Variable is null at super call - java

I'm using Java 7 and got 3 classes:
TestSuper.java
public abstract class TestSuper {
public TestSuper() {
testMethod();
}
protected abstract void testMethod();
}
TestNull.java
public class TestNull extends TestSuper {
private String test = "Test";
public TestNull() {
super();
System.out.println(test);
}
#Override
protected void testMethod() {
System.out.println(test);
}
}
TestMain.java
public class TestMain {
public static void main(String[] args) {
new TestNull();
}
}
Output:
null
Test
Why does this happen and is there a good workaround for it?

When you call new TestNull(); you're calling the constructor of the class TestNull, which it calls the super() constructor: it contains a call to the method implemented in TestNull, where you print the String field, at this time the fields of the sub-class TestNull are not yet initialized, i.e. are null.
After the super constructor call, all the fields will be initialized, and therefore the second print actually show the new value of the (initialized) string.
The key point here is that fields of a sub-class are initialized after the instantiation of the super-classes.
A workaround? It depends on what exact behaviour you desire: maybe it makes sense to NOT call the abstract method in the super constructor (i.e. in the constructor of the TestSuper class).

According to JLS 8.1.1.1 Abstract Class
A subclass of an abstract class that is not itself abstract may be
instantiated, resulting in the execution of a constructor for the
abstract class and, Therefore, the execution of the Field Initializers
for instance variables of that class.

You are calling an overridable instance method (which also calls an instance field, in your case private String test = "Test";) in the constructor. This might cause inconsistencies since the instance is not fully constructed. This is a bad practice, so avoid it:
public TestSuper() {
testMethod();
}
Please read this thread: What's wrong with overridable method calls in constructors?

you can work around this issue by moving the call of testMethod() to a separate function
public abstract class TestSuper {
public TestSuper() { }
public void callTestMethod(){
testMethod();
}
protected abstract void testMethod();
}
then call callTestMethod() on TestNull constructor
public TestNull() {
super.callTestMethod();
System.out.println(test);
}

Related

How to force my subclass constructor not to call base class constructor?

public class Base {
public Base() {
foo();
}
public void foo() {
System.out.println("Base.foo()");
}
}
public class Derived extends Base {
public Derived () {}
public void foo() {
System.out.println("Derived.foo()");
}
}
And then, when i call those:
public class Running {
public static void main(String[] args) {
Base b = new Base();
Derived d = new Derived();
}
}
It outputs:
*Base.foo()*
*Derived.foo()*
So why, when it gets to derived constructor, it invokes the base constructor but uses the derived's method instead?
PS: If I mark those methods as private, it will print out:
*Base.foo()*
*Base.foo()*
This is how Java works read this page https://docs.oracle.com/javase/tutorial/java/IandI/super.html
And more specifically the Note here :
Note: If a constructor does not explicitly invoke a superclass
constructor, the Java compiler automatically inserts a call to the
no-argument constructor of the superclass. If the super class does not
have a no-argument constructor, you will get a compile-time error.
Object does have such a constructor, so if Object is the only
superclass, there is no problem.
So as you can see this is expected behavior. Even though you dot have a super call it is still automatically inserting it.
In regards of the second Question even though you are within the super constructor body still you Instance is of the Subtype. Also if you have some familiarity with C++ read this Can you write virtual functions / methods in Java?
The reason why it will write the base class when marking with private is because private methods are not Inherited. This is part of the Inheritance in Java topic.
To answer the question in your title. As I said, you cannot avoid the base class constructor being called (or one of the base class constructors if it has more than one). You can of course easily avoid the body of the constructor being executed. For example like this:
public class Base {
public Base(boolean executeConstructorBody) {
if (executeConstructorBody) {
foo();
}
}
public void foo() {
System.out.println("Base.foo()");
}
}
public class Derived extends Base {
public Derived() {
super(false);
}
public void foo() {
System.out.println("Derived.foo()");
}
}
public class Running {
public static void main(String[] args) {
Base b = new Base(true);
Derived d = new Derived();
}
}
Now the main method prints only:
Base.foo()
Because in the contructor of the Derived class it automatically gets injected a call to super(), if you do not add a call to super or to other constructor in the same class (using this).

Does object in java created on heap before Constructor is invoked?

When overridden methods are called from the Constructor of the base class then also as per the run time polymorphism concept the method defined in the sub class gets invoked. I wonder as how this is taken care of in the JVM, when control is in the base class constructor the constructor of the sub class is yet to be called and hence Object is not yet completely constructed.
I understand the ill effects of calling overriden methods from base class constructor but just wish to understand as how this is made possible.
I feel object in the heap is created before constructor is invoked and as constructor is invoked the properties are initialized. Please provide your valuable inputs for the above.
Below is the code demonstrating the same.
Base.java
public class Base {
public Base() {
System.out.println("Base constructor is executing...");
someMethod();
}
public void someMethod() {
System.out.println("someMethod defined in Base class executing...");
}
}
Sub.java
public class Sub extends Base{
public Sub() {
System.out.println("Sub constructor is executing...");
}
#Override
public void someMethod() {
System.out.println("someMethod defined in Sub class executing...");
}
}
Client.java
public class Client {
public static void main(String[] args) {
Sub obj = new Sub();
}
}
Output on console is
Base constructor is executing...
someMethod defined in Sub class executing...
Sub constructor is executing...
Does object in java created before Constructor is invoked ?
Yes, otherwise you would not have an object to initialise.
At the byte code level, the object is created first, and then the constructor is called, passing in the object to initialise. The internal name for a constructor is <init> and it's return type is always void meaning it doesn't return the object, only initialise it.
Note: Unsafe.allocateInstance will create an object without calling a constructor and is useful for de-serialization.

overriding protected method of Superclass

In the below example why does the String b prints null and String c prints "gg".
Correct me if I am wrong, whenever a subclass (BClass) overrides a protected method (i.e initClass()) of the superclass (AClass).If you instantiate the subclass. The superclass must make use of overriden method specified by the subclass.
public class Example {
public class AClass {
private String a;
public AClass() {
initClass();
}
protected void initClass() {
a = "randomtext";
}
}
public class BClass extends AClass {
private String b = null;
private String c;
#Override
protected void initClass() {
b = "omg!";
c = "gg";
}
public void bValue() {
System.out.println(b); // prints null
System.out.println(c); // prints "gg"
}
}
public static void main(String[] args) {
Example.BClass b = new Example().new BClass();
b.bValue();
}
}
As of the JSF 12.5
In the example you can see the execution order. The first steps are the callings of the Constructor down to the Object constructor.
Afterwards this happens:
Next, all initializers for the instance variables of class [...] are executed.
Since your instance variable b is initialized to null it will be null again afterwards
This is happening because the superclass constructor is called before the fields of ClassB is initialized. Hence the initClass() method is called which sets b = "omg!" but then again when the super class constructor returns, b is initialized to the value declared in ClassB which is null.
To debug, put a break point and go step by step, you will find that b is first set to null and then changes to omg! and then comes back to null.
There have been already given several correct answers about what's happening. I just wanted to add that it is generally bad practice to call overridden methods from constructor (except of course if you know exactly what you are doing). As you can see, the subclass may not be completely initialised at the time its instance method is invoked (subclass constructor logic has not been executed yet, so effectively overridden method is invoked on an unconstructed object which is dangerous) which might lead to confusions like the one described in this question.
It is much better to write initialisation logic in the constructor and if it is too long then divide it between several private methods invoked from the constructor.
This is happening like this because, first constructor of AClass, which set value of b = omg! and c=gg. After that When BClass gets load in memory it set b=null and c remain as it is which is gg, this is happening because, because in BClass, for b you are doing declaration as well as initialization and for c you are doing only declaration, so as c is already in the memory it even won't get it's default value and as you are not doing any initialization for c, it remain with it's earlier state.
I believe that this example explains the issue:
public class Main {
private static class PrintOnCreate {
public PrintOnCreate(String message) {
System.out.println(message);
}
}
private static class BaseClass {
private PrintOnCreate member =
new PrintOnCreate("BaseClass: member initialization");
static {
System.out.println("BaseClass: static initialization");
}
public BaseClass() {
System.out.println("BaseClass: constructor");
memberCalledFromConstructor();
}
public void memberCalledFromConstructor() {
System.out.println("BaseClass: member called from constructor");
}
}
private static class DerivedClass extends BaseClass {
private PrintOnCreate member =
new PrintOnCreate("DerivedClass: member initialization");
static {
System.out.println("DerivedClass: static initialization");
}
public DerivedClass() {
System.out.println("DerivedClass: constructor");
}
#Override
public void memberCalledFromConstructor() {
System.out.println("DerivedClass: member called from constructor");
}
}
public static void main (String[] args) {
BaseClass obj = new DerivedClass();
}
}
The output from this program is:
BaseClass: static initialization
DerivedClass: static initialization
BaseClass: member initialization
BaseClass: constructor
DerivedClass: member called from constructor
DerivedClass: member initialization
DerivedClass: constructor
... which demonstrates that the derived class's members are initialized after the base class's constructor (and the invocation of the derived class's member function have completed). This also demonstrates a key danger of invoking an overridable function from a constructor, namely that the function can be invoked before the members of the class on which it depends have been initialized. For this reason, constructors should generally avoid invoking member functions (and, when they do, those functions should either be final or static, so that they either depend only on the current class which has been initialized or on none of the instance variables).

Overriding a base class method in a derived class

I have a base class A, having a method "say" that calls from constructor of A. All the heritable classes uses the method "say" like it is. But one of the classes need to redefine this method. How is it possible?
For sure, I can denote base method "say" as abstract, but in that way, i have to copy the same method "say" in all the heritable classes.
If i just redefine method without denoting base one as abstract, it is not gonna be called.
public abstract class A(){
public A(){
say(); // <- wanna call this method from heritable class, if its redefined.
}
protected void say(){};
}
public class B extends A(){
public B(){
super();
}
private void say(){};
}
refactoring 1
public abstract class A(){
public A(){
// constructor methods
}
protected void say(){};
protected void executeSay(){
say();
}
}
public class B extends A(){
public B(){
super();
executeSay();
}
#Override
protected void say(){};
}
First of all one must be made clear: calling an overridable method from a constructor is a well-known antipattern. It will almost certainly break your code because the subclass method will be invoked before the subclass constructor is done and so will observe an uninitialized object. Thus I should better refrain from giving you detailed advice on Java technicalities involved in achieving this antipattern.
The only safe way to acomplish your requirement is to let the construction finish and only afterwards call an initialize-kind of method. If you want to ensure initialize is always invoked, make the constructors non-public and provide a factory method instead.
Unfortunately, Java requires quite a bit of work on your part to make this work properly.
You cannot instantiate a abstract class. That saying you have to link the abstract class reference to the concrete inherited class.
eg. A a = new B();
If that's the case, and B have redefined the say() method, then the say method in B will be called.
public class TestPad {
public static void main(String[] args) {
A a = new B();
}
}
abstract class A {
public A() {
say();
}
public void say(){
System.out.println("A");
};
}
class B extends A {
public B() {
super();
}
public void say() {
System.out.println("B");
}
}
The output will be B
public class B extends A {
public B() {
super();
}
#Override
protected void say() {
// your diffent say code
};
}
I'm not sure if you are allowed to reduce visibility to private.
Because of polymorphic method invocation, in your case the B.say() will be invoked if you override it.
But as #sanbhat commented, you need to change visibility of say() to protected.

Static method override

class XYZ{
public static void show(){
System.out.println("inside XYZ");
}
}
public class StaticTest extends XYZ {
public static void show() {
System.out.println("inside statictest");
}
public static void main(String args[]){
StaticTest st =new StaticTest();
StaticTest.show();
}
}
though we know static methods cant be overridden. Then what actually is happening?
Static methods belong to the class. They can't be overridden. However, if a method of the same signature as a parent class static method is defined in a child class, it hides the parent class method. StaticTest.show() is hiding the XYZ.show() method and so StaticTest.show() is the method that gets executed in the main method in the code.
Its not overriding they are two different method in two different class with same signature. but method from XYZ isn't available in child class through inheritance .
It will call method from StaticTest
It's not overriden properly said... Static methods are 'tied' to the class so
StaticTest.show();
and
XYZ.show();
are two totally different things. Note you can't invoke super.show()
To see the difference you have to use more powerful example:
class Super {
public static void hidden(Super superObject) {
System.out.println("Super-hidden");
superObject.overriden();
}
public void overriden() {
System.out.println("Super-overriden");
}
}
class Sub extends Super {
public static void hidden(Super superObject) {
System.out.println("Sub-hidden");
superObject.overriden();
}
public void overriden() {
System.out.println("Sub-overriden");
}
}
public class Test {
public static void main(String[] args) {
Super superObject = new Sub();
superObject.hidden(superObject);
}
}
As Samit G. already have written static methods with same signature in both base and derived classes hide the implementation and this is no-overriding. You can play a bit with the example by changing the one or the another of the static methods to non-static or changing them both to non-static to see what are the compile-errors which the java compiler rises.
It's not an override, but a separate method that hides the method in XYZ.
So as I know, any static member (method or state) is an attribute of a class, and would not be associated with any instance of a class. So in your example, XYZ is a class, and so is StaticTest (as you know). So by calling the constructor two things first happen. An Object of type Class is created. It has a member on it call showed(). Class, XYZ.class, extends from Object so has all those Object methods on it plus show(). Same with the StaticClass, the class object has show() on it as well. They both extend java.lang.Object though. An instance of StaticClass would also be an instance of XYZ. However now the more interesting question would be what happens when you call show() on st?
StaticClass st = new StaticClass();
st.show();
XYZ xyz = st;
xyz.show();
What happens there? My guess is that it is StaticClass.show() the first time and XYZ.show() the second.
Static methods are tied to classes and not instances (objects).
Hence the invocations are always ClassName.staticMethod();
When such a case of same static method in a subclass appears, its called as refining (redefining) the static method and not overriding.
// Java allows a static method to be called from an Instance/Object reference
// which is not the case in other pure OOP languages like C# Dot net.
// which causes this confusion.
// Technically, A static method is always tied to a Class and not instance.
// In other words, the binding is at compile-time for static functions. - Early Binding
//
// eg.
class BaseClass
{
public static void f1()
{
System.out.println("BaseClass::f1()...");
} // End of f1().
}
public class SubClass extends BaseClass
{
public static void f1()
{
System.out.println("SubClass::f1()...");
// super.f1(); // non-static variable super cannot be referenced from a static context
} // End of f1().
public static void main(String[] args)
{
f1();
SubClass obj1 = new SubClass();
obj1.f1();
BaseClass b1 = obj1;
b1.f1();
} // End of main().
} // End of class.
// Output:
// SubClass::f1()...
// SubClass::f1()...
// BaseClass::f1()...
//
//
// So even though in this case, called with an instance b1 which is actually referring to
// an object of type SuperClass, it calls the BaseClass:f1 method.
//

Categories

Resources