Solving codingBat 'evenOdd' with one loop in Java - java

The question is about Solving this problem from codingBat in Java.
Problem Statement:
Return an array that contains the exact same numbers as the given array, but rearranged so that all the even numbers come before all the odd numbers. Other than that, the numbers can be in any order. You may modify and return the given array, or make a new array.
evenOdd({1, 0, 1, 0, 0, 1, 1}) → {0, 0, 0, 1, 1, 1, 1}
evenOdd({3, 3, 2}) → {2, 3, 3}
evenOdd({2, 2, 2}) → {2, 2, 2}
The Problem is simple with 2 loops I attempted at solving it with 1 it got too lengthy I believe, is there any other efficient way to solve the above problem using 1 loop?
do not use collections!
My solution:
public int[] evenOdd(int[] nums) {
boolean oddFound=false;
int count=-1;
int oddGap=0;
for(int i=0;i<nums.length;i++)
{
if(!(oddFound)&(nums[i]%2==0))
continue;
if((!oddFound)&(nums[i]%2==1))
{
oddFound=true;
count=i;
continue;
}
if((oddFound)&(nums[i]%2==1))
{
oddGap++;
continue;
}
if((oddFound)&(nums[i]%2==0))
{
int temp=nums[count];
nums[count]=nums[i];
nums[i]=temp;
if(i>0)
i--;
if(oddGap>0)
{
oddGap--;
count+=1;
oddFound=true;
continue;
}
oddFound=false;
}
}
return nums;
}

Since creating a new array is allowed, and the order of the numbers is irrelevant, I would use the following approach:
public int[] evenOdd(int[] nums) {
int[] output = new int[nums.length];
int evenPos = 0;
int oddPos = nums.length-1;
for (int i : nums) {
if (i%2==0) {
output[evenPos++]=i;
} else {
output[oddPos--]=i;
}
}
return output;
}
Update: A somewhat less readable version that doesn't require an extra array (along the lines of what #Seelenvirtuose suggests, just without the extra loops)
public int[] evenOdd(int[] nums) {
int evenPos = 0;
int oddPos = nums.length-1;
while (true) {
if (evenPos>=oddPos || evenPos>=nums.length || oddPos<0) {
break;
}
if (nums[evenPos]%2==0) {
evenPos++;
}
if (nums[oddPos]%2!=0) {
oddPos--;
}
if (evenPos<oddPos && nums[evenPos]%2 != 0 && nums[oddPos]%2 == 0) {
int tmp = nums[evenPos];
nums[evenPos] = nums[oddPos];
nums[oddPos] = tmp;
oddPos--;
evenPos++;
}
}
return nums;
}

You do not need any temporary lists or array because you can reorder the elements in-situ.
This is a simple algorithm:
Define two pointers, left and right (initially set to the bounds of the array).
As long as left does not exceed right and nums[left] is even, increment left.
As long as right does not exceed left and nums[right] is odd, decrement right.
If left is still less than right, swap the elements at positions left and right.
Repeat 2,3,4 as long as left is still less than right.
Got it? Here some code:
public int[] evenOdd(int[] nums) {
// (1)
int left = 0;
int right = nums.length -1;
do {
// (2)
while (left < right && nums[left] % 2 == 0)
left += 1;
// (3)
while (right > left && nums[right] % 2 != 0)
right -= 1;
// (4)
if (left < right) {
int temp = nums[left];
nums[left] = nums[right];
nums[right] = temp;
}
} while (left < right); // (5)
return nums;
}

Okay! I finally jumped across this question which is actually closed but the solution by asker was almost there apart from failing in 2 cases which I fixed:
I commented out he code by asker which was making it fail in a couple of cases as seen in the question.
I think below is the simplest and most optimized solution:
public int[] evenOdd(int[] nums) {
int y=nums.length,x,a=0;
int temp=0;
for(x=0;x<y;x++)
{
if(nums[x]%2==0) {
if(a>(y-2))
return nums;
else{
//nums[a]=nums[a]+nums[x];
//nums[x]=nums[a]-nums[x];
//nums[a]=nums[a]-nums[x];
temp=nums[a];
nums[a]=nums[x];
nums[x]=temp;
a+=1;
}
}
return nums;
}

Traverse evenOdd from 0 to N.
for every even number encountered, copy it to the required position on the evenOdd array.
for every odd num encountered, store it in a separate array called oddnum.
After traversing the whole array, just copy the elements from oddnum to the Back of evenOdd.
Ex: evenOdd = {5,2,1,4}
Step 1. copy 5 to oddnum[0]
2. copy 2 to evenodd[0]
3. copy 1 to oddnum[1]
4. copy 1 to evenodd[1]
5. cpy oddnum[0] to evenOdd[2] and oddnum[1] to evenOdd[3]

Keeping to your restrictions, here's a one-loop answer:
public int[] evenOdd(int[] nums) {
int[] result = new int[nums.length];
int nextEven = 0;
int nextOdd = nums.length - 1;
for ( int num : nums )
{
if ( num % 2 == 0 )
result[ nextEven++ ] = num;
else
result[ nextOdd-- ] = num;
}
return result;
}

public int[] evenOdd(int[] nums) {
int count = 0;
for (int i = 0; i < nums.length; i++) {
if (nums[i] % 2 == 0) {
int temp = nums[i];
nums[i] = nums[count];
nums[count] = temp;
count++;
}
}
return nums;
}

public int[] evenOdd(int[] nums) {
Stack stack = new Stack();
int[] nums2 = new int[nums.length];
for(int i = 0; i < nums.length; i++) {
if(nums[i] % 2 != 0) {
stack.push(nums[i]);
}
}
for(int i = 0; i < nums.length; i++) {
if(nums[i] % 2 == 0) {
stack.push(nums[i]);
}
}
for(int i = 0; i < nums.length; i++) {
nums2[i] = (Integer) stack.pop();
}
return nums2;
}

In-place version (stable):
We continually search for te first and last invalid values (first odd, before last even) and keep swapping them until they cross:
public int[] evenOdd(int[] nums) {
int first = 0, last = nums.length - 1;
while (first < last) {
while ((first < last) && isOdd(nums[last])) last--;
while ((first < last) && !isOdd(nums[first])) first++;
swap(nums, first, last);
}
return nums;
}
boolean isOdd(int num) { return (num & 1) == 1; }
void swap(int[] nums, int i, int j) {
int copy = nums[i];
nums[i] = nums[j];
nums[j] = copy;
}
With auxiliaries (stable):
We partition the even and odd values in separate lists and concatenate them back:
public int[] evenOdd(int[] nums) {
List<Integer> evens = new ArrayList<Integer>(nums.length);
List<Integer> odds = new ArrayList<Integer>(nums.length);
for (int num : nums)
if (isOdd(num)) odds.add(num);
else evens.add(num);
int[] results = new int[nums.length];
int i = 0;
for (int num : evens) results[i++] = num;
for (int num : odds) results[i++] = num;
return results;
}
boolean isOdd(int num) { return (num & 1) == 1; }

Simplified solution which uses Srteam API:
public int[] evenOdd(int[] nums) {
int[] evenOddArr = new int[nums.length];;
int[] evenArr = Arrays.stream(nums).filter(x -> x % 2 == 0).toArray();;
int[] oddArr = Arrays.stream(nums).filter(x -> x % 2 != 0).toArray();
evenOddArr = java.util.stream.IntStream.concat(Arrays.stream(evenArr), Arrays.stream(oddArr))
.toArray();
return evenOddArr;
}
It passes all the tests on CodingBat:

Related

Testing array issue

I am stuck on an issue that I cannot seem to resolve. I cannot seem to to test my code correctly. My code is as follows
public static int sum13( int[] nums) {
int sum = 0;
for(int i = 0; i <= nums.length - 1; i++){
if( nums[i] != 13){
sum += nums[i];
if(i > 0 && nums[i-1] == 13)
sum -= nums[i];
}
}
return sum;
}
public static void main(String[] args) {
}
If I try to put System.out.println(sum13([1,2,2,1]) I am met with several errors relating to the [] as well as the ,. I cannot figure out, what it is that I've done wrong.
Return the sum of the numbers in the array, returning 0 for an empty array. Except the number 13 is very unlucky, so it does not count and numbers that come immediately after a 13, also do not count. sum13([1, 2, 2, 1]) →6
sum13([1, 1]) →2
I decided to add flag to know when the previous value was 13. In that way, you don't have to deal with edge cases.
public static int sum13(int[] nums) {
int sum = 0;
boolean was13 = false;
for(int i = 0; i < nums.length; i++) {
if(nums[i] == 13) {
was13 = true;
} else {
if(!was13)
sum += nums[i];
was13 = false;
}
}
return sum;
}
A possible solution with some test cases:
public static int sum13(int[] numbers)
{
int sum = 0;
int prev = 0;
for (var number : numbers)
{
if (number != 13 && prev != 13)
{
sum += number;
}
prev = number;
}
return sum;
}
public static void main(String[] args)
{
System.out.println(sum13(new int[]{}));
System.out.println(sum13(new int[]{1, 2, 3, 4, 5}));
System.out.println(sum13(new int[]{13, 1, 13, 13, 2, 3, 4, 5}));
}

26. Remove Duplicates from Sorted Array - Java

Question : Given a sorted array nums, remove the duplicates in-place such that each element appears only once and returns the new length.
Do not allocate extra space for another array, you must do this by modifying the input array in-place with O(1) extra memory.
public int removeDuplicates(int[] nums) {
if (nums.length == 0) return 0;
int i = 0;
for (int j = 1; j < nums.length; j++) {
if (nums[j] != nums[i]) {
i++;
nums[i] = nums[j];
}
}
return i + 1;
}
What exactly does the return statement do here. What does return i + 1 mean here ?
The return i + 1 is returning how many unique integers are there. I believe this is a Leetcode problem, and since its in place, the int[] is passed in by reference, Leetcode wants to know how many numbers to check (you're supposed to put the unique numbers in the first i + 1 spots).
If you look at the question, it says:
Which means that you return the length of the array.
So, if you have the array [1,1,2,3,4,4], you would turn that into [1,2,3,4,...], where the ... is the rest of the array. However, you return 4 because the length of the new array should be 4.
Hope this clears things up for you!
Your question has been already answered here; in addition to that, we can also start from zero and remove the first if statement:
Test with a b.java file:
import java.util.*;
class Solution {
public static final int removeDuplicates(
final int[] nums
) {
int i = 0;
for (int num : nums)
if (i == 0 || num > nums[i - 1]) {
nums[i++] = num;
}
return i;
}
}
class b {
public static void main(String[] args) {
System.out.println(new Solution().removeDuplicates(new int[] { 1, 1, 2}));
System.out.println(new Solution().removeDuplicates(new int[] { 0, 0, 1, 1, 1, 2, 2, 3, 3, 4}));
}
}
prints
2
5
I tried in this easy way. Here Time complexity is O(n) and space
complexity: O(1).
static int removeDuplicates(int[] nums){
if(nums.length == 0) {
return 0;
}
int value = nums[0];
int lastIndex = 0;
int count = 1;
for (int i = 1; i < nums.length; i++) {
if(nums[i] > value) {
value = nums[i];
lastIndex = lastIndex+1;
nums[lastIndex] = value;
count++;
}
}
return count;
}
class Solution {
public int removeDuplicates(int[] nums) {
int n = nums.length;
if (n == 0 || n == 1)
return n;
int j = 0;
for (int i=0; i<n-1; i++)
if (nums[i]!= nums[i+1])
nums[j++] = nums[i];
nums[j++]=nums[n-1];
return j;
}
}
public class RemoveDuplicateSortedArray {
//Remove Duplicates from Sorted Array
public static void main(String[] args) {
int[] intArray = new int[]{0, 0, 1, 1, 1, 2, 2, 3, 3, 4};
int count = extracted(intArray);
for (int i = 0; i < count; i++) {
System.out.println(intArray[i]);
}
}
private static int extracted(int[] intArray) {
int size = intArray.length;
int count = 1;
if (size == 1) {
return 1;
} else if (size == 2) {
if (intArray[0] == intArray[1]) {
return 1;
} else {
return 2;
}
} else {
for (int i = 0, j = i + 1; j < size; j++) {
if (intArray[i] < intArray[j]) {
i++;
intArray[i] = intArray[j];
count++;
}
}
return count;
}
}
}

Sorting binary array using comparisons in Java

I am trying to implement a solution to sort a binary array containing 0 and 1 but it is comparison based. I am going with the approach take 1 index i (1st element of array) and 2nd index j last element of array. if i>j swap that element. else increment i and decrement j.
I am pretty new in java and programming.
Here is what I have tried until now:
My sort method:
public static void sort(int[] arr)
{
int i = arr[0];
int j = arr[arr.length-1];
for(int x=0;x<arr.length-1;x++)
{
int temp = 0;
if(i>j)
{
temp = i;
i=j;
j=temp;
i++;
j--;
}
else{
i++;
j--;
}
}
}
My main method
public static void main(String[] args) {
int[] binary = {0,0,1,1,0,1,1,1,1,0,1,0,0,0,1,1,0};
sort(binary);
}
Any help will be appreciated.
Thanks
Beyond the problems explained in the comments, I mocked up a solution to show how you might go about doing this correctly. I've also added some comments to explain the logic:
public class Main {
public static void main(String[] args)
{
int[] binary = {0,0,1,1,0,1,1,1,1,0,1,0,0,0,1,1,0};
sort(binary);
System.out.println(Arrays.toString(binary));
}
public static void sort(int[] arr)
{
int i = 0;
int j = arr.length - 1;
while(i < j)
{
//we only want to swap 1s to the right
if(arr[i] == 0)
//skip 0s
i++;
//we only want to swap 1s into places where 0s are
else if(arr[j] == 1)
//skip 1s
j--;
//if arr[i] is 1 and arr[j] is 0
else //we now know that arr[i] is 1 and arr[j] is 0
{
//move the 1 to the right
swap(arr, i, j);
//we just processed arr[i]
i++;
//we just processed arr[j]
j--;
}
}
}
private static void swap(int[] arr, int idx1, int idx2)
{
int temp = arr[idx1];
arr[idx1] = arr[idx2];
arr[idx2] = temp;
}
}
This can also be expressed in terms of a for loop, like so (though it's not recommended to make your code this hard to read):
public static void sort(int[] arr)
{
for(int i = 0, j = arr.length - 1; i < j; i += arr[i]^1, j -= arr[j])
if(arr[i] == 1 && arr[j] == 0)
swap(arr, i, j);
}
When I say "not recommended", recall the saying: "Just because you can, doesn't mean you should."
As per #Andreas' comment, you can just do:
arr[i] = 0;
arr[j] = 1;
instead of calls to swap. Alternatively for the dirty "not recommended" version, you can do:
arr[i] ^= arr[j] = 1;
Here is one approach. I simply start at the top and bottom and separately increment the indices until the conditions are met. Then replace the values.
int[] b = { 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0
};
int a = 0;
int c = b.length - 1;
while (a < c) {
boolean flag1 = true;
boolean flag2 = true;
if (b[a] == 0) {
a++; // leave it there
flag1 = false;
}
//
if (b[c] == 1) {
c--; // leave it there
flag2 = false;
}
if (flag1 && flag2) {
b[c] = 1;
b[a] = 0;
}
}

issues with codingbat maxMirror exercise

So basically, I've been going through these codingBat problems, and when I get really stuck, I usually check out the solution and trace the logic and that has helped me not get stuck on later problems which used similar ideas.
This max mirror problem is not like the others for me personally; I have no idea how to actually write the code to solve it, even forming the algorithm is kind of tricky for me
We'll say that a "mirror" section in an array is a group of contiguous elements such that somewhere in the array, the same group appears in reverse order. For example, the largest mirror section in {1, 2, 3, 8, 9, 3, 2, 1} is length 3 (the {1, 2, 3} part). Return the size of the largest mirror section found in the given array.
maxMirror({1, 2, 3, 8, 9, 3, 2, 1}) → 3
maxMirror({1, 2, 1, 4}) → 3
maxMirror({7, 1, 2, 9, 7, 2, 1}) → 2
Now, in terms of the algorithm, I sort of want to say something like, if we start by checking if the whole array is a mirror and then decrease the checked area size by 1 if it's not. But in terms of the pseudocode and the real code I have no idea.
My go to solution in cases like this where what your code should be doing is always doing it manually, then figuring out the essence of how it is that I am tackling the solution.
For this problem I found myself looking at possible subsets of the original array, then looking backwards through the original array to see if I can find that same subset again.
Next, I translated that into pseudocode,
for each segment in nums
check if nums contains segment backwards
Repeated, but this time with more implementation details worked out.
for each segment in nums, starting with the largest
reverse the segment
check if nums contains reversed segment
if it does, return the size of that segment
Next, find some likely candidates for methods in the pseudocode and write them. I chose to do this for "reverse" and "contains":
private int[] reverse(int[] nums) {
int[] rtn = new int[nums.length];
for (int pos = 0; pos < nums.length; pos++) {
rtn[nums.length - pos - 1] = nums[pos];
}
return rtn;
}
private boolean contains(int[] nums, int[] segment) {
for (int i = 0; i <= nums.length - segment.length; i++) {
boolean matches = true;
for (int j = 0; j < segment.length; j++) {
if (nums[i + j] != segment[j]) {
matches = false;
break;
}
}
if (matches) return true;
}
return false;
}
Finally, implement the rest:
public int maxMirror(int[] nums) {
for (int window = nums.length; window > 0; window--) {
for (int pos = 0; pos <= nums.length - window; pos++) {
int[] segment = new int[window];
for (int innerpos = 0; innerpos < window; innerpos++) {
segment[innerpos] = nums[pos + innerpos];
}
segment = reverse(segment);
if (contains(nums, segment)) {
return window;
}
}
}
return 0;
}
My irrelevant two cents....
public int maxMirror(int[] nums) {
// maximum mirror length found so far
int maxlen= 0;
// iterate through all possible mirror start indexes
for (int front = 0; front < nums.length; front++) {
// iterate through all possible mirror end indexes
for (int back = nums.length - 1; back >= front; back--) {
// this inner for-loop determines the mirror length given a fixed
// start and end index
int matchlen = 0;
Boolean match = (nums[front] == nums[back]);
// while there is a match
// 1. increment matchlen
// 2. keep on checking the proceeding indexes
while (match) {
matchlen++;
int front_index = front + matchlen;
int back_index = back - matchlen;
// A match requires
// 1. Thee indexes are in bounds
// 2. The values in num at the specified indexes are equal
match =
(front_index < nums.length) &&
(back_index >= 0) &&
(nums[front_index] == nums[back_index]);
}
// Replace the max mirror length with the new max if needed
if (matchlen > maxlen) maxlen = matchlen;
}
}
return maxlen;
}
Alternative solution designed to confuse you
public int maxMirror(int[] nums) {
return maxlen_all_f(nums, 0);
}
int maxlen_all_f(int [] nums, int f) {
return (f >= nums.length)
? 0
: max(
maxlen_for_start_f(nums, f, nums.length - 1),
maxlen_all_f(nums, f + 1)
);
}
int max(int a, int b){
return (a > b)
? a
: b;
}
int maxlen_for_start_f(int [] nums, int f, int b) {
return (b < f)
? 0
: max(
matchlen_f(nums, f, b),
maxlen_for_start_f(nums, f, b - 1)
);
}
int matchlen_f(int[] nums, int f, int b) {
return match_f(nums, f, b)
? 1 + matchlen_f(nums, f + 1, b - 1)
: 0;
}
Boolean match_f(int [] nums, int a, int b) {
return (a < nums.length && b >= 0) && (nums[a] == nums[b]);
}
The solution is simple rather than making it complex:
public static int maxMirror(int[] nums) {
final int len=nums.length;
int max=0;
if(len==0)
return max;
for(int i=0;i<len;i++)
{
int counter=0;
for(int j=(len-1);j>i;j--)
{
if(nums[i+counter]!=nums[j])
{
break;
}
counter++;
}
max=Math.max(max, counter);
}
if(max==1)
max=0;
return max;
}
This is definitely not the best solution in terms of performance. Any further improvements are invited.
public int maxMirror(int[] nums) {
int maxMirror=0;
for(int i=0;i<nums.length;i++)
{
int mirror=0;
int index=lastIndexOf(nums,nums[i]);
if(index!=-1){
mirror++;
for(int j=i+1;j<nums.length;j++)
{
if(index>=0&&existsInReverse(nums,index,nums[j]))
{
mirror++;
index--;
continue;
}
else
break;
}
if(mirror>maxMirror)
maxMirror=mirror;
}
}
return maxMirror;
}
int lastIndexOf(int[] nums,int num){
for(int i=nums.length-1;i>=0;i--)
{
if(nums[i]==num)
return i;
}
return -1;
}
boolean existsInReverse(int nums[],int startIndex,int num){
if(startIndex!=0&&(nums[startIndex-1]==num))
return true;
return false;
}
Here is my answer , Hope the comments explain it well :)
public int maxMirror(int[] nums) {
int max = 0;
// our largest mirror section found stored in max
//iterating array
for(int i=0;i<nums.length;i++){
int iterator = i; // iterator pointing at one element of array
int counter = 0;//counter to count the mirror elements
//Looping through for the iterator element
for(int j=nums.length-1;j>=i;j--){
//found match i.e mirror element
if(nums[iterator] == nums[j]){
iterator++; // match them until the match ends
counter++; // counting the matched ones
}
else{
//matching ended
if(counter >= max){//checking if previous count was lower than we got now
max = counter; // store the count of matched elements
}
counter = 0; // reset the counter
iterator = i; // reset the iterator for matching again
}
}
if(counter >= max){//checking if previous count was lower than we got now
max = counter;// store the count of matched elements at end of iteration
}
}
return max;//return count
}

Implementing a binary insertion sort using binary search in Java

I'm having trouble combining these two algorithms together. I've been asked to modify Binary Search to return the index that an element should be inserted into an array. I've been then asked to implement a Binary Insertion Sort that uses my Binary Search to sort an array of randomly generated ints.
My Binary Search works the way it's supposed to, returning the correct index whenever I test it alone. I wrote out Binary Insertion Sort to get a feel for how it works, and got that to work as well. As soon as I combine the two together, it breaks. I know I'm implementing them incorrectly together, but I'm not sure where my problem lays.
Here's what I've got:
public class Assignment3
{
public static void main(String[] args)
{
int[] binary = { 1, 7, 4, 9, 10, 2, 6, 12, 3, 8, 5 };
ModifiedBinaryInsertionSort(binary);
}
static int ModifiedBinarySearch(int[] theArray, int theElement)
{
int leftIndex = 0;
int rightIndex = theArray.length - 1;
int middleIndex = 0;
while(leftIndex <= rightIndex)
{
middleIndex = (leftIndex + rightIndex) / 2;
if (theElement == theArray[middleIndex])
return middleIndex;
else if (theElement < theArray[middleIndex])
rightIndex = middleIndex - 1;
else
leftIndex = middleIndex + 1;
}
return middleIndex - 1;
}
static void ModifiedBinaryInsertionSort(int[] theArray)
{
int i = 0;
int[] returnArray = new int[theArray.length + 1];
for(i = 0; i < theArray.length; i++)
{
returnArray[ModifiedBinarySearch(theArray, theArray[i])] = theArray[i];
}
for(i = 0; i < theArray.length; i++)
{
System.out.print(returnArray[i] + " ");
}
}
}
The return value I get for this when I run it is 1 0 0 0 0 2 0 0 3 5 12. Any suggestions?
UPDATE: updated ModifiedBinaryInsertionSort
static void ModifiedBinaryInsertionSort(int[] theArray)
{
int index = 0;
int element = 0;
int[] returnArray = new int[theArray.length];
for (int i = 1; i < theArray.lenght - 1; i++)
{
element = theArray[i];
index = ModifiedBinarySearch(theArray, 0, i, element);
returnArray[i] = element;
while (index >= 0 && theArray[index] > element)
{
theArray[index + 1] = theArray[index];
index = index - 1;
}
returnArray[index + 1] = element;
}
}
Here is my method to sort an array of integers using binary search.
It modifies the array that is passed as argument.
public static void binaryInsertionSort(int[] a) {
if (a.length < 2)
return;
for (int i = 1; i < a.length; i++) {
int lowIndex = 0;
int highIndex = i;
int b = a[i];
//while loop for binary search
while(lowIndex < highIndex) {
int middle = lowIndex + (highIndex - lowIndex)/2; //avoid int overflow
if (b >= a[middle]) {
lowIndex = middle+1;
}
else {
highIndex = middle;
}
}
//replace elements of array
System.arraycopy(a, lowIndex, a, lowIndex+1, i-lowIndex);
a[lowIndex] = b;
}
}
How an insertion sort works is, it creates a new empty array B and, for each element in the unsorted array A, it binary searches into the section of B that has been built so far (From left to right), shifts all elements to the right of the location in B it choose one right and inserts the element in. So you are building up an at-all-times sorted array in B until it is the full size of B and contains everything in A.
Two things:
One, the binary search should be able to take an int startOfArray and an int endOfArray, and it will only binary search between those two points. This allows you to make it consider only the part of array B that is actually the sorted array.
Two, before inserting, you must move all elements one to the right before inserting into the gap you've made.
I realize this is old, but the answer to the question is that, perhaps a little unintuitively, "Middleindex - 1" will not be your insertion index in all cases.
If you run through a few cases on paper the problem should become apparent.
I have an extension method that solves this problem. To apply it to your situation, you would iterate through the existing list, inserting into an empty starting list.
public static void BinaryInsert<TItem, TKey>(this IList<TItem> list, TItem item, Func<TItem, TKey> sortfFunc)
where TKey : IComparable
{
if (list == null)
throw new ArgumentNullException("list");
int min = 0;
int max = list.Count - 1;
int index = 0;
TKey insertKey = sortfFunc(item);
while (min <= max)
{
index = (max + min) >> 1;
TItem value = list[index];
TKey compKey = sortfFunc(value);
int result = compKey.CompareTo(insertKey);
if (result == 0)
break;
if (result > 0)
max = index - 1;
else
min = index + 1;
}
if (index <= 0)
index = 0;
else if (index >= list.Count)
index = list.Count;
else
if (sortfFunc(list[index]).CompareTo(insertKey) < 0)
++index;
list.Insert(index, item);
}
Dude, I think you have some serious problem with your code. Unfortunately, you are missing the fruit (logic) of this algorithm. Your divine goal here is to get the index first, insertion is a cake walk, but index needs some sweat. Please don't see this algorithm unless you gave your best and desperate for it. Never give up, you already know the logic, your goal is to find it in you. Please let me know for any mistakes, discrepancies etc. Happy coding!!
public class Insertion {
private int[] a;
int n;
int c;
public Insertion()
{
a = new int[10];
n=0;
}
int find(int key)
{
int lowerbound = 0;
int upperbound = n-1;
while(true)
{
c = (lowerbound + upperbound)/2;
if(n==0)
return 0;
if(lowerbound>=upperbound)
{
if(a[c]<key)
return c++;
else
return c;
}
if(a[c]>key && a[c-1]<key)
return c;
else if (a[c]<key && a[c+1]>key)
return c++;
else
{
if(a[c]>key)
upperbound = c-1;
else
lowerbound = c+1;
}
}
}
void insert(int key)
{
find(key);
for(int k=n;k>c;k--)
{
a[k]=a[k-1];
}
a[c]=key;
n++;
}
void display()
{
for(int i=0;i<10;i++)
{
System.out.println(a[i]);
}
}
public static void main(String[] args)
{
Insertion i=new Insertion();
i.insert(56);
i.insert(1);
i.insert(78);
i.insert(3);
i.insert(4);
i.insert(200);
i.insert(6);
i.insert(7);
i.insert(1000);
i.insert(9);
i.display();
}
}

Categories

Resources