Bit mask generation to minimize number of 1 - java

In order to explore some solutions, I need to generate all possibilities. I'm doing it by using bit masking, like this:
for (long i = 0; i < 1L << NB; i++) {
System.out.println(Long.toBinaryString(i));
if(checkSolution(i)) {
this.add(i); // add i to solutions
}
}
this.getBest(); // get the solution with lowest number of 1
this allow me to explore (if NB=3):
000
001
010
011
100
101
110
111
My problem is that the best solution is the one with the lowest number of 1.
So, in order to stop the search as soon as I found a solution, I would like to have a different order and produce something like this:
000
001
010
100
011
101
110
111
That would make the search a lot faster since I could stop as soon as I get the first solution. But I don't know how can I change my loop to get this output...
PS: NB is undefined...

The idea is to turn your loop into two nested loops; the outer loop sets the number of 1's, and the inner loop iterates through every combination of binary numbers with N 1's. Thus, your loop becomes:
for (long i = 1; i < (1L << NB); i = (i << 1) | 1) {
long j = i;
do {
System.out.println(Long.toBinaryString(j));
if(checkSolution(j)) {
this.add(j); // add j to solutions
}
j = next_of_n(j);
} while (j < (1L << NB));
}
next_of_n() is defined as:
long next_of_n(long j) {
long smallest, ripple, new_smallest, ones;
if (j == 0)
return j;
smallest = (j & -j);
ripple = j + smallest;
new_smallest = (ripple & -ripple);
ones = ((new_smallest / smallest) >> 1) - 1;
return (ripple | ones);
}
The algorithm behind next_of_n() is described in C: A Reference Manual, 5th edition, section 7.6, while showing an example of a SET implementation using bitwise operations. It may be a little hard to understand the code at first, but here's what the book says about it:
This code exploits many unusual properties of unsigned arithmetic. As
an illustration:
if x == 001011001111000, then
smallest == 000000000001000
ripple == 001011010000000
new_smallest == 000000010000000
ones == 000000000000111
the returned value == 001011010000111
The overall idea is that you find the rightmost contiguous group of
1-bits. Of that group, you slide the leftmost 1-bit to the left one
place, and slide all the others back to the extreme right. (This code
was adapted from HAKMEM.)
I can provide a deeper explanation if you still don't get it. Note that the algorithm assumes 2 complement, and that all arithmetic should ideally take place on unsigned integers, mainly because of the right shift operation. I'm not a huge Java guy, I tested this in C with unsigned long and it worked pretty well. I hope the same applies to Java, although there's no such thing as unsigned long in Java. As long as you use reasonable values for NB, there should be no problem.

This is an iterator that iterates bit patterns of the same cardinality.
/**
* Iterates all bit patterns containing the specified number of bits.
*
* See "Compute the lexicographically next bit permutation"
* http://graphics.stanford.edu/~seander/bithacks.html#NextBitPermutation
*
* #author OldCurmudgeon
*/
public class BitPattern implements Iterable<BigInteger> {
// Useful stuff.
private static final BigInteger ONE = BigInteger.ONE;
private static final BigInteger TWO = ONE.add(ONE);
// How many bits to work with.
private final int bits;
// Value to stop at. 2^max_bits.
private final BigInteger stop;
// Should we invert the output.
private final boolean not;
// All patterns of that many bits up to the specified number of bits - invberting if required.
public BitPattern(int bits, int max, boolean not) {
this.bits = bits;
this.stop = TWO.pow(max);
this.not = not;
}
// All patterns of that many bits up to the specified number of bits.
public BitPattern(int bits, int max) {
this(bits, max, false);
}
#Override
public Iterator<BigInteger> iterator() {
return new BitPatternIterator();
}
/*
* From the link:
*
* Suppose we have a pattern of N bits set to 1 in an integer and
* we want the next permutation of N 1 bits in a lexicographical sense.
*
* For example, if N is 3 and the bit pattern is 00010011, the next patterns would be
* 00010101, 00010110, 00011001,
* 00011010, 00011100, 00100011,
* and so forth.
*
* The following is a fast way to compute the next permutation.
*/
private class BitPatternIterator implements Iterator<BigInteger> {
// Next to deliver - initially 2^n - 1
BigInteger next = TWO.pow(bits).subtract(ONE);
// The last one we delivered.
BigInteger last;
#Override
public boolean hasNext() {
if (next == null) {
// Next one!
// t gets v's least significant 0 bits set to 1
// unsigned int t = v | (v - 1);
BigInteger t = last.or(last.subtract(BigInteger.ONE));
// Silly optimisation.
BigInteger notT = t.not();
// Next set to 1 the most significant bit to change,
// set to 0 the least significant ones, and add the necessary 1 bits.
// w = (t + 1) | (((~t & -~t) - 1) >> (__builtin_ctz(v) + 1));
// The __builtin_ctz(v) GNU C compiler intrinsic for x86 CPUs returns the number of trailing zeros.
next = t.add(ONE).or(notT.and(notT.negate()).subtract(ONE).shiftRight(last.getLowestSetBit() + 1));
if (next.compareTo(stop) >= 0) {
// Dont go there.
next = null;
}
}
return next != null;
}
#Override
public BigInteger next() {
last = hasNext() ? next : null;
next = null;
return not ? last.not(): last;
}
#Override
public void remove() {
throw new UnsupportedOperationException("Not supported.");
}
#Override
public String toString () {
return next != null ? next.toString(2) : last != null ? last.toString(2): "";
}
}
public static void main(String[] args) {
System.out.println("BitPattern(3, 10)");
for (BigInteger i : new BitPattern(3, 10)) {
System.out.println(i.toString(2));
}
}
}

First you loop over your number of ones, say n. First you start with 2^n-1, which is the first integer to contain exactly n ones and test it. To get the next one, you use the algorithm from Hamming weight based indexing (it's C code, but should not be to hard to translate it to java).

Here's some code I put together some time ago to do this. Use the combinadic method giving it the number of digits you want, the number of bits you want and which number in the sequence.
// n = digits, k = weight, m = position.
public static BigInteger combinadic(int n, int k, BigInteger m) {
BigInteger out = BigInteger.ZERO;
for (; n > 0; n--) {
BigInteger y = nChooseK(n - 1, k);
if (m.compareTo(y) >= 0) {
m = m.subtract(y);
out = out.setBit(n - 1);
k -= 1;
}
}
return out;
}
// Algorithm borrowed (and tweaked) from: http://stackoverflow.com/a/15302448/823393
public static BigInteger nChooseK(int n, int k) {
if (k > n) {
return BigInteger.ZERO;
}
if (k <= 0 || k == n) {
return BigInteger.ONE;
}
// ( n * ( nChooseK(n-1,k-1) ) ) / k;
return BigInteger.valueOf(n).multiply(nChooseK(n - 1, k - 1)).divide(BigInteger.valueOf(k));
}
public void test() {
System.out.println("Hello");
BigInteger m = BigInteger.ZERO;
for ( int i = 1; i < 10; i++ ) {
BigInteger c = combinadic(5, 2, m);
System.out.println("c["+m+"] = "+c.toString(2));
m = m.add(BigInteger.ONE);
}
}
Not sure how it matches up in efficiency with the other posts.

Related

How to calculate the number of zeros in binary?

Hi I am making a method that can take an integer as a parameter and compute how many zeros its binary form has. So for example, if I have binaryZeros(44), its binary form is 101100. Therefore, binaryZeros(44) should return 3. However, I am making some errors and I cannot tell where it is coming from. I would appreciate it if someone can point out where I am making that error, or if my approach (logic) to this problem is good enough. Thank you!
My code is Below:
public static int binaryZeros(int n) {
int zeroCount = 0;
double m = n;
while (m >= 0.0) {
m = m / 2.0;
if (m == Math.floor(m)) {
zeroCount++;
} else {
m = Math.floor(m);
}
}
return zeroCount;
}
Below is a more concise way to solve this problem
public static int binaryZeros(int n) {
int zeroCount = 0;
// Run a while loop until n is greater than or equals to 1
while(n >= 1)
{
/* Use modulo operator to get the reminder of division by 2 (reminder will be 1 or 0 as you are dividing by 2).
Keep in mind that binary representation is an array of these reminders until the number is equal to 1.
And once the number is equal to 1 the reminder is 1, so you can exit the loop there.*/
if(n % 2 == 0)
{
zeroCount++;
}
n = n / 2;
}
return zeroCount;
}
Your approach is good, but I think there's a better way to do it. The Integer class has a static method that returns the binary of a number: Integer.toBinaryString(num) . This will return a String.
Then, you can just check if there are any 0 in that string with method that has a for loop and evaluating with an if:
public int getZeros(String binaryString){
int zeros = 0;
for(int i=0; i < binaryString.length; i++)
if(binaryString.charAt[i].equals('0')
zeros++;
return zeros;
}
I believe this would be a simpler option and it doesn't have any errors.
Once m == 0.0, it will never change, so your while loop will never stop.
If you start with a number m >= 0, it can never become negative no matter how many times you divide it by 2 or use Math.floor. The loop should stop when m reaches 0, so change the condition to while (m > 0.0).
Note that you could do the same thing with built-in standard library methods. For example, there is a method that returns the number of leading zeros in a number, and a method that returns the number of bits set to 1. Using both you can compute the number of zeros that are not leading zeros:
static int binaryZeros(int n) {
return Integer.SIZE - Integer.numberOfLeadingZeros(n) - Integer.bitCount(n);
}
Here is one way. It simply complements the integer reversing 1's and 0's and then counts the 1 bits. You should not be using floating point math when doing this.
~ complements the bits
&1 masks the low order bit. Is either 1 or 0
>>> shifts right 1 bit including sign bit.
System.out.println(binaryZeros(44) + " (" +Integer.toBinaryString(44) +")");
System.out.println(binaryZeros(-44) + " ("Integer.toBinaryString(-44)+")");
public static int binaryZeros(int v) {
int count = 0;
while (v != 0) {
// count 1 bits
// of ~v
count += (~v)&1;
v >>>=1;
}
return count;
}
Prints
3 (101100)
4 (11111111111111111111111111010100)
Just be simple, whe there's Integer.bitCount(n) method:
public static int binaryZeros(int n) {
long val = n & 0xFFFFFFFFL;
int totalBits = (int)(Math.log(val) / Math.log(2) + 1);
int setBits = Long.bitCount(val);
return totalBits - setBits;
}
public static int getZeros(int num) {
String str= Integer.toBinaryString(num);
int count=0;
for(int i=0; i<str.length(); i++) {
if(str.charAt(i)=='0') count++;
}
return count;
}
The method toBinaryString() returns a string representation of the integer argument as an unsigned integer in base 2. It accepts an argument in Int data-type and returns the corresponding binary string.
Then the for loop counts the number of zeros in the String and returns it.

Why does this implementation of Quadratic Probing fail when not overriding values on collision?

My current implementation of Quadratic Probing overrides the item being stored at the current index with the new item when a collision occurs. I insert three Person objects which are stored by using their lastname as key. To test the collision resolution of the implementation they all have the same last name which is "Windmill".
I need the implementation to keep all person objects but just move them to a different index instead of overriding them.
The list size has been set as 7, stored in variable "M" used for modulo in the insert function.
Insert function
#Override
public void put(String key, Person value) {
int tmp = hash(key);
int i, h = 0;
for (i = tmp; keys[i] != null; i = (i + h * h++) % M) {
collisionCount++;
if (keys[i].equals(key)) {
values[i] = value;
return;
}
}
keys[i] = key;
values[i] = value;
N++;
}
Hash function
private int hash(String key) {
return (key.hashCode() & 0x7fffffff) % M;
}
get function
#Override
public List<Person> get(String key) {
List<Person> results = new ArrayList<>();
int tmp = hash(key);
int i = hash(key), h = 0;
while (keys[i] != null)
{
if (keys[i].equals(key))
results.add(values[i]);
i = (i + h * h++) % M;
}
return results;
}
When i remove the piece of code that overrides previous values, the index int overflows and turns into a negative number, causing the program to crash.
You get overflow because you do % M after some operations with ints that cause overflow.
You need to replace i = (i + h * h++) % M with some additional operations based on modulo operation properties (https://en.wikipedia.org/wiki/Modulo_operation):
(a + b) mod n = [(a mod n) + (b mod n)] mod n.
ab mod n = [(a mod n)(b mod n)] mod n.
I think there are two issues with your code:
You don't check whether the (multi-)map is full. In practice you want to do 2 checks:
check if N==M (or maybe some smaller threshold like 90% of M)
make collisionCount a local variable and when it reaches N (unfortunately this check is also necessary to avoid some pathological cases)
in both cases you should extend your storage area and copy old data into it (re-insert). This alone should fix your bug for small values of M but for really big sizes of the map you still need the next thing.
You didn't take into account how mod (%) operation works in Java. Particularly for negative value of a the value of a % b is also negative. So when you insert a lot of values and check for next index, i + h^2 might overflow Integer.MAX_VALUE and become negative. To fix this you might use a method like this:
static int safeMod(int a, int b) {
int m = a % b;
return (m >= 0) ? m : (m+b);
}

Check partially known integer lies within a range

I have a peculiar problem for which I am looking for an efficient solution. I have a byte array which contains the most significant n bytes of an unsigned 4 byte integer (most sig byte first). The value of the remaining bytes (if any) are unknown. I need to check whether the partially known integer value could fall within a certain range (+ or - x) of a known integer. It's also valid for the integer represented by the byte array under test to wrap around.
I have a solution which works (below). The problem is that this solution performs way more comparisons than I believe is necessary and a whole load of comparisons will be duplicated in the scenario in which least sig bytes are unknown. I'm pretty sure it can be done more efficiently but can't figure out how. The scenario in which least significant bytes are unknown is an edge case so I might be able to live with it but it forms part of a system which needs to have low latency so if anyone could help with this that would be great.
Thanks in advance.
static final int BYTES_IN_INT = 4;
static final int BYTE_SHIFT = 010;
// partial integer byte array length guaranteed to be 1-4 so no checking necessary
static boolean checkPartialIntegerInRange(byte[] partialIntegerBytes, int expectedValue, int range)
{
boolean inRange = false;
if(partialIntegerBytes.length == BYTES_IN_INT)
{
// normal scenario, all bytes known
inRange = Math.abs(ByteBuffer.wrap(partialIntegerBytes).getInt() - expectedValue) <= range;
}
else
{
// we don't know least significant bytes, could have any value
// need to check if partially known int could lie in the range
int partialInteger = 0;
int mask = 0;
// build partial int and mask
for (int i = 0; i < partialIntegerBytes.length; i++)
{
int shift = ((BYTES_IN_INT - 1) - i) * BYTE_SHIFT;
// shift bytes to correct position
partialInteger |= (partialIntegerBytes[i] << shift);
// build up mask to mask off expected value for comparison
mask |= (0xFF << shift);
}
// check partial int falls in range
for (int i = -(range); i <= range; i++)
{
if (partialInteger == ((expectedValue + i) & mask))
{
inRange = true;
break;
}
}
}
return inRange;
}
EDIT: Thanks to the contributors below. Here is my new solution. Comments welcome.
static final int BYTES_IN_INT = 4;
static final int BYTE_SHIFT = 010;
static final int UBYTE_MASK = 0xFF;
static final long UINT_MASK = 0xFFFFFFFFl;
public static boolean checkPartialIntegerInRange(byte[] partialIntegerBytes, int expectedValue, int range)
{
boolean inRange;
if(partialIntegerBytes.length == BYTES_IN_INT)
{
inRange = Math.abs(ByteBuffer.wrap(partialIntegerBytes).getInt() - expectedValue) <= range;
}
else
{
int partialIntegerMin = 0;
int partialIntegerMax = 0;
for(int i=0; i < BYTES_IN_INT; i++)
{
int shift = ((BYTES_IN_INT - 1) - i) * BYTE_SHIFT;
if(i < partialIntegerBytes.length)
{
partialIntegerMin |= (((partialIntegerBytes[i] & UBYTE_MASK) << shift));
partialIntegerMax = partialIntegerMin;
}
else
{
partialIntegerMax |=(UBYTE_MASK << shift);
}
}
long partialMinUnsigned = partialIntegerMin & UINT_MASK;
long partialMaxUnsigned = partialIntegerMax & UINT_MASK;
long rangeMinUnsigned = (expectedValue - range) & UINT_MASK;
long rangeMaxUnsigned = (expectedValue + range) & UINT_MASK;
if(rangeMinUnsigned <= rangeMaxUnsigned)
{
inRange = partialMinUnsigned <= rangeMaxUnsigned && partialMaxUnsigned >= rangeMinUnsigned;
}
else
{
inRange = partialMinUnsigned <= rangeMaxUnsigned || partialMaxUnsigned >= rangeMinUnsigned;
}
}
return inRange;
}
Suppose you have one clockwise interval (x, y) and one normal interval (low, high) (each including their endpoints), determining whether they intersect can be done as (not tested):
if (x <= y) {
// (x, y) is a normal interval, use normal interval intersect
return low <= y && high >= x;
}
else {
// (x, y) wraps
return low <= y || high >= x;
}
To compare as unsigned integers, you can use longs (cast up with x & 0xffffffffL to counteract sign-extension) or Integer.compareUnsigned (in newer versions of Java) or, if you prefer you can add/subtract/xor both operands with Integer.MIN_VALUE.
Convert your unsigned bytes to an integer. Right-shift by 32-n (so your meaningful bytes are the min bytes). Right-shift your min/max integers by the same amount. If your shifted test value is equal to either shifted integer, it might be in the range. If it's between them, it's definitely in the range.
Presumably the sign bit on your integers is always zero (if not, just forcibly convert the negative to zero, since your test value can't be negative). But because that's only one bit, unless you were given all 32 bits as n, that shouldn't matter (it's not much of a problem in that special case).

Java: simplest integer hash

I need a quick hash function for integers:
int hash(int n) { return ...; }
Is there something that exists already in Java?
The minimal properties that I need are:
hash(n) & 1 does not appear periodic when used with a bunch of consecutive values of n.
hash(n) & 1 is approximately equally likely to be 0 or 1.
HashMap, as well as Guava's hash-based utilities, use the following method on hashCode() results to improve bit distributions and defend against weaker hash functions:
/*
* This method was written by Doug Lea with assistance from members of JCP
* JSR-166 Expert Group and released to the public domain, as explained at
* http://creativecommons.org/licenses/publicdomain
*
* As of 2010/06/11, this method is identical to the (package private) hash
* method in OpenJDK 7's java.util.HashMap class.
*/
static int smear(int hashCode) {
hashCode ^= (hashCode >>> 20) ^ (hashCode >>> 12);
return hashCode ^ (hashCode >>> 7) ^ (hashCode >>> 4);
}
So, I read this question, thought hmm this is a pretty math-y question, it's probably out of my league. Then, I ended up spending so much time thinking about it that I actually believe I've got the answer: No function can satisfy the criteria that f(n) & 1 is non-periodic for consecutive values of n.
Hopefully someone will tell me how ridiculous my reasoning is, but until then I believe it's correct.
Here goes: Any binary integer n can be represented as either 1...0 or 1...1, and only the least significant bit of that bitmap will affect the result of n & 1. Further, the next consecutive integer n + 1 will always contain the opposite least significant bit. So, clearly any series of consecutive integers will exhibit a period of 2 when passed to the function n & 1. So then, is there any function f(n) that will sufficiently distribute the series of consecutive integers such that periodicity is eliminated?
Any function f(n) = n + c fails, as c must end in either 0 or 1, so the LSB will either flip or stay the same depending on the constant chosen.
The above also eliminates subtraction for all trivial cases, but I have not taken the time to analyze the carry behavior yet, so there may be a crack here.
Any function f(n) = c*n fails, as the LSB will always be 0 if c ends in 0 and always be equal to the LSB of n if c ends in 1.
Any function f(n) = n^c fails, by similar reasoning. A power function would always have the same LSB as n.
Any function f(n) = c^n fails, for the same reason.
Division and modulus were a bit less intuitive to me, but basically, the LSB of either option ends up being determined by a subtraction (already ruled out). The modulus will also obviously have a period equal to the divisor.
Unfortunately, I don't have the rigor necessary to prove this, but I believe any combination of the above operations will ultimately fail as well. This leads me to believe that we can rule out any transcendental function, because these are implemented with polynomials (Taylor series? not a terminology guy).
Finally, I held out hope on the train ride home that counting the bits would work; however, this is actually a periodic function as well. The way I thought about it was, imagine taking the sum of the digits of any decimal number. That sum obviously would run from 0 through 9, then drop to 1, run from 1 to 10, then drop to 2... It has a period, the range just keeps shifting higher the higher we count. We can actually do the same thing for the sum of the binary digits, in which case we get something like: 0,1,1,2,2,....5,5,6,6,7,7,8,8....
Did I leave anything out?
TL;DR I don't think your question has an answer.
[SO decided to convert my "trivial answer" to comment. Trying to add little text to it to see if it can be fooled]
Unless you need the ranger of hashing function to be wider..
The NumberOfSetBits function seems to vary quite a lot more then the hashCode, and as such seems more appropriate for your needs. Turns out there is already a fairly efficient algorithm on SO.
See Best algorithm to count the number of set bits in a 32-bit integer.
I did some experimentation (see test program below); computation of 2^n in Galois fields, and floor(A*sin(n)) both did very well to produce a sequence of "random" bits. I tried multiplicative congruential random number generators and some algebra and CRC (which is analogous of k*n in Galois fields), none of which did well.
The floor(A*sin(n)) approach is the simplest and quickest; the 2^n calculation in GF32 takes approx 64 multiplies and 1024 XORs worstcase, but the periodicity of output bits is extremely well-understood in the context of linear-feedback shift registers.
package com.example.math;
public class QuickHash {
interface Hasher
{
public int hash(int n);
}
static class MultiplicativeHasher1 implements Hasher
{
/* multiplicative random number generator
* from L'Ecuyer is x[n+1] = 1223106847 x[n] mod (2^32-5)
* http://dimsboiv.uqac.ca/Cours/C2012/8INF802_Hiv12/ref/paper/RNG/TableLecuyer.pdf
*/
final static long a = 1223106847L;
final static long m = (1L << 32)-5;
/*
* iterative step towards computing mod m
* (j*(2^32)+k) mod (2^32-5)
* = (j*(2^32-5)+j*5+k) mod (2^32-5)
* = (j*5+k) mod (2^32-5)
* repeat twice to get a number between 0 and 2^31+24
*/
private long quickmod(long x)
{
long j = x >>> 32;
long k = x & 0xffffffffL;
return j*5+k;
}
// treat n as unsigned before computation
#Override public int hash(int n) {
long h = a*(n&0xffffffffL);
long h2 = quickmod(quickmod(h));
return (int) (h2 >= m ? (h2-m) : h2);
}
#Override public String toString() { return getClass().getSimpleName(); }
}
/**
* computes (2^n) mod P where P is the polynomial in GF2
* with coefficients 2^(k+1) represented by the bits k=31:0 in "poly";
* coefficient 2^0 is always 1
*/
static class GF32Hasher implements Hasher
{
static final public GF32Hasher CRC32 = new GF32Hasher(0x82608EDB, 32);
final private int poly;
final private int ofs;
public GF32Hasher(int poly, int ofs) {
this.ofs = ofs;
this.poly = poly;
}
static private long uint(int x) { return x&0xffffffffL; }
// modulo GF2 via repeated subtraction
int mod(long n) {
long rem = n;
long q = uint(this.poly);
q = (q << 32) | (1L << 31);
long bitmask = 1L << 63;
for (int i = 0; i < 32; ++i, bitmask >>>= 1, q >>>= 1)
{
if ((rem & bitmask) != 0)
rem ^= q;
}
return (int) rem;
}
int mul(int x, int y)
{
return mod(uint(x)*uint(y));
}
int pow2(int n) {
// compute 2^n mod P using repeated squaring
int y = 1;
int x = 2;
while (n > 0)
{
if ((n&1) != 0)
y = mul(y,x);
x = mul(x,x);
n = n >>> 1;
}
return y;
}
#Override public int hash(int n) {
return pow2(n+this.ofs);
}
#Override public String toString() {
return String.format("GF32[%08x, ofs=%d]", this.poly, this.ofs);
}
}
static class QuickHasher implements Hasher
{
#Override public int hash(int n) {
return (int) ((131111L*n)^n^(1973*n)%7919);
}
#Override public String toString() { return getClass().getSimpleName(); }
}
// adapted from http://www.w3.org/TR/PNG-CRCAppendix.html
static class CRC32TableHasher implements Hasher
{
final private int table[];
static final private int polyval = 0xedb88320;
public CRC32TableHasher()
{
this.table = make_table();
}
/* Make the table for a fast CRC. */
static public int[] make_table()
{
int[] table = new int[256];
int c;
int n, k;
for (n = 0; n < 256; n++) {
c = n;
for (k = 0; k < 8; k++) {
if ((c & 1) != 0)
c = polyval ^ (c >>> 1);
else
c = c >>> 1;
}
table[n] = (int) c;
}
return table;
}
public int iterate(int state, int i)
{
return this.table[(state ^ i) & 0xff] ^ (state >>> 8);
}
#Override public int hash(int n) {
int h = -1;
h = iterate(h, n >>> 24);
h = iterate(h, n >>> 16);
h = iterate(h, n >>> 8);
h = iterate(h, n);
return h ^ -1;
}
#Override public String toString() { return getClass().getSimpleName(); }
}
static class TrigHasher implements Hasher
{
#Override public String toString() { return getClass().getSimpleName(); }
#Override public int hash(int n) {
double s = Math.sin(n);
return (int) Math.floor((1<<31)*s);
}
}
private static void test(Hasher hasher) {
System.out.println(hasher+":");
for (int i = 0; i < 64; ++i)
{
int h = hasher.hash(i);
System.out.println(String.format("%08x -> %08x %%2 = %d",
i,h,(h&1)));
}
for (int i = 0; i < 256; ++i)
{
System.out.print(hasher.hash(i) & 1);
}
System.out.println();
analyzeBits(hasher);
}
private static void analyzeBits(Hasher hasher) {
final int N = 65536;
final int maxrunlength=32;
int[][] runs = {new int[maxrunlength], new int[maxrunlength]};
int[] count = new int[2];
int prev = -1;
System.out.println("Run length test of "+N+" bits");
for (int i = 0; i < maxrunlength; ++i)
{
runs[0][i] = 0;
runs[1][i] = 0;
}
int runlength_minus1 = 0;
for (int i = 0; i < N; ++i)
{
int b = hasher.hash(i) & 0x1;
count[b]++;
if (b == prev)
++runlength_minus1;
else if (i > 0)
{
++runs[prev][runlength_minus1];
runlength_minus1 = 0;
}
prev = b;
}
++runs[prev][runlength_minus1];
System.out.println(String.format("%d zeros, %d ones", count[0], count[1]));
for (int i = 0; i < maxrunlength; ++i)
{
System.out.println(String.format("%d runs of %d zeros, %d runs of %d ones", runs[0][i], i+1, runs[1][i], i+1));
}
}
public static void main(String[] args) {
Hasher[] hashers = {
new MultiplicativeHasher1(),
GF32Hasher.CRC32,
new QuickHasher(),
new CRC32TableHasher(),
new TrigHasher()
};
for (Hasher hasher : hashers)
{
test(hasher);
}
}
}
The simplest hash for int value is the int value.
See Java Integer class
public int hashCode()
public static int hashCode(int value)
Returns:
a hash code value for this object, equal to the primitive int value represented by this Integer object.

Number of zero bits in integer except leading zeros

If I have an integer in Java how do I count how many bits are zero except for leading zeros?
We know that integers in Java have 32 bits but counting the number of set bits in the number and then subtracting from 32 does not give me what I want because this will also include the leading zeros.
As an example, the number 5 has one zero bit because in binary it is 101.
Take a look at the API documentation of Integer:
32 - Integer.numberOfLeadingZeros(n) - Integer.bitCount(n)
To count non-leading zeros in Java you can use this algorithm:
public static int countNonleadingZeroBits(int i)
{
int result = 0;
while (i != 0)
{
if (i & 1 == 0)
{
result += 1;
}
i >>>= 1;
}
return result;
}
This algorithm will be reasonably fast if your inputs are typically small, but if your input is typically a larger number it may be faster to use a variation on one of the bit hack algorithms on this page.
Count the total number of "bits" in your number, and then subtract the number of ones from the total number of bits.
This what I would have done.
public static int countBitsSet(int num) {
int count = num & 1; // start with the first bit.
while((num >>>= 1) != 0) // shift the bits and check there are some left.
count += num & 1; // count the next bit if its there.
return count;
}
public static int countBitsNotSet(int num) {
return 32 - countBitsSet(num);
}
Using some built-in functions:
public static int zeroBits(int i)
{
if (i == 0) {
return 0;
}
else {
int highestBit = (int) (Math.log10(Integer.highestOneBit(i)) /
Math.log10(2)) + 1;
return highestBit - Integer.bitCount(i);
}
}
Since evaluation order in Java is defined, we can do this:
public static int countZero(int n) {
for (int i=1,t=0 ;; i<<=1) {
if (n==0) return t;
if (n==(n&=~i)) t++;
}
}
Note that this relies on the LHS of an equality being evaluated first; try the same thing in C or C++ and the compiler is free to make you look foolish by setting your printer on fire.

Categories

Resources