How to handle children classes with common method not in parent class? - java

I have the following auto-generated code:
EDIT: It's auto-generated so I'm not allowed to modify it. (If only it were that easy...)
abstract class Foo {
}
class Fuwa extends Foo {
String chocolate() {...}
String muffin() {...}
}
class Fuko extends Foo {
String chocolate() {...}
String cookie() {...}
}
The chocolate() method in both the child classes are literally (aside from variable names) line-for-line identical and essentially interchanable.
Based on client input, I want test the specified children of Foo and validate the response. Currently I have:
class FooFactory {
Foo createFoo(name) {
if (name.equals("fuwa")) {
...
// returns a Fuwa object
} else if (name.equals("fuko")) {
...
// returns Fuko object
}
}
}
class MuffinTester extends FooTester {
boolean test(Foo inputFoo) {
Result x = ((Fuwa) inputFoo).muffin();
return validate(x);
}
private validate(x) {...}
}
class CookieTester extends FooTester {
boolean test(Foo inputFoo) {
Result x = ((Fuko) inputFoo).cookie();
return validate(x);
}
private validate(x) {...}
}
class TesterFactory {
FooTester createTest(name) {
if (name.equals("muffin")) {
...
// returns MuffinTester object
} else if (name.equals("cookie")) {
...
// returns CookieTester object
} else if (name.equals("chocolate")) {
...
// returns ChocolateTester object
}
}
}
The client specifies the Foo and method to be tested and the FooFactory and TestFactory (respectively) instantiate the required objects (there is logic to make sure the request is valid and the Foo contains the method, eg. no testing cookie() on Fuwa).
The problem arises when I try to code ChocolateTester:
class ChocolateTester extends FooTester {
boolean test(Foo inputFoo) {
Result x = ((???) inputFoo).chocolate();
return validate(x);
}
private validate(x) {...}
}
I can't leave inputFoo as just Foo since the compiler doesn't like that it doesn't have a chocolate() method. And I can't cast inputFoo to Fuwa or Fuko since whichever one I don't cast it to gets annoyed that they're being confused with their sibling (even though they're identical when exposed to chocolate for all intents and purposes). It would be great if I could modify Foo, but since it's auto-generated I can't touch it.
The best I could come up with is a bunch of if/else statements:
class ChocolateTester extends FooTester {
boolean test(Foo inputFoo) {
Result x;
if (inputFoo instanceof Fuwa) {
x = ((Fuwa) inputFoo).chocolate();
} else if (inputFoo instanceof Fuko) {
x = ((Fuko) inputFoo).chocolate();
}
return validate(x);
}
private validate(x) {...}
}
But feels really hacky when there are some 15 or so Foo and I have to duplicate the giant if/else block in for other methods the children Foo have in common, say a cake() method. Moreover, this sounds like a maintenance nightmare when a new Foo named Futaro joins in and I have to update the if/else blocks in not only FooFactory but also in ChocolateTester and CakeTester and in any other common methods.
So...
I'm sorry for being so long winded, but basically I want to ask is there a better way to do this (that is not too hacky/unmaintainable)? Is there a simple annotation to force method call to a method which doesn't exist, or a way to cast an object to its actual type, or a use of reflection which can solve this?
Update: I ultimately decided to use reflection with method invocation, see below.

Yes there is!
You can create abstract methods inside of Foo like this:
abstract class Foo {
abstract String Chocolate();
}
OR you turn Foo into an Interface, forcing any implementing classes to have a chocolate() method:
interface Foo {
String chocolate();
}
class Fuwa implements Foo {
String chocolate() {...}
String muffin() {...}
}
class Fuko implements Foo {
String chocolate() {...}
String cookie() {...}
}

After automatically generating the code, you could post-process it to add a suitable interface to the child classes. The exact method you'd use to do this would depend on what build automation you're using already. For example, if you're using ant to run the axis2 code generator, then it'd be straightforward to add some additional steps to the code-generation target that changed each of the generated files.

I posed this question to my boss and what he suggested was that I use reflection to invoke the method.
So in this case:
class ChocolateTester extends FooTester {
boolean test(Foo inputFoo) {
Method chocolateMethod = inputFoo.getClass().getMethod("chocolate");
Result x = chocolateMethod.invoke(inputFoo);
return validate(x);
}
private validate(x) {...}
}
I would need to add some code validate that inputFoo indeed had a chocolate() method and to catch all the exceptions, but this seems like the best solution given the constraint that I cannot modify the auto-generated code.

Related

Call method of unknown object

I have two ArrayLists - ArrayList1 and ArrayList2. Each of them is filled with objects - Object1 and Object2, respectively.
Both of these objects have method 'getText'.
Object1:
public String getText() { return "1";}
Object2:
public String getText() { return "2";}
At certain point I would like to loop through each of these lists using the same method (just with different parameter).
loopThroughList(1)
loopThroughList(2)
What is the syntax if I want to call a method, but I don't know which object it is going to be? This is the code I have so far:
for (Object o : lists.getList(listNumber)) {
System.out.println(o.getText());
}
It says Cannot resolve method getText. I googled around and found another solution:
for (Object o : lists.getList(listNumber)) {
System.out.println(o.getClass().getMethod("getText"));
}
But this gives me NoSuchMethodException error. Even though the 'getText' method is public.
EDIT: To get the correct list, I am calling the method 'getList' of a different object (lists) that returns either ArrayList1 or ArrayList2 (depending on the provided parameter).
class Lists
public getList(list) {
if (list == 1) {
return ArrayList1;
}
else if (list == 2) {
return ArrayList2;
}
}
Define an interface for the getText method
public interface YourInterface {
String getText();
}
Implement the interface on the respective classes
public class Object1 implements YourInterface {
#Override
public String getText() {
return "1";
}
}
public class Object2 implements YourInterface {
#Override
public String getText() {
return "2";
}
}
Modify your getList method to return List<YourInterface>
public static List<YourInterface> getList(int list){
List<YourInterface> result = new ArrayList<>();
if(list == 1){
// your initial type
List<Object1> firstList = new ArrayList<>();
result.addAll(firstList);
} else {
// your initial type
List<Object2> secondList = new ArrayList<>();
result.addAll(secondList);
}
return result;
}
Declaration for loopThroughList
public static void loopThroughList(List<YourInterface> list){
list.forEach(yourInterface -> System.out.println(yourInterface.getText()));
}
Sample usage.
public static void main(String[] args) {
loopThroughList(getList(1));
loopThroughList(getList(2));
}
Interfaces work great here, but there a couple of other options if you're dealing with legacy code and cannot use interfaces.
First would be to cast the list items into their respective types:
for (Object o : lists.getList(listNumber)) {
if(o instanceof Object1) {
Object1 o1 = (Object1)o;
System.out.println(o1.getText());
}
else if(o instanceof Object2) {
Object1 o2 = (Object2)o;
System.out.println(o2.getText());
}
else {
System.out.println("Unknown class");
}
}
You can also use reflection to see if the object has a getText method and then invoke it:
for (Object o : lists.getList(listNumber)) {
try {
System.out.println(o.getClass().getDeclaredMethod("getName").invoke(o));
}
catch(Exception e) {
System.out.println("Object doesn't have getText method");
}
}
This is awful. Can you elaborate on what specifically you are trying to do? Java is strong typed by design, and you are trying to get around it. Why? Instead of Object, use the specific class, or interface as previously suggested. If that's not possible, and you must use lists of Objects, use instanceof and casting eg:
for (Object o : lists.getList(listNumber)) {
if (o instanceof Object1) {
Object1 o1 = (Object1) o;
System.out.println(o1.getText());
} else if (o instanceof Object2) {
Object2 o2 = (Object2) o;
System.out.println(o2.getText());
}
}
This is where interfaces come in.
interface HasText {
public String getText();
}
class Object1 implements HasText {
#Override
public String getText() {
return "1";
}
}
class Object2 implements HasText {
#Override
public String getText() {
return "2";
}
}
private void test() {
List<HasText> list = Arrays.asList(new Object1(), new Object2());
for (HasText ht : list) {
System.out.println(ht);
}
}
If one of your objects is not in your control you can use a Wrapper class.
class Object3DoesNotImplementHasText {
public String getText() {
return "3";
}
}
class Object3Wrapper implements HasText{
final Object3DoesNotImplementHasText it;
public Object3Wrapper(Object3DoesNotImplementHasText it) {
this.it = it;
}
#Override
public String getText() {
return it.getText();
}
}
private void test() {
List<HasText> list = Arrays.asList(new Object1(), new Object2(), new Object3Wrapper(new Object3DoesNotImplementHasText()));
for (HasText ht : list) {
System.out.println(ht);
}
}
Just to add more to this answer and give you some more to think on this (Will try to do it in a simple, non-formal way). Using interfaces is the proper way of doing such operation. However, I want to stand on the "bad idea":
for (Object o : lists.getList(listNumber)) {
System.out.println(o.getClass().getMethod("getText"));
}
What you are doing here, is using a mechanism called Reflection:
Reflection is a feature in the Java programming language. It allows an
executing Java program to examine or "introspect" upon itself, and
manipulate internal properties of the program. For example, it's
possible for a Java class to obtain the names of all its members and
display them.
What you actually attempted, is using that mechanism, to retrieve the method through a Class reflection object instance of your Class (sounds weird, isn't it?).
From that perspective, you need to think that, if you want to invoke your method, you now have, in a sense, a meta-Class instance to manipulate your objects. Think of it like an Object that is one step above your Objects (Similarly to a dream inside a dream, in Inception). In that sense, you need to retrieve the method, and then invoke it in a different (meta-like) way:
java.lang.reflect.Method m = o.getClass().getMethod("getText");
m.invoke(o);
Using that logic, you could possibly iterate through the object list, check if method exists, then invoke your method.
This is though a bad, BAD idea.
Why? Well, the answer relies on reflection itself: reflection is directly associated with runtime - i.e. when the program executes, practically doing all things at runtime, bypassing the compilation world.
In other words, by doing this, you are bypassing the compilation error mechanism of Java, allowing such errors happen in runtime. This can lead to unstable behavior of the program while executing - apart from the performance overhead using Reflection, which will not analyze here.
Side note: While using reflection will require the usage of Checked Exception handling, it still is not a good idea of doing this - as you practically try to duck tape a bad solution.
On the other hand, you can follow the Inheritance mechanism of Java through Classes and Interfaces - define an interface with your method (let's call it Textable), make sure that your classes implement it, and then use it as your base object in your list declaration (#alexrolea has implemented this in his answer, as also #OldCurmudgeon has).
This way, your program will still make the method call decision making at Runtime (via a mechanism called late binding), but you will not bypass the compilation error mechanism of Java. Think about it: what would happen if you define a Textable implementation without providing the class - a compile error! And what if you set a non-Textable object into the list of Textables? Guess what! A compile error again. And the list goes on....
In general, avoid using Reflection when you are able to do so. Reflection is useful in some cases that you need to handle your program in such a meta-way and there is no other way of making such things. This is not the case though.
UPDATE: As suggested by some answers, you can use instanceof to check if you have a specific Class object instance that contains your method, then invoke respectively. While this seems a simple solution, it is bad in terms of scaling: what if you have 1000 different classes that implement the same method you want to call?
your objects have to implement a common interface.
interface GetTextable {
String getText();
}
class One implements GetTextable {
private final String text;
public One(final String text) {
this.text = text;
}
public String getText() {
return this.text;
}
}
class Two implements GetTextable {
private final String text;
public Two(final String text) {
this.text = text;
}
public String getText() {
return this.text;
}
}
#Test
public void shouldIterate() throws Exception {
List<GetTextable> toIterate = Arrays.asList(new One("oneText"), new Two("twoText"));
for(GetTextable obj: toIterate) {
System.out.println(obj.getText());
}
}

Is there a way to instantiate a child class with parent object in java?

I have a base class say
class A {
private String name;
private String age;
//setters and getters for same
}
and a child class say
class B extends A {
private String phone;
private String address;
//setters and getters for same
}
now I've an instance of A and besides this I have to set the fields in B as well, so code would be like,
A instanceOfA = gotAFromSomewhere();
B instanceOfB = constructBFrom(instanceOfA);
instanceOfB.setPhone(getPhoneFromSomewhere());
instanceOfB.setAddress(getAddressFromSomewhere());
can I instantiate B with given A, but I don't want to do this way,
B constructBFrom(A instanceOfA) {
final B instanceOfB = new B();
instanceOfB.setName(instanceOfA.getName());
instanceOfB.setPhone(instanceOfA.getAge());
return B;
}
rather what I'd love to have some utility with function which is generic enough to construct object as in,
public class SomeUtility {
public static <T1, T2> T2 constructFrom(T1 instanceOfT1, Class<T2> className) {
T2 instatnceOfT2 = null;
try {
instatnceOfT2 = className.newInstance();
/*
* Identifies the fields in instanceOfT1 which has same name in T2
* and sets only these fields and leaves the other fields as it is.
*/
} catch (InstantiationException | IllegalAccessException e) {
// handle exception
}
return instatnceOfT2;
}
}
so that I can use it as,
B constructBFrom(A instanceOfA) {
return SomeUtility.constructFrom(instanceOfA, B.class);
}
Moreover, use case will not be only limited to parent-child classes, rather this utility function can be used for adapter use cases.
PS- A and B are third party classes I've to use these classes only so I can't do any modifications
in A and B.
The good practice is to have a factory class which "produces" the instances of B.
public class BFactory {
public B createBFromA(A a) { ... }
}
You have to write the code of the factory method as there is no standard way of creating a child class based on its parent class. It's always specific and depends on the logic of your classes.
However, consider if it is really what you need. There are not many smart use cases for instantiating a class based on the instance of its parent. One good example is ArrayList(Collection c) - constructs a specific list ("child") containing the elements of the generic collection ("base").
Actually, for many situation there is a pattern to avoid such strange constructs. I am aware it's probably not applicable to your specific case as you wrote that your Base and Child are 3rd party classes. However your question title was generic enough so I think you may find the following useful.
Create an interface IBase
Let the class Base implement the interface
Use composition instead of inheritance - let Child use Base instead of inheriting it
Let Child implement IBase and delegate all the methods from IBase to the instance of Base
Your code will look like this:
public interface IBase {
String getName();
int getAge();
}
public class Base implements IBase {
private String name;
private int age;
// getters implementing IBase
}
public class Child implements IBase {
// composition:
final private IBase base;
public Child(IBase base) {
this.base = base;
}
// delegation:
public String getName() {
return base.getName();
}
public int getAge() {
return base.getAge();
}
}
After you edited your question, I doubt even stronger that what you want is good. Your question looks more like an attempt of a hack, of violating (or not understanding) the principles of class-based object oriented concept. Sounds to me like someone coming from the JavaScript word and trying to keep the JavaScript programming style and just use a different syntax of Java, instead of adopting a different language philosophy.
Fun-fact: Instantiating a child object with parent object is possible in prototype-based languages, see the example in JavaScript 1.8.5:
var base = {one: 1, two: 2};
var child = Object.create(base);
child.three = 3;
child.one; // 1
child.two; // 2
child.three; // 3
In my opinion the way you want to avoid is very appropriate. There must be a piece of such code somewhere.
If you can't put that method in the target class just put it somewhere else (some factory). You should additionaly make your method static.
Take a look at Factory method pattern.
2nd option would be extending B and place this method as factory static method in that new class. But this solution seems to be more complicated for me. Then you could call NewB.fromA(A). You should be able then use your NewB instead of B then.
You could do it via reflection:
public static void copyFields(Object source, Object target) {
Field[] fieldsSource = source.getClass().getFields();
Field[] fieldsTarget = target.getClass().getFields();
for (Field fieldTarget : fieldsTarget)
{
for (Field fieldSource : fieldsSource)
{
if (fieldTarget.getName().equals(fieldSource.getName()))
{
try
{
fieldTarget.set(target, fieldSource.get(source));
}
catch (SecurityException e)
{
}
catch (IllegalArgumentException e)
{
}
catch (IllegalAccessException e)
{
}
break;
}
}
}
}
*Above code copied from online tutorial

Downcasting and polymorphism without using instanceof? (Java)

Here's the sort of thing I'm trying to do:
class Foo {
private ArrayList<Widget> things; //Contains WidgetA, WidgetB and WidgetAB objects
//...
void process(int wIndex) {
process(things.get(wIndex);
}
private void process(WidgetA w) {
//Do things
}
private void process(WidgetB w) {
//Do other things
}
private void process(WidgetAB w) {
//Do completely different things
}
}
abstract class Widget {
//...
}
class WidgetA extends Widget {
//...
}
class WidgetB extends Widget {
}
class WidgetAB extends WidgetA {
}
Basically, a separate class gets an array index from user input, and passes it to the process(int) method, which is supposed to kick off a type-specific process() method to process the object at the passed index. The problem is that the objects are treated as Widget objects, not WidgetA, etc. I could loop through the types using instanceof, I guess, but I'm trying to avoid using that.
The logic in the process() methods needs to access private fields in the Foo class, so moving them to the Widget subclasses might not be the best idea.
So the question is, is there a way for the correct process() method to be called for a given Widget subtype, without using instanceof?
Yes, have a look at the Visitor pattern - also known as double dispatch.
Another potential solution is to use Java's reflection API's. Example:
class Foo {
private ArrayList<Widget> things; //Contains WidgetA, WidgetB and WidgetAB objects
//...
void process(int wIndex) {
Widget theWidget = things.get(wIndex);
try {
Class type = theWidget.getClass();
Class[] arg_types = new Class[]{type};
this.getMethod("process", arg_types).invoke(this, theWidget);
} catch (Exception e) {
//Could be SecurityException or NoSuchMethodException
}
}
private void process(WidgetA w) {
//Do things
}
private void process(WidgetB w) {
//Do other things
}
private void process(WidgetAB w) {
//Do completely different things
}
}
abstract class Widget {
//...
}
class WidgetA extends Widget {
//...
}
class WidgetB extends Widget {
}
class WidgetAB extends WidgetA {
}
The issue here being that you have to have defined a process() method for each type of object in the things list or an exception will be thrown at run-time. The compiler will not warn you if you are missing an implementation.

What is the Best Way to Extend Functionality?

I've run into a situation in which I was to extend the functionality of a given class, but I'm not sure of the best way to go about this. I started by invoking functionality "upwards" and have now switched to "downwards", but I see issues with both. Let me explain what I mean. First, the "upwards" approach:
public class ParentValidator
{
public void validate() {
// Some code
}
}
public class ChildValidator extends ParentValidator
{
#Override
public void validate() {
super.validate();
// Some code
}
}
public class GrandchildValidator extends ChildValidator
{
#Override
public void validate() {
super.validate();
// Some code
}
}
This functions perfectly well, but it requires that I always remember to place super.validate() in my method body or the logic in the parent class(es) won't be executed. In addition, extension in this manner can be considered "unsafe" due to the fact that a child class could actually replace/modify the code defined in the parent class. This is what I call invoking methods "upwards" because I'm invoking methods from higher level classes as I go.
To counter these shortfalls, I decided to make ParentValidator.validate() final and have it invoke a different method. Here's what my code was modified to:
public class ParentValidator
{
public final void validate() {
// Some code
subValidate();
}
protected void subValidate() {}
}
public class ChildValidator extends ParentValidator
{
#Override
public final void subValidate() {
// Some code
subSubValidate();
}
protected void subSubValidate() {}
}
public class GrandchildValidator extends ChildValidator
{
#Override
public void subSubBalidate() {
// Some code
subSubSubValidate();
}
protected void subSubSubValidate();
}
This is what I was referring to when I say that I'm calling downwards as each class invokes methods on classes "down" the inheritance chain.
Using this approach, I can be guaranteed that the logic in the parent class(es) will be executed, which I like. However, it doesn't scale well. The more layers of inheritance I have, the uglier it gets. At one level, I think this is very elegant. At two levels, it starts to look shoddy. At three or more, it's hideous.
In addition, just as I had to remember to invoke super.validate() as the first line of any of my children's validate methods, I now have to remember to invoke some "subValidate" method at the end of any of my parent's validate methods, so that didn't seem to get any better.
Is there a better way to do this type of extension that I haven't even touched on. Either of these approaches have some serious flaws and I'm wondering if there's a better design pattern I could be using.
In what you describe as your first approach you are using simple inheritance, your second approach is closer to what the Gang of Four [GoF] called a Template Method Pattern because your parent class is using the so-called Hollywood Principle: "don't call us, we'll call you".
However, you could benefit from declaring the subvalidate() method as abstract in the parent class, and by this, make sure all subclasses are forced to implement it. Then it would be a true template method.
public abstract class ParentValidator
{
public final void validate() {
//some code
subValidate();
}
protected abstract void subValidate() {}
}
Depending on what you are doing there are other patterns that could help you do this in a different manner. For instance, you could use a Strategy Pattern to peform the validations, and by this favoring composition over inheritance, as suggested before, but a consequence is that you will need more validation classes.
public abstract class ParentValidator
{
private final ValidatorStrategy validator;
protected ParentValidator(ValidatorStrategy validator){
this.validator = validator;
}
public final void validate() {
//some code
this.validator.validate();
}
}
Then you can provide specific validation strategies for every type of Validator that you have.
If you want to get the best of both worlds you might considering implementing the solution as a Decorator Pattern where subclasses can extend the functionality of a parent class and still stick to a common interface.
public abstract class ValidatorDecorator implements Validator
{
private final Validator validator;
protected ParentValidator(Validator validator){
this.validator = validator;
}
public final void validate() {
//some code
super.validate(); //still forced to invoke super
this.validator.validate();
}
}
All patterns have consequences and advantages and disadvantages that you must consider carefully.
I'd prefer to 1) program against interfaces, and 2) opt for composition over inheritance. This is how I have done. Some people like it, some do not. It works.
// java pseudocode below, you'll need to work the wrinkles out
/**
* Defines a rule or set of rules under which a instance of T
* is deemed valid or invalid
**/
public interface ValidationRule<T>
{
/**
* #return String describing invalidation condition, or null
* (indicating then that parameter t is valid */
**/
String apply(final T t);
}
/**
* Utility class for enforcing a logical conjunction
* of zero or more validatoin rules on an object.
**/
public final class ValidatorEvaluator
{
/**
* evaluates zero or more validation rules (as a logical
* 'AND') on an instance of type T.
**/
static <T> String apply(final T t, ValidationRule<T> ... rules)
{
for(final ValidationRules<T> v : rules)
{
String msg = v.apply(t);
if( msg != null )
{
return msg; // t is not valid
}
}
return null;
}
}
// arbitrary dummy class that we will test for
// i being a positive number greater than zero
public class MyFoo
{
int i;
public MyFoo(int n){ i = n; }
///
}
public class NonZeroValidatorRule implements ValidatorRule<MyFoo>
{
public String apply(final MyFoo foo)
{
return foo.i == 0 ? "foo.i is zero!" : null;
}
}
// test for being positive using NonZeroValidatorRule and an anonymous
// validator that tests for negatives
String msg = ValidatorEvaluator.apply( new MyFoo(1),
new NonZeroValidatorRule(),
new ValidatorRule<MyFoo>()
{
public String apply(final MyFoo foo)
{
return foo.i < 0 ? "foo.i is negative!" : null;
}
}
);
if( msg == null )
{
\\ yay!
...
}
else
{
\\ nay...
someLogThingie.log("error: myFoo now workie. reason=" + msg );
}
More complex, non-trivial evaluation rules can be implemented this way.
The key here is that you should not use inheritance unless there exists a is-a relationship. Do not use it just to recycle or encapsulate logic. If you still feel you need to use inheritance, then don't go overkill trying to make sure that every subclass executes the validation logic inherited from the superclass. Have implementations of each subclass do an explicit execution on super:
public class ParentValidator
{
public void validate() { // notice that I removed the final you originally had
// Some code
}
}
pubic class ChildValidator extends ParentValidator
{
#Override
public void validate() {
// Some code
super.validate(); // explicit call to inherited validate
// more validation code
}
}
Keep things simple, and don't try to make it impossible or fool-proof. There is a difference between coding defensively (a good practice) and coding against stupid (a futile effort.) Simply lay out coding rules on how to subclass your validators. That is, put the onus on the implementors. If they cannot follow the guidelines, no amount of defensive coding will protect your system against their stupidity. Ergo, keep things clear and simple.
I prefer to using composition over inheritance if your subSubSubValidate is related general functionality. You can extract new class and move it there than you can use it without inheritance in the other classes.
There is also
"Favor 'object composition' over
'class inheritance'." (Gang of Four
1995:20)
maybe a look at the visitor pattern may help you to develop your pattern.
Here are some information on it : http://en.wikipedia.org/wiki/Visitor_pattern

Design question - java - what is the best way to doing this?

I have a design problem.
I have two data objects which are instances of say class A and class B.
A and B don't have any behavior - they are java beans with getters and setters.
I have a Validation interface and 10 implementations of it defining different Validations.
I would like to specify in my properties file which Validation applies to which class.
Something like this:
class A XYZValidation,ABCValidation
class B: ABCValidation, PPPValidation, etc
How do I write my Validation class so that it serves objects that are instances of Class A OR ClassB, or just about any other Class C that I might want to add in future?
interface Validation {
public boolean check(??);
}
> Just wanted to add this line to say thank you to all those who have responded to this post and to say that I am loving my time here on this amazing website. Stackoverflow rocks!
Have you thought about using annotations to mark the fields you want to validate in your bean?
If you have 10 different validations you could specify 10 annotations. Then mark the fields using annotations:
#ValideStringIsCapitalCase
private String myString;
#ValidateIsNegative
private int myInt;
With reflection API iterate through all the fields and see if they are marked, something like this:
public static <T> validateBean(T myBean) throws IllegalAccessException {
Field[] fields = myBean.getClass().getDeclaredFields();
// This does not take fields of superclass into account
if (fields != null) {
for (Field field : allFields) {
if (field.isAnnotationPresent(ValideStringIsCapitalCase.class)) {
field.setAccessible(true);
Object value = field.get(existingEntity);
// Validate
field.setAccessible(false);
}
}
}
}
An option would be to mark the whole class with the validator you want to use.
EDIT: remember to include annotation:
#Retention(RetentionPolicy.RUNTIME)
for your annotation interface.
EDIT2: please don't modify the fields directly (as in the example above). Instead access their getters and setters using reflection.
I've probably misunderstood the question but would something like this suffice:
public class ValidationMappings {
private Map<Class, Class<Validation>[]> mappings = new HashMap<Class, Class<Validation>[]>();
public ValidationMappings() {
mappings.put(A.class, new Class[]{XYZValidation.class, ABCValidation.class});
mappings.put(B.class, new Class[]{ABCValidation.class, PPPValidation.class});
}
public Class[] getValidators(Class cls) {
if (!mappings.containsKey(cls)) return new Class[]{};
return mappings.get(cls);
}
}
When you want to get the list of validators for a particular class, you would then call getValidators(Class cls) and iterate over each validator and create an instance of each and call your check method.
something like this maybe?
interface Validation {
public boolean check(Validatable x);
}
interface Validatable {
}
class A implements Validatable {
...
}
class Validator {
public boolean validateObject(Validatable x){
boolean validated = true;
... //read config file, check which validation classes to call
//for each validation class v in the config file:
if(!v.check(x)) validated = false;
return validated;
}
}
If you just want it to deal with any object then it'll be Object's that your interface
public boolean check(Object o);
Unless you want to use some marker interface to tag classes that are suitable for validation
Did you mean:
public interface Validation<T> {
boolean check(T object)
}
First of all, I'd use the following interface
interface Validator {
boolean isValid(Object object);
}
to implicitly document what the return value actually means.
Secondly, I'd suggest to document in the interface what behavior is expected if the Validator doesn't know how to handle the given instance.
interface Validator {
/**
* #return false if this validator detects that the given instance is invalid, true if the given object is valid or this Validator can't validate it.
*/
boolean isValid(Object object);
}
That way, you'd simply have a List of Validators that you could throw your objects at.
The performance impact of incompatible Validators should be negligible if they are implemented properly, e.g. with an early instanceof.
On a side note, I'd use a List of Validators instead of a Set so you can order them according to complexity. Put the cheap (performance-wise) Validators at the start of the List as an optimization.
You could then use a general piece of code for validation, e.g.
public class Validators {
public static boolean isValid(Object o, Collection<Validator> validators) {
for(Validator current : validators) {
if(!current.isValid()) return false;
}
return true;
}
}
Depending on your use-case it might be a good idea to return something different than boolean in your interface. If you need information about what is wrong, e.g. to display it, you'd need to return that info instead.
In that case it might be a good idea to keep the above loop running so you'll get all validation errors instead of only the first.
A Visitor pattern would solve this
Calling the Visitor Validator it's possible to have this:
public interface Validatable {
public boolean validate(Validator v);
}
public interface Validator {
public boolean validate(A a);
public boolean validate(B b);
}
public class A implements Validatable {
public boolean validate(Validator v){
return v.validate(this);
}
}
public class B implements Validatable {
public void validate(Validator v) {
return v.validate(this);
}
}
// Default validator just doesn't know how to
// validate neither A's, nor B's
public class GenericValidator implements Validator {
public boolean validate(A a) {
throw new UnsupportedOperationException("Cannot validate A");
}
public boolean validate(B b) {
throw new UnsupportedOperationException("Cannot validate B");
}
}
// since XYZValidation is supposed to run only on A's
// it only overrides A validation
public class XYZValidation extends GenericValidator {
public boolean validate(A a) {
// validate a
return isVAlid(a);
}
}
// since ABCValidation is supposed to run on A's and B's
// it overrides A and B validation
public class ABCValidation extends GenericValidator {
public boolean validate(A a) {
// validate a
return isVAlid(a);
}
public boolean validate(B b) {
// validate b
return isVAlid(b);
}
}
// since ABCValidation is supposed to run only on B's
// it overrides A only B validation
public class PPPValidation extends GenericValidator {
public boolean validate(B b) {
// validate b
return isVAlid(b);
}
}

Categories

Resources