Interrupt a long running Jersey Client operation - java

I am using the Oracle Jersey Client, and am trying to cancel a long running get or put operation.
The Client is constructed as:
JacksonJsonProvider provider = new JacksonJsonProvider(new ObjectMapper());
ClientConfig clientConfig = new DefaultClientConfig();
clientConfig.getSingletons().add(provider);
Client client = Client.create(clientConfig);
The following code is executed on a worker thread:
File bigZipFile = new File("/home/me/everything.zip");
WebResource resource = client.resource("https://putfileshere.com");
Builder builder = resource.getRequestBuilder();
builder.type("application/zip").put(bigZipFile); //This will take a while!
I want to cancel this long-running put. When I try to interrupt the worker thread, the put operation continues to run. From what I can see, the Jersey Client makes no attempt to check for Thread.interrupted().
I see the same behavior when using an AsyncWebResource instead of WebResource and using Future.cancel(true) on the Builder.put(..) call.
So far, the only solution I have come up with to interrupt this is throwing a RuntimeException in a ContainerListener:
client.addFilter(new ConnectionListenerFilter(
new OnStartConnectionListener(){
public ContainerListener onStart(ClientRequest cr) {
return new ContainerListener(){
public void onSent(long delta, long bytes) {
//If the thread has been interrupted, stop the operation
if (Thread.interrupted()) {
throw new RuntimeException("Upload or Download canceled");
}
//Report progress otherwise
}
}...
I am wondering if there is a better solution (perhaps when creating the Client) that correctly handles interruptible I/O without using a RuntimeException.

I am wondering if there is a better solution (perhaps when creating the Client) that correctly handles interruptible I/O without using a RuntimeException.
Yeah, interrupting the thread will only work if the code is watching for the interrupts or calling other methods (such as Thread.sleep(...)) that watch for it.
Throwing an exception out of listener doesn't sound like a bad idea. I would certainly create your own RuntimeException class such as TimeoutRuntimeException or something so you can specifically catch and handle it.
Another thing to do would be to close the underlying IO stream that is being written to which would cause an IOException but I'm not familiar with Jersey so I'm not sure if you can get access to the connection.
Ah, here's an idea. Instead of putting the File, how about putting some sort of extension on a BufferedInputStream that is reading from the File but also has a timeout. So Jersey would be reading from the buffer and at some point it would throw an IOException if the timeout expires.

As of Jersey 2.35, the above API has changed. A timeout has been introduces in the client builder which can set read timeout. If the server takes too long to respond, the underlying socket will timeout. However, if the server starts sending the response, it shall not timeout. This can be utilized, if the server does not start sending partial response, which depends on the server implementation.
client=(JerseyClient)JerseyClientBuilder
.newBuilder()
.connectTimeout(1*1000, TimeUnit.MILLISECONDS)
.readTimeout(5*1000, TimeUnit.MILLISECONDS).build()
The current filters and interceptors are for data only and the solution posted in the original question will not work with filters and interceptors (though I admit I may have missed something there).
Another way is to get hold of the underlying HttpUrlConnection (for standard Jersey client configuration) and it seems to be possible with org.glassfish.jersey.client.HttpUrlConnectorProvider
HttpUrlConnectorProvider httpConProvider=new HttpUrlConnectorProvider();
httpConProvider.connectionFactory(new CustomHttpUrlConnectionfactory());
public static class CustomHttpUrlConnectionfactory implements
HttpUrlConnectorProvider.ConnectionFactory{
#Override
public HttpURLConnection getConnection(URL url) throws IOException {
System.out.println("CustomHttpUrlConnectionfactory ..... called");
return (HttpURLConnection)url.openConnection();
}//getConnection closing
}//inner-class closing
I did try the connection provider approach, however, I could not get that working. The idea would be to keep reference to the connection by some means (thread id etc.) and close it if the communication is taking too long. The primary problem was I could not find a way to register the provider with the client. The standard
.register(httpConProvider)
mechanism does not seem to work (or perhaps it is not supposed to work like that) and the documentation is a bit sketchy in that direction.

Related

Spring-remoting SimpleHttpInvokerRequestExecutor retries request when it shouldn't

I am investigating a quite strange problem. The project I'm working on uses Spring-remoting to invoke methods over http. From what I have gathered so far the following happens:
My client code executes a request to the server
The server starts handling the request, but is slow
25-30 seconds later, a new request comes in to the server
The second request finishes, the client continues its processing
A while later, the first request get completed, but the client no longer cares
Since my client code executes only one request to the Spring remoting client, and the client continuous on after the second invocation it receives is completed, I can only conclude that this occurs somewhere in the Spring remoting client.
The client uses AbstractHttpInvokerRequestExecutor to make the actual http-invocation, and this in turn uses SimpleHttpInvokerRequestExecutor to make the request. But, from what I can read, this has no mechanism to retry the requests. So now I'm quite stuck.
Can anyone think of what might cause this behaviour? (I have tried to keep the question clean, but I have more details if needed.)
Just an idea to give you some direction, not necessarily a solution. Use a third party Http client (not one from Spring) to see if it changes a behavior. That might help you to see if it is SimpleHttpInvokerRequestExecutor that is "guilty" of re-try or something else. Here is a very simple 3d party HttpClient: Provided in MgntUtils Open source library (written by me). Very simple in use. Take a look at Javadoc. Library itself provided as Maven artifacts and on Git (including source code and Javadoc). All in all your code may look like this:
private static void testHttpClient() {
HttpClient client = new HttpClient();
client.setContentType("application/json");
String content = null;
try {
content = client.sendHttpRequest("http://www.google.com/", HttpMethod.GET);
//content holds the response. Do your logic here
} catch (IOException e) {
//Error Handling is here
content = TextUtils.getStacktrace(e, false);
}
}

Non-blocking reverse proxy with netty

I'm trying to write a non-blocking proxy with netty 4.1. I have a "FrontHandler" which handles incoming connections, and then a "BackHandler" which handles outgoing ones. I'm following the HexDumpProxyHandler (https://github.com/netty/netty/blob/ed4a89082bb29b9e7d869c5d25d6b9ea8fc9d25b/example/src/main/java/io/netty/example/proxy/HexDumpProxyFrontendHandler.java#L67)
In this code I have found:
#Override
public void channelRead(final ChannelHandlerContext ctx, Object msg) {
if (outboundChannel.isActive()) {
outboundChannel.writeAndFlush(msg).addListener(new ChannelFutureListener() {, I've seen:
Meaning that the incoming message is only written if the outbound client connection is already ready. This is obviously not ideal in a HTTP proxy case, so I am thinking what would be the best way to handle it.
I am wondering if disabling auto-read on the front-end connection (and only trigger reads manually once the outgoing client connection is ready) is a good option. I could then enable autoRead over the child socket again, in the "channelActive" event of the backend handler. However, I am not sure about how many messages would I get in the handler for each "read()" invocation (using HttpDecoder, I assume I would get the initial HttpRequest, but I'd really like to avoid getting the subsequent HttpContent / LastHttpContent messages until I manually trigger the read() again and enable autoRead over the channel).
Another option would be to use a Promise to get the Channel from the client ChannelPool:
private void setCurrentBackend(HttpRequest request) {
pool.acquire(request, backendPromise);
backendPromise.addListener((FutureListener<Channel>) future -> {
Channel c = future.get();
if (!currentBackend.compareAndSet(null, c)) {
pool.release(c);
throw new IllegalStateException();
}
});
}
and then do the copying from input to output thru that promise. Eg:
private void handleLastContent(ChannelHandlerContext frontCtx, LastHttpContent lastContent) {
doInBackend(c -> {
c.writeAndFlush(lastContent).addListener((ChannelFutureListener) future -> {
if (future.isSuccess()) {
future.channel().read();
} else {
pool.release(c);
frontCtx.close();
}
});
});
}
private void doInBackend(Consumer<Channel> action) {
Channel c = currentBackend.get();
if (c == null) {
backendPromise.addListener((FutureListener<Channel>) future -> action.accept(future.get()));
} else {
action.accept(c);
}
}
but I'm not sure about how good it is to keep the promise there forever and do all the writes from "front" to "back" by adding listeners to it. I'm also not sure about how to instance the promise so that the operations are performed in the right thread... right now I'm using:
backendPromise = group.next().<Channel> newPromise(); // bad
// or
backendPromise = frontCtx.channel().eventLoop().newPromise(); // OK?
(where group is the same eventLoopGroup as used in the ServerBootstrap of the frontend).
If they're not handled thru the right thread, I assume it could be problematic to have the "else { }" optimization in the "doInBackend" method to avoid using the Promise and write to the channel directly.
The no-autoread approach doesn't work by itself, because the HttpRequestDecoder creates several messages even if only one read() was performed.
I have solved it by using chained CompletableFutures.
I have worked on a similar proxy application based on the MQTT protocol. So it was basically used to create a real-time chat application. The application that I had to design however was asynchronous in nature so I naturally did not face any such problem. Because in case the
outboundChannel.isActive() == false
then I can simply keep the messages in a queue or a persistent DB and then process them once the outboundChannel is up. However, since you are talking about an HTTP application, so this means that the application is synchronous in nature meaning that the client cannot keep on sending packets until the outboundChannel is up and running. So the option you suggest is that the packet will only be read once the channel is active and you can manually handle the message reads by disabling the auto read in ChannelConfig.
However, what I would like to suggest is that you should check if the outboundChannel is active or not. In case the channel is active, send he packet forward for processing. In case the channel is not active, you should reject the packet by sending back a response similar to Error404
Along with this you should configure your client to keep on retrying sending the packets after certain intervals and accordingly handle what needs to be done in case the channel takes too long a time to become active and become readable. Manually handling channelRead is generally not preferred and is an anti pattern. You should let Netty handle that for you in the most efficient way.

Modify Netty ServerBootstrap ChannelInitializer

I have a ServerBootstrap configured with a fairly standard Http-Codec ChannelInitializer.
On shutdown my server waits for a grace period where it can still handle incoming requests. My server supports keep-alive, but on shutdown I want to make sure every HttpResponse sent closes the connection with HTTP header "Connection: close" and that the channel is closed after the write. This is only necessary on server shutdown.
I have a ChannelHandler to support that:
#ChannelHandler.Sharable
public class CloseConnectionHandler extends ChannelOutboundHandlerAdapter {
#Override
public void write(ChannelHandlerContext ctx, Object msg, ChannelPromise promise) throws Exception {
HttpResponse response = (HttpResponse) msg;
if (isKeepAlive(response)) {
setKeepAlive(response, false);
promise.addListener(ChannelFutureListener.CLOSE);
}
ctx.write(msg, promise);
}
I keep a track of all connected clients using a ChannelGroup, so I can dynamically modify the pipeline of each client at the point of shutdown to include my CloseConnectionHandler, this works no problem.
However, new connections in the grace period have their pipeline configuration provided by the original ServerBootstrap ChannelInitializer, and I can't see a way of dynamically re-configuring that?
As a work-around I can have the CloseConnectionHandler configured in the standard pipeline and turned off with a boolean, only activating it on shutdown. But I'd rather avoid that if possible, seems a bit unnecessary.
there is currently no way to "replace" the initializer at run-time. So using a flag etc would be the best bet.

Why does async-http-client does not throttle my requests?

I have an Akka actor that owns an AsyncHttpClient. This actor must handles a lot of asynchronous requests. Because my system cannot handle thousands of requests simultaneously, I need to limit the number of concurrent requests.
Right now, I'm doing this :
AsyncHttpClientConfig config = new AsyncHttpClientConfig.Builder().setAllowPoolingConnection(true)
.addRequestFilter(new ThrottleRequestFilter(32))
.setMaximumConnectionsPerHost(16)
.setMaxRequestRetry(5)
.build();
final AsyncHttpClient httpClient = new AsyncHttpClient(new NettyAsyncHttpProvider(config));
When my actor receives a message, I use the client like this :
Future<Integer> f = httpClient.prepareGet(url).execute(
new AsyncCompletionHandler<Integer>() {
#Override
public Integer onCompleted(Response response) throws Exception {
// handle successful request
}
#Override
public void onThrowable(Throwable t){
// handle failed request
}
}
);
The problem is that requests are never put in the client queue and are all processed like the configuration doesn't matter. Why doesn't this work as it should?
From the maintainer:
setMaxConnectionsPerHost only caps the number of connections that can be open to a given host. There's no built-in queuing mechanism for requests that might need a connection while there's none available.
So basically, it's a hard limit. Also, in versions of the library prior to, I believe, 1.9.10, the maximumConnectionsPerHost field was not being properly utilized by the code to limit the number of concurrent connections per host. Instead, there was a bug where the client only looked at the maximumConnectionsTotal field.
Link to issue referenced on GitHub

How to terminate CXF webservice call within Callable upon Future cancellation

Edit
This question has gone through a few iterations by now, so feel free to look through the revisions to see some background information on the history and things tried.
I'm using a CompletionService together with an ExecutorService and a Callable, to concurrently call the a number of functions on a few different webservices through CXF generated code.. These services all contribute different information towards a single set of information I'm using for my project. The services however can fail to respond for a prolonged period of time without throwing an exception, prolonging the wait for the combined set of information.
To counter this I'm running all the service calls concurrently, and after a few minutes would like to terminate any of the calls that have not yet finished, and preferably log which ones weren't done yet either from within the callable or by throwing an detailed Exception.
Here's some highly simplified code to illustrate what I'm doing already:
private Callable<List<Feature>> getXXXFeatures(final WiwsPortType port,
final String accessionCode) {
return new Callable<List<Feature>>() {
#Override
public List<Feature> call() throws Exception {
List<Feature> features = new ArrayList<Feature>();
//getXXXFeatures are methods of the WS Proxy
//that can take anywhere from second to never to return
for (RawFeature raw : port.getXXXFeatures(accessionCode)) {
Feature ft = convertFeature(raw);
features.add(ft);
}
if (Thread.currentThread().isInterrupted())
log.error("XXX was interrupted");
return features;
}
};
}
And the code that concurrently starts the WS calls:
WiwsPortType port = new Wiws().getWiws();
List<Future<List<Feature>>> ftList = new ArrayList<Future<List<Feature>>>();
//Counting wrapper around CompletionService,
//so I could implement ccs.hasRemaining()
CountingCompletionService<List<Feature>> ccs =
new CountingCompletionService<List<Feature>>(threadpool);
ftList.add(ccs.submit(getXXXFeatures(port, accessionCode)));
ftList.add(ccs.submit(getYYYFeatures(port accessionCode)));
ftList.add(ccs.submit(getZZZFeatures(port, accessionCode)));
List<Feature> allFeatures = new ArrayList<Feature>();
while (ccs.hasRemaining()) {
//Low for testing, eventually a little more lenient
Future<List<Feature>> polled = ccs.poll(5, TimeUnit.SECONDS);
if (polled != null)
allFeatures.addAll(polled.get());
else {
//Still jobs remaining, but unresponsive: Cancel them all
int jobsCanceled = 0;
for (Future<List<Feature>> job : ftList)
if (job.cancel(true))
jobsCanceled++;
log.error("Canceled {} feature jobs because they took too long",
jobsCanceled);
break;
}
}
The problem I'm having with this code is that the Callables aren't actually canceled when waiting for port.getXXXFeatures(...) to return, but somehow keep running. As you can see from the if (Thread.currentThread().isInterrupted()) log.error("XXX was interrupted"); statements the interrupted flag is set after port.getFeatures returns, this is only available after the Webservice call completes normally, instead of it having been interrupted when I called Cancel.
Can anyone tell me what I am doing wrong and how I can stop the running CXF Webservice call after a given time period, and register this information in my application?
Best regards, Tim
Edit 3 New answer.
I see these options:
Post your problem on the Apache CXF as feature request
Fix ACXF yourself and expose some features.
Look for options for asynchronous WS call support within the Apache CXF
Consider switching to a different WS provider (JAX-WS?)
Do your WS call yourself using RESTful API if the service supports it (e.g. plain HTTP request with parameters)
For über experts only: use true threads/thread group and kill the threads with unorthodox methods.
The CXF docs have some instructions for setting the read timeout on the HTTPURLConnection:
http://cwiki.apache.org/CXF20DOC/client-http-transport-including-ssl-support.html
That would probably meet your needs. If the server doesn't respond in time, an exception is raised and the callable would get the exception. (except there is a bug where is MAY hang instead. I cannot remember if that was fixed for 2.2.2 or if it's just in the SNAPSHOTS right now.)

Categories

Resources