward, you unwrap the wrapped objects to get a person stream again. The stream operations might look as follows:
persons.stream()
.map(Wrapper::new)
.distinct()
.map(Wrapper::unwrap)
...;
The class Wrapper might look as follows:
class Wrapper {
private final Person person;
public Wrapper(Person person) {
this.person = person;
}
public Person unwrap() {
return person;
}
public boolean equals(Object other) {
if (other instanceof Wrapper) {
return ((Wrapper) other).person.getName().equals(person.getName());
} else {
return false;
}
}
public int hashCode() {
return person.getName().hashCode();
}
}
Another solution, using Set. May not be the ideal solution, but it works
Set<String> set = new HashSet<>(persons.size());
persons.stream().filter(p -> set.add(p.getName())).collect(Collectors.toList());
Or if you can modify the original list, you can use removeIf method
persons.removeIf(p -> !set.add(p.getName()));
There's a simpler approach using a TreeSet with a custom comparator.
persons.stream()
.collect(Collectors.toCollection(
() -> new TreeSet<Person>((p1, p2) -> p1.getName().compareTo(p2.getName()))
));
We can also use RxJava (very powerful reactive extension library)
Observable.from(persons).distinct(Person::getName)
or
Observable.from(persons).distinct(p -> p.getName())
You can use groupingBy collector:
persons.collect(Collectors.groupingBy(p -> p.getName())).values().forEach(t -> System.out.println(t.get(0).getId()));
If you want to have another stream you can use this:
persons.collect(Collectors.groupingBy(p -> p.getName())).values().stream().map(l -> (l.get(0)));
You can use the distinct(HashingStrategy) method in Eclipse Collections.
List<Person> persons = ...;
MutableList<Person> distinct =
ListIterate.distinct(persons, HashingStrategies.fromFunction(Person::getName));
If you can refactor persons to implement an Eclipse Collections interface, you can call the method directly on the list.
MutableList<Person> persons = ...;
MutableList<Person> distinct =
persons.distinct(HashingStrategies.fromFunction(Person::getName));
HashingStrategy is simply a strategy interface that allows you to define custom implementations of equals and hashcode.
public interface HashingStrategy<E>
{
int computeHashCode(E object);
boolean equals(E object1, E object2);
}
Note: I am a committer for Eclipse Collections.
Similar approach which Saeed Zarinfam used but more Java 8 style:)
persons.collect(Collectors.groupingBy(p -> p.getName())).values().stream()
.map(plans -> plans.stream().findFirst().get())
.collect(toList());
You can use StreamEx library:
StreamEx.of(persons)
.distinct(Person::getName)
.toList()
I recommend using Vavr, if you can. With this library you can do the following:
io.vavr.collection.List.ofAll(persons)
.distinctBy(Person::getName)
.toJavaSet() // or any another Java 8 Collection
Extending Stuart Marks's answer, this can be done in a shorter way and without a concurrent map (if you don't need parallel streams):
public static <T> Predicate<T> distinctByKey(Function<? super T, ?> keyExtractor) {
final Set<Object> seen = new HashSet<>();
return t -> seen.add(keyExtractor.apply(t));
}
Then call:
persons.stream().filter(distinctByKey(p -> p.getName());
My approach to this is to group all the objects with same property together, then cut short the groups to size of 1 and then finally collect them as a List.
List<YourPersonClass> listWithDistinctPersons = persons.stream()
//operators to remove duplicates based on person name
.collect(Collectors.groupingBy(p -> p.getName()))
.values()
.stream()
//cut short the groups to size of 1
.flatMap(group -> group.stream().limit(1))
//collect distinct users as list
.collect(Collectors.toList());
Distinct objects list can be found using:
List distinctPersons = persons.stream()
.collect(Collectors.collectingAndThen(
Collectors.toCollection(() -> new TreeSet<>(Comparator.comparing(Person:: getName))),
ArrayList::new));
I made a generic version:
private <T, R> Collector<T, ?, Stream<T>> distinctByKey(Function<T, R> keyExtractor) {
return Collectors.collectingAndThen(
toMap(
keyExtractor,
t -> t,
(t1, t2) -> t1
),
(Map<R, T> map) -> map.values().stream()
);
}
An exemple:
Stream.of(new Person("Jean"),
new Person("Jean"),
new Person("Paul")
)
.filter(...)
.collect(distinctByKey(Person::getName)) // return a stream of Person with 2 elements, jean and Paul
.map(...)
.collect(toList())
Another library that supports this is jOOλ, and its Seq.distinct(Function<T,U>) method:
Seq.seq(persons).distinct(Person::getName).toList();
Under the hood, it does practically the same thing as the accepted answer, though.
Set<YourPropertyType> set = new HashSet<>();
list
.stream()
.filter(it -> set.add(it.getYourProperty()))
.forEach(it -> ...);
While the highest upvoted answer is absolutely best answer wrt Java 8, it is at the same time absolutely worst in terms of performance. If you really want a bad low performant application, then go ahead and use it. Simple requirement of extracting a unique set of Person Names shall be achieved by mere "For-Each" and a "Set".
Things get even worse if list is above size of 10.
Consider you have a collection of 20 Objects, like this:
public static final List<SimpleEvent> testList = Arrays.asList(
new SimpleEvent("Tom"), new SimpleEvent("Dick"),new SimpleEvent("Harry"),new SimpleEvent("Tom"),
new SimpleEvent("Dick"),new SimpleEvent("Huckle"),new SimpleEvent("Berry"),new SimpleEvent("Tom"),
new SimpleEvent("Dick"),new SimpleEvent("Moses"),new SimpleEvent("Chiku"),new SimpleEvent("Cherry"),
new SimpleEvent("Roses"),new SimpleEvent("Moses"),new SimpleEvent("Chiku"),new SimpleEvent("gotya"),
new SimpleEvent("Gotye"),new SimpleEvent("Nibble"),new SimpleEvent("Berry"),new SimpleEvent("Jibble"));
Where you object SimpleEvent looks like this:
public class SimpleEvent {
private String name;
private String type;
public SimpleEvent(String name) {
this.name = name;
this.type = "type_"+name;
}
public String getName() {
return name;
}
public void setName(String name) {
this.name = name;
}
public String getType() {
return type;
}
public void setType(String type) {
this.type = type;
}
}
And to test, you have JMH code like this,(Please note, im using the same distinctByKey Predicate mentioned in accepted answer) :
#Benchmark
#OutputTimeUnit(TimeUnit.SECONDS)
public void aStreamBasedUniqueSet(Blackhole blackhole) throws Exception{
Set<String> uniqueNames = testList
.stream()
.filter(distinctByKey(SimpleEvent::getName))
.map(SimpleEvent::getName)
.collect(Collectors.toSet());
blackhole.consume(uniqueNames);
}
#Benchmark
#OutputTimeUnit(TimeUnit.SECONDS)
public void aForEachBasedUniqueSet(Blackhole blackhole) throws Exception{
Set<String> uniqueNames = new HashSet<>();
for (SimpleEvent event : testList) {
uniqueNames.add(event.getName());
}
blackhole.consume(uniqueNames);
}
public static void main(String[] args) throws RunnerException {
Options opt = new OptionsBuilder()
.include(MyBenchmark.class.getSimpleName())
.forks(1)
.mode(Mode.Throughput)
.warmupBatchSize(3)
.warmupIterations(3)
.measurementIterations(3)
.build();
new Runner(opt).run();
}
Then you'll have Benchmark results like this:
Benchmark Mode Samples Score Score error Units
c.s.MyBenchmark.aForEachBasedUniqueSet thrpt 3 2635199.952 1663320.718 ops/s
c.s.MyBenchmark.aStreamBasedUniqueSet thrpt 3 729134.695 895825.697 ops/s
And as you can see, a simple For-Each is 3 times better in throughput and less in error score as compared to Java 8 Stream.
Higher the throughput, better the performance
I would like to improve Stuart Marks answer. What if the key is null, it will through NullPointerException. Here I ignore the null key by adding one more check as keyExtractor.apply(t)!=null.
public static <T> Predicate<T> distinctByKey(Function<? super T, ?> keyExtractor) {
Set<Object> seen = ConcurrentHashMap.newKeySet();
return t -> keyExtractor.apply(t)!=null && seen.add(keyExtractor.apply(t));
}
This works like a charm:
Grouping the data by unique key to form a map.
Returning the first object from every value of the map (There could be multiple person having same name).
persons.stream()
.collect(groupingBy(Person::getName))
.values()
.stream()
.flatMap(values -> values.stream().limit(1))
.collect(toList());
The easiest way to implement this is to jump on the sort feature as it already provides an optional Comparator which can be created using an element’s property. Then you have to filter duplicates out which can be done using a statefull Predicate which uses the fact that for a sorted stream all equal elements are adjacent:
Comparator<Person> c=Comparator.comparing(Person::getName);
stream.sorted(c).filter(new Predicate<Person>() {
Person previous;
public boolean test(Person p) {
if(previous!=null && c.compare(previous, p)==0)
return false;
previous=p;
return true;
}
})./* more stream operations here */;
Of course, a statefull Predicate is not thread-safe, however if that’s your need you can move this logic into a Collector and let the stream take care of the thread-safety when using your Collector. This depends on what you want to do with the stream of distinct elements which you didn’t tell us in your question.
There are lot of approaches, this one will also help - Simple, Clean and Clear
List<Employee> employees = new ArrayList<>();
employees.add(new Employee(11, "Ravi"));
employees.add(new Employee(12, "Stalin"));
employees.add(new Employee(23, "Anbu"));
employees.add(new Employee(24, "Yuvaraj"));
employees.add(new Employee(35, "Sena"));
employees.add(new Employee(36, "Antony"));
employees.add(new Employee(47, "Sena"));
employees.add(new Employee(48, "Ravi"));
List<Employee> empList = new ArrayList<>(employees.stream().collect(
Collectors.toMap(Employee::getName, obj -> obj,
(existingValue, newValue) -> existingValue))
.values());
empList.forEach(System.out::println);
// Collectors.toMap(
// Employee::getName, - key (the value by which you want to eliminate duplicate)
// obj -> obj, - value (entire employee object)
// (existingValue, newValue) -> existingValue) - to avoid illegalstateexception: duplicate key
Output - toString() overloaded
Employee{id=35, name='Sena'}
Employee{id=12, name='Stalin'}
Employee{id=11, name='Ravi'}
Employee{id=24, name='Yuvaraj'}
Employee{id=36, name='Antony'}
Employee{id=23, name='Anbu'}
Here is the example
public class PayRoll {
private int payRollId;
private int id;
private String name;
private String dept;
private int salary;
public PayRoll(int payRollId, int id, String name, String dept, int salary) {
super();
this.payRollId = payRollId;
this.id = id;
this.name = name;
this.dept = dept;
this.salary = salary;
}
}
import java.util.ArrayList;
import java.util.Comparator;
import java.util.List;
import java.util.Map;
import java.util.Optional;
import java.util.stream.Collector;
import java.util.stream.Collectors;
public class Prac {
public static void main(String[] args) {
int salary=70000;
PayRoll payRoll=new PayRoll(1311, 1, "A", "HR", salary);
PayRoll payRoll2=new PayRoll(1411, 2 , "B", "Technical", salary);
PayRoll payRoll3=new PayRoll(1511, 1, "C", "HR", salary);
PayRoll payRoll4=new PayRoll(1611, 1, "D", "Technical", salary);
PayRoll payRoll5=new PayRoll(711, 3,"E", "Technical", salary);
PayRoll payRoll6=new PayRoll(1811, 3, "F", "Technical", salary);
List<PayRoll>list=new ArrayList<PayRoll>();
list.add(payRoll);
list.add(payRoll2);
list.add(payRoll3);
list.add(payRoll4);
list.add(payRoll5);
list.add(payRoll6);
Map<Object, Optional<PayRoll>> k = list.stream().collect(Collectors.groupingBy(p->p.getId()+"|"+p.getDept(),Collectors.maxBy(Comparator.comparingInt(PayRoll::getPayRollId))));
k.entrySet().forEach(p->
{
if(p.getValue().isPresent())
{
System.out.println(p.getValue().get());
}
});
}
}
Output:
PayRoll [payRollId=1611, id=1, name=D, dept=Technical, salary=70000]
PayRoll [payRollId=1811, id=3, name=F, dept=Technical, salary=70000]
PayRoll [payRollId=1411, id=2, name=B, dept=Technical, salary=70000]
PayRoll [payRollId=1511, id=1, name=C, dept=HR, salary=70000]
Late to the party but I sometimes use this one-liner as an equivalent:
((Function<Value, Key>) Value::getKey).andThen(new HashSet<>()::add)::apply
The expression is a Predicate<Value> but since the map is inline, it works as a filter. This is of course less readable but sometimes it can be helpful to avoid the method.
Building on #josketres's answer, I created a generic utility method:
You could make this more Java 8-friendly by creating a Collector.
public static <T> Set<T> removeDuplicates(Collection<T> input, Comparator<T> comparer) {
return input.stream()
.collect(toCollection(() -> new TreeSet<>(comparer)));
}
#Test
public void removeDuplicatesWithDuplicates() {
ArrayList<C> input = new ArrayList<>();
Collections.addAll(input, new C(7), new C(42), new C(42));
Collection<C> result = removeDuplicates(input, (c1, c2) -> Integer.compare(c1.value, c2.value));
assertEquals(2, result.size());
assertTrue(result.stream().anyMatch(c -> c.value == 7));
assertTrue(result.stream().anyMatch(c -> c.value == 42));
}
#Test
public void removeDuplicatesWithoutDuplicates() {
ArrayList<C> input = new ArrayList<>();
Collections.addAll(input, new C(1), new C(2), new C(3));
Collection<C> result = removeDuplicates(input, (t1, t2) -> Integer.compare(t1.value, t2.value));
assertEquals(3, result.size());
assertTrue(result.stream().anyMatch(c -> c.value == 1));
assertTrue(result.stream().anyMatch(c -> c.value == 2));
assertTrue(result.stream().anyMatch(c -> c.value == 3));
}
private class C {
public final int value;
private C(int value) {
this.value = value;
}
}
Maybe will be useful for somebody. I had a little bit another requirement. Having list of objects A from 3rd party remove all which have same A.b field for same A.id (multiple A object with same A.id in list). Stream partition answer by Tagir Valeev inspired me to use custom Collector which returns Map<A.id, List<A>>. Simple flatMap will do the rest.
public static <T, K, K2> Collector<T, ?, Map<K, List<T>>> groupingDistinctBy(Function<T, K> keyFunction, Function<T, K2> distinctFunction) {
return groupingBy(keyFunction, Collector.of((Supplier<Map<K2, T>>) HashMap::new,
(map, error) -> map.putIfAbsent(distinctFunction.apply(error), error),
(left, right) -> {
left.putAll(right);
return left;
}, map -> new ArrayList<>(map.values()),
Collector.Characteristics.UNORDERED)); }
I had a situation, where I was suppose to get distinct elements from list based on 2 keys.
If you want distinct based on two keys or may composite key, try this
class Person{
int rollno;
String name;
}
List<Person> personList;
Function<Person, List<Object>> compositeKey = personList->
Arrays.<Object>asList(personList.getName(), personList.getRollno());
Map<Object, List<Person>> map = personList.stream().collect(Collectors.groupingBy(compositeKey, Collectors.toList()));
List<Object> duplicateEntrys = map.entrySet().stream()`enter code here`
.filter(settingMap ->
settingMap.getValue().size() > 1)
.collect(Collectors.toList());
A variation of the top answer that handles null:
public static <T, K> Predicate<T> distinctBy(final Function<? super T, K> getKey) {
val seen = ConcurrentHashMap.<Optional<K>>newKeySet();
return obj -> seen.add(Optional.ofNullable(getKey.apply(obj)));
}
In my tests:
assertEquals(
asList("a", "bb"),
Stream.of("a", "b", "bb", "aa").filter(distinctBy(String::length)).collect(toList()));
assertEquals(
asList(5, null, 2, 3),
Stream.of(5, null, 2, null, 3, 3, 2).filter(distinctBy(x -> x)).collect(toList()));
val maps = asList(
hashMapWith(0, 2),
hashMapWith(1, 2),
hashMapWith(2, null),
hashMapWith(3, 1),
hashMapWith(4, null),
hashMapWith(5, 2));
assertEquals(
asList(0, 2, 3),
maps.stream()
.filter(distinctBy(m -> m.get("val")))
.map(m -> m.get("i"))
.collect(toList()));
In my case I needed to control what was the previous element. I then created a stateful Predicate where I controled if the previous element was different from the current element, in that case I kept it.
public List<Log> fetchLogById(Long id) {
return this.findLogById(id).stream()
.filter(new LogPredicate())
.collect(Collectors.toList());
}
public class LogPredicate implements Predicate<Log> {
private Log previous;
public boolean test(Log atual) {
boolean isDifferent = previouws == null || verifyIfDifferentLog(current, previous);
if (isDifferent) {
previous = current;
}
return isDifferent;
}
private boolean verifyIfDifferentLog(Log current, Log previous) {
return !current.getId().equals(previous.getId());
}
}
My solution in this listing:
List<HolderEntry> result ....
List<HolderEntry> dto3s = new ArrayList<>(result.stream().collect(toMap(
HolderEntry::getId,
holder -> holder, //or Function.identity() if you want
(holder1, holder2) -> holder1
)).values());
In my situation i want to find distinct values and put their in List.
I wrote a stream pipeline:
private void calcMin(Clazz clazz) {
OptionalInt min = listOfObjects.stream().filter(y -> (y.getName()
.matches(clazz.getFilter())))
.map(y -> (y.getUserNumber()))
.mapToInt(Integer::intValue)
.min();
list.add(min.getAsInt());
}
This pipeline gives me the lowest UserNumber.
So far, so good.
But I also need the greatest UserNumber.
And I also need the lowest GroupNumber.
And also the greatest GroupNumber.
I could write:
private void calcMax(Clazz clazz) {
OptionalInt max = listOfObjects.stream().filter(y -> (y.getName()
.matches(clazz.getFilter())))
.map(y -> (y.getUserNumber()))
.mapToInt(Integer::intValue)
.max();
list.add(max.getAsInt());
}
And I could also write the same for .map(y -> (y.getGroupNumber())).
This will work, but it is very redudant.
Is there a way to do it more variable?
There are two differences in the examples: the map() operation, and the terminal operation (min() and max()). So, to reuse the rest of the pipeline, you'll want to parameterize these.
I will warn you up front, however, that if you call this parameterized method directly from many places, your code will be harder to read. Comprehension of the caller's code will be easier if you keep a helper function—with a meaningful name—that delegates to the generic method. Obviously, there is a balance here. If you wanted to add additional functional parameters, the number of helper methods would grow rapidly and become cumbersome. And if you only call each helper from one place, maybe using the underlying function directly won't add too much clutter.
You don't show the type of elements in the stream. I'm using the name MyClass in this example as a placeholder.
private static OptionalInt extremum(
Collection<? extends MyClass> input,
Clazz clazz,
ToIntFunction<? super MyClass> valExtractor,
Function<IntStream, OptionalInt> terminalOp) {
IntStream matches = input.stream()
.filter(y -> y.getName().matches(clazz.getFilter()))
.mapToInt(valExtractor);
return terminalOp.apply(matches);
}
private OptionalInt calcMinUserNumber(Clazz clazz) {
return extremum(listOfObjects, clazz, MyClass::getUserNumber, IntStream::min);
}
private OptionalInt calcMaxUserNumber(Clazz clazz) {
return extremum(listOfObjects, clazz, MyClass::getUserNumber, IntStream::max);
}
private OptionalInt calcMinGroupNumber(Clazz clazz) {
return extremum(listOfObjects, clazz, MyClass::getGroupNumber, IntStream::min);
}
private OptionalInt calcMaxGroupNumber(Clazz clazz) {
return extremum(listOfObjects, clazz, MyClass::getGroupNumber, IntStream::max);
}
...
And here's a usage example:
calcMaxGroupNumber(clazz).ifPresent(list::add);
The solution may reduce redundancy but it removes readability from the code.
IntStream maxi = listOfObjects.stream().filter(y -> (y.getName()
.matches(clazz.getFilter())))
.map(y -> (y.getUserNumber()))
.mapToInt(Integer::intValue);
System.out.println(applier(() -> maxi, IntStream::max));
//System.out.println(applier(() -> maxi, IntStream::min));
...
public static OptionalInt applier(Supplier<IntStream> supplier, Function<IntStream, OptionalInt> predicate) {
return predicate.apply(supplier.get());
}
For the sake of variety, I want to add the following approach which uses a nested Collectors.teeing (Java 12 or higher) which enables to get all values by just streaming over the collection only once.
For the set up, I am using the below simple class :
#AllArgsConstructor
#ToString
#Getter
static class MyObject {
int userNumber;
int groupNumber;
}
and a list of MyObjects:
List<MyObject> myObjectList = List.of(
new MyObject(1, 2),
new MyObject(2, 3),
new MyObject(3, 4),
new MyObject(5, 3),
new MyObject(6, 2),
new MyObject(7, 6),
new MyObject(1, 12));
If the task was to get the max and min userNumber one could do a simple teeing like below and add for example the values to map:
Map<String , Integer> maxMinUserNum =
myObjectList.stream()
.collect(
Collectors.teeing(
Collectors.reducing(Integer.MAX_VALUE, MyObject::getUserNumber, Integer::min),
Collectors.reducing(Integer.MIN_VALUE, MyObject::getUserNumber, Integer::max),
(min,max) -> {
Map<String,Integer> map = new HashMap<>();
map.put("minUser",min);
map.put("maxUser",max);
return map;
}));
System.out.println(maxMinUserNum);
//output: {minUser=1, maxUser=7}
Since the task also includes to get the max and min group numbers, we could use the same approach as above and only need to nest the teeing collector :
Map<String , Integer> result =
myObjectList.stream()
.collect(
Collectors.teeing(
Collectors.teeing(
Collectors.reducing(Integer.MAX_VALUE, MyObject::getUserNumber, Integer::min),
Collectors.reducing(Integer.MIN_VALUE, MyObject::getUserNumber, Integer::max),
(min,max) -> {
Map<String,Integer> map = new LinkedHashMap<>();
map.put("minUser",min);
map.put("maxUser",max);
return map;
}),
Collectors.teeing(
Collectors.reducing(Integer.MAX_VALUE, MyObject::getGroupNumber, Integer::min),
Collectors.reducing(Integer.MIN_VALUE, MyObject::getGroupNumber, Integer::max),
(min,max) -> {
Map<String,Integer> map = new LinkedHashMap<>();
map.put("minGroup",min);
map.put("maxGroup",max);
return map;
}),
(map1,map2) -> {
map1.putAll(map2);
return map1;
}));
System.out.println(result);
output
{minUser=1, maxUser=7, minGroup=2, maxGroup=12}
I want to translate a List of objects into a Map using Java 8's streams and lambdas.
This is how I would write it in Java 7 and below.
private Map<String, Choice> nameMap(List<Choice> choices) {
final Map<String, Choice> hashMap = new HashMap<>();
for (final Choice choice : choices) {
hashMap.put(choice.getName(), choice);
}
return hashMap;
}
I can accomplish this easily using Java 8 and Guava but I would like to know how to do this without Guava.
In Guava:
private Map<String, Choice> nameMap(List<Choice> choices) {
return Maps.uniqueIndex(choices, new Function<Choice, String>() {
#Override
public String apply(final Choice input) {
return input.getName();
}
});
}
And Guava with Java 8 lambdas.
private Map<String, Choice> nameMap(List<Choice> choices) {
return Maps.uniqueIndex(choices, Choice::getName);
}
Based on Collectors documentation it's as simple as:
Map<String, Choice> result =
choices.stream().collect(Collectors.toMap(Choice::getName,
Function.identity()));
If your key is NOT guaranteed to be unique for all elements in the list, you should convert it to a Map<String, List<Choice>> instead of a Map<String, Choice>
Map<String, List<Choice>> result =
choices.stream().collect(Collectors.groupingBy(Choice::getName));
Use getName() as the key and Choice itself as the value of the map:
Map<String, Choice> result =
choices.stream().collect(Collectors.toMap(Choice::getName, c -> c));
Most of the answers listed, miss a case when the list has duplicate items. In that case there answer will throw IllegalStateException. Refer the below code to handle list duplicates as well:
public Map<String, Choice> convertListToMap(List<Choice> choices) {
return choices.stream()
.collect(Collectors.toMap(Choice::getName, choice -> choice,
(oldValue, newValue) -> newValue));
}
Here's another one in case you don't want to use Collectors.toMap()
Map<String, Choice> result =
choices.stream().collect(HashMap<String, Choice>::new,
(m, c) -> m.put(c.getName(), c),
(m, u) -> {});
One more option in simple way
Map<String,Choice> map = new HashMap<>();
choices.forEach(e->map.put(e.getName(),e));
For example, if you want convert object fields to map:
Example object:
class Item{
private String code;
private String name;
public Item(String code, String name) {
this.code = code;
this.name = name;
}
//getters and setters
}
And operation convert List To Map:
List<Item> list = new ArrayList<>();
list.add(new Item("code1", "name1"));
list.add(new Item("code2", "name2"));
Map<String,String> map = list.stream()
.collect(Collectors.toMap(Item::getCode, Item::getName));
If you don't mind using 3rd party libraries, AOL's cyclops-react lib (disclosure I am a contributor) has extensions for all JDK Collection types, including List and Map.
ListX<Choices> choices;
Map<String, Choice> map = choices.toMap(c-> c.getName(),c->c);
You can create a Stream of the indices using an IntStream and then convert them to a Map :
Map<Integer,Item> map =
IntStream.range(0,items.size())
.boxed()
.collect(Collectors.toMap (i -> i, i -> items.get(i)));
I was trying to do this and found that, using the answers above, when using Functions.identity() for the key to the Map, then I had issues with using a local method like this::localMethodName to actually work because of typing issues.
Functions.identity() actually does something to the typing in this case so the method would only work by returning Object and accepting a param of Object
To solve this, I ended up ditching Functions.identity() and using s->s instead.
So my code, in my case to list all directories inside a directory, and for each one use the name of the directory as the key to the map and then call a method with the directory name and return a collection of items, looks like:
Map<String, Collection<ItemType>> items = Arrays.stream(itemFilesDir.listFiles(File::isDirectory))
.map(File::getName)
.collect(Collectors.toMap(s->s, this::retrieveBrandItems));
I will write how to convert list to map using generics and inversion of control. Just universal method!
Maybe we have list of Integers or list of objects. So the question is the following: what should be key of the map?
create interface
public interface KeyFinder<K, E> {
K getKey(E e);
}
now using inversion of control:
static <K, E> Map<K, E> listToMap(List<E> list, KeyFinder<K, E> finder) {
return list.stream().collect(Collectors.toMap(e -> finder.getKey(e) , e -> e));
}
For example, if we have objects of book , this class is to choose key for the map
public class BookKeyFinder implements KeyFinder<Long, Book> {
#Override
public Long getKey(Book e) {
return e.getPrice()
}
}
I use this syntax
Map<Integer, List<Choice>> choiceMap =
choices.stream().collect(Collectors.groupingBy(choice -> choice.getName()));
It's possible to use streams to do this. To remove the need to explicitly use Collectors, it's possible to import toMap statically (as recommended by Effective Java, third edition).
import static java.util.stream.Collectors.toMap;
private static Map<String, Choice> nameMap(List<Choice> choices) {
return choices.stream().collect(toMap(Choice::getName, it -> it));
}
Another possibility only present in comments yet:
Map<String, Choice> result =
choices.stream().collect(Collectors.toMap(c -> c.getName(), c -> c)));
Useful if you want to use a parameter of a sub-object as Key:
Map<String, Choice> result =
choices.stream().collect(Collectors.toMap(c -> c.getUser().getName(), c -> c)));
Map<String, Set<String>> collect = Arrays.asList(Locale.getAvailableLocales()).stream().collect(Collectors
.toMap(l -> l.getDisplayCountry(), l -> Collections.singleton(l.getDisplayLanguage())));
This can be done in 2 ways. Let person be the class we are going to use to demonstrate it.
public class Person {
private String name;
private int age;
public String getAge() {
return age;
}
}
Let persons be the list of Persons to be converted to the map
1.Using Simple foreach and a Lambda Expression on the List
Map<Integer,List<Person>> mapPersons = new HashMap<>();
persons.forEach(p->mapPersons.put(p.getAge(),p));
2.Using Collectors on Stream defined on the given List.
Map<Integer,List<Person>> mapPersons =
persons.stream().collect(Collectors.groupingBy(Person::getAge));
Here is solution by StreamEx
StreamEx.of(choices).toMap(Choice::getName, c -> c);
Map<String,Choice> map=list.stream().collect(Collectors.toMap(Choice::getName, s->s));
Even serves this purpose for me,
Map<String,Choice> map= list1.stream().collect(()-> new HashMap<String,Choice>(),
(r,s) -> r.put(s.getString(),s),(r,s) -> r.putAll(s));
If every new value for the same key name has to be overridden:
public Map < String, Choice > convertListToMap(List < Choice > choices) {
return choices.stream()
.collect(Collectors.toMap(Choice::getName,
Function.identity(),
(oldValue, newValue) - > newValue));
}
If all choices have to be grouped in a list for a name:
public Map < String, Choice > convertListToMap(List < Choice > choices) {
return choices.stream().collect(Collectors.groupingBy(Choice::getName));
}
List<V> choices; // your list
Map<K,V> result = choices.stream().collect(Collectors.toMap(choice::getKey(),choice));
//assuming class "V" has a method to get the key, this method must handle case of duplicates too and provide a unique key.
As an alternative to guava one can use kotlin-stdlib
private Map<String, Choice> nameMap(List<Choice> choices) {
return CollectionsKt.associateBy(choices, Choice::getName);
}
List<Integer> listA = new ArrayList<>();
listA.add(1);
listA.add(5);
listA.add(3);
listA.add(4);
System.out.println(listA.stream().collect(Collectors.toMap(x ->x, x->x)));
String array[] = {"ASDFASDFASDF","AA", "BBB", "CCCC", "DD", "EEDDDAD"};
List<String> list = Arrays.asList(array);
Map<Integer, String> map = list.stream()
.collect(Collectors.toMap(s -> s.length(), s -> s, (x, y) -> {
System.out.println("Dublicate key" + x);
return x;
},()-> new TreeMap<>((s1,s2)->s2.compareTo(s1))));
System.out.println(map);
Dublicate key AA
{12=ASDFASDFASDF, 7=EEDDDAD, 4=CCCC, 3=BBB, 2=AA}
I'm playing with java reflection and learning more about Stream.collect.
I have an annotation MyTag that has two properties (id and type enum[Normal|Failure]).
Also, I have a list of annotated methods with MyTag and I was able to group those methods by the id property of the MyTag annotation using Collectors.groupingBy:
List<Method> ml = getMethodsAnnotatedWith(anClass.getClass(),
MyTag.class);
Map<String, List<Method>> map = ml.stream().collect(groupingBy(m -> {
var ann = m.getDeclaredAnnotation(MyTag.class);
return ann.anId();
}, TreeMap::new, toList()));
Now I need to reduce the resulting List to one single object composed of ONLY TWO items of the same MyTag.id, one with a MyTag.type=Normal and the other with a MyTag.type=Failure. So it would result in something like a Map<String, Pair<Method, Method>>. If there are more than two occurrences, I must just pick the first ones, log and ignore the rest.
How could I achieve that ?
You can use
Map<String, Map<Type, Method>> map = Arrays.stream(anClass.getClass().getMethods())
.filter(m -> m.isAnnotationPresent(MyTag.class))
.collect(groupingBy(m -> m.getDeclaredAnnotation(MyTag.class).anId(),
TreeMap::new,
toMap(m -> m.getDeclaredAnnotation(MyTag.class).aType(),
m -> m, (first, last) -> first,
() -> new EnumMap<>(Type.class))));
The result maps the annotations ID property to a Map from Type (the enum constants NORMAL and FAILURE) to the first encountered method with a matching annotation. Though “first” has not an actual meaning when iterating over the methods discovered by Reflection, as it doesn’t guaranty any specific order.
The () -> new EnumMap<>(Type.class) map factory is not necessary, it would also work with the general purpose map used by default when you don’t specify a factory. But the EnumMap will handle your case of having only two constants to map in a slightly more efficient way and its iteration order will match the declaration order of the enum constants.
I think, the EnumMap is better than a Pair<Method, Method> that requires to remember which method is associated with “normal” and which with “failure”. It’s also easier to adapt to more than two constants. Also, the EnumMap is built-in and doesn’t require a 3rd party library.
The following example can easily be adapted to your code:
import java.util.Arrays;
import java.util.List;
import java.util.Map;
import java.util.Objects;
import java.util.TreeMap;
import java.util.stream.Collectors;
import org.apache.commons.lang3.tuple.Pair;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
public class Test {
private static final Logger logger = LoggerFactory.getLogger(Test.class);
public static void main(String[] args) {
List<Pair<String, String>> ml = Arrays.asList(
Pair.of("key1", "value1"),
Pair.of("key1", "value1"),
Pair.of("key1", "value2"),
Pair.of("key2", "value1"),
Pair.of("key2", "value3"));
Map<String, Pair<String, String>> map = ml.stream().collect(
Collectors.groupingBy(m -> {
return m.getKey();
}, TreeMap::new, Collectors.toList()))
.entrySet()
.stream()
.collect(Collectors.toMap(
Map.Entry::getKey, e -> convert(e.getValue())));
System.out.println(map.values());
}
private static Pair<String, String> convert(List<Pair<String, String>> original) {
long count1 = original.stream().filter(e -> Objects.equals(e.getValue(), "value1")).count();
long count2 = original.stream().filter(e -> Objects.equals(e.getValue(), "value2")).count();
if (count1 > 1) {
logger.warn("More than one occurrence of value1");
}
if (count2 > 1) {
logger.warn("More than one occurrence of value2");
}
return Pair.of(count1 > 0 ? "value1" : null,
count2 > 0 ? "value2" : null);
}
}
Instead of Pair<String, String> use Method
m.getDeclaredAnnotation(MyTag.class).anId() corresponds to pair.getKey()
The folowing result is printed to the console:
01:23:27.959 [main] WARN syglass.Test2 - More than one occurrence of value1
[(value1,value2), (value1,null)]
First, create your own MethodPair class:
class MethodPair {
private final Method failure;
private final Method normal;
public MethodPair(Method failure, Method normal) {
this.failure = failure;
this.normal = normal;
}
public Method getFailure() {
return failure;
}
public Method getNormal() {
return normal;
}
public MethodPair combinedWith(MethodPair other) {
return new MethodPair(
this.failure == null ? other.failure : this.failure,
this.normal == null ? other.normal : this.normal)
);
}
}
Notice the combinedWith method. This is going to useful in the reduction that we are going to do.
Instead of toList, use the reducing collector:
Map<String, MethodPair> map = ml.stream().collect(groupingBy(m -> {
var ann = m.getDeclaredAnnotation(MyTag.class);
return ann.anId();
}, TreeMap::new,
Collectors.reducing(new MethodPair(null, null), method -> {
var type = method.getDeclaredAnnotation(MyTag.class).type();
if (type == Type.NORMAL) {
return new MethodPair(null, method);
} else {
return new MethodPair(method, null);
}
}, MethodPair::combinedWith)
));
If you are fine with doing this in two steps, I would suggest that you create the Map<String, List<Method>> first, then map its values to a new map. IMO this is more readable:
Map<String, List<Method>> map = ml.stream().collect(groupingBy(m -> {
var ann = m.getDeclaredAnnotation(MyTag.class);
return ann.anId();
}, TreeMap::new, toList()));
var result = map.entrySet().stream().collect(Collectors.toMap(entry -> entry.getKey(), entry -> {
Method normal = null;
Method failure = null;
for (var m : entry.getValue()) {
var type = m.getDeclaredAnnotation(MyTag.class).type();
if (type == Type.NORMAL && normal == null) {
normal = m;
} else if (type == Type.FAILURE && failure == null) {
failure = m;
}
if (normal != null && failure != null) {
break;
}
}
return new MethodPair(failure, normal);
}));
Often there is the need to transform results for a query like:
select category, count(*)
from table
group by category
to a map in which keys are categories and values are count of records belonging to the same category.
Many persistence frameworks return the results of such a query as List<Object[]>, where object arrays contain two elements (category and the count for each returned result set row).
I am trying to find the most readable way to convert this list to the corresponding map.
Of course, traditional approach would involve creating the map and putting the entries manually:
Map<String, Integer> map = new HashMap<>();
list.stream().forEach(e -> map.put((String) e[0], (Integer) e[1]));
The first one-liner that came to my mind was to utilize the out of the box available Collectors.toMap collector:
Map<String, Integer> map = list.stream().collect(toMap(e -> (String) e[0], e -> (Integer) e[1]));
However, I find this e -> (T) e[i] syntax a bit less readable than traditional approach. To overcome this, I could create a util method which I can reuse in all such situations:
public static <K, V> Collector<Object[], ?, Map<K, V>> toMap() {
return Collectors.toMap(e -> (K) e[0], e -> (V) e[1]);
}
Then I've got a perfect one-liner:
Map<String, Integer> map = list.stream().collect(Utils.toMap());
There is even no need to cast key and value because of type inference. However, this is a bit more difficult to grasp for other readers of the code (Collector<Object[], ?, Map<K, V>> in the util method signature, etc).
I am wondering, is there anything else in the java 8 toolbox that could help this to be achieved in a more readable/elegant way?
I think your current 'one-liner' is fine as is. But if you don't particularly like the magic indices built into the command then you could encapsulate in an enum:
enum Column {
CATEGORY(0),
COUNT(1);
private final int index;
Column(int index) {
this.index = index;
}
public int getIntValue(Object[] row) {
return (int)row[index]);
}
public String getStringValue(Object[] row) {
return (String)row[index];
}
}
Then you're extraction code gets a bit clearer:
list.stream().collect(Collectors.toMap(CATEGORY::getStringValue, COUNT::getIntValue));
Ideally you'd add a type field to the column and check the correct method is called.
While outside the scope of your question, ideally you would create a class representing the rows which encapsulates the query. Something like the following (skipped the getters for clarity):
class CategoryCount {
private static final String QUERY = "
select category, count(*)
from table
group by category";
private final String category;
private final int count;
public static Stream<CategoryCount> getAllCategoryCounts() {
list<Object[]> results = runQuery(QUERY);
return Arrays.stream(results).map(CategoryCount::new);
}
private CategoryCount(Object[] row) {
category = (String)row[0];
count = (int)row[1];
}
}
That puts the dependency between the query and the decoding of the rows into the same class and hides all the unnecessary details from the user.
Then creating your map becomes:
Map<String,Integer> categoryCountMap = CategoryCount.getAllCategoryCounts()
.collect(Collectors.toMap(CategoryCount::getCategory, CategoryCount::getCount));
Instead of hiding the class cast, I would make couple of functions to help with readability:
Map<String, Integer> map = results.stream()
.collect(toMap(
columnToObject(0, String.class),
columnToObject(1, Integer.class)
));
Full example:
package com.bluecatcode.learning.so;
import com.google.common.collect.ImmutableList;
import java.util.List;
import java.util.Map;
import java.util.function.Function;
import static java.lang.String.format;
import static java.util.stream.Collectors.toMap;
public class Q35689206 {
public static void main(String[] args) {
List<Object[]> results = ImmutableList.of(
new Object[]{"test", 1}
);
Map<String, Integer> map = results.stream()
.collect(toMap(
columnToObject(0, String.class),
columnToObject(1, Integer.class)
));
System.out.println("map = " + map);
}
private static <T> Function<Object[], T> columnToObject(int index, Class<T> type) {
return e -> asInstanceOf(type, e[index]);
}
private static <T> T asInstanceOf(Class<T> type, Object object) throws ClassCastException {
if (type.isAssignableFrom(type)) {
return type.cast(object);
}
throw new ClassCastException(format("Cannot cast object of type '%s' to '%s'",
object.getClass().getCanonicalName(), type.getCanonicalName()));
}
}