Java Profiling Issue - java

I have a Java application and one of the methods is performance-critical.
I created a loop to call this method 10 times and I am checking for performance issues by using the profiler for every iteration. It turned out that the execution time decreases by iterations. Thus, the 10th iteration has a smaller execution time than then 9th iteration.
Any idea why such case is happening?
Could it be due to the loop overheads?

You are warming the CPU caches, and the JVM thus the performance changes.
Profillers put the JVM into an unusual mode, and depending on what profiler approach you are using then it may only be sampling at a regular interval.
I find that profillers are good for giving you relative measurements and to improve your understanding of the code; but always take their reading with a pinch of salt.
Do not trust just a single measurement.
Outside of using profillers, microbenchmarking is a good way to go. Although it is a very tricky subject.
Note that Hotspot tends not to kick in and optimise the byte codes until the target code has been called 10,000 or more times.
http://java.dzone.com/articles/microbenchmarking-java, and How do I write a correct micro-benchmark in Java? may help to get you started. There is also a lot of good advice on the Mechanical Sympathy Forum.
A good microbenchmarking framework is here http://openjdk.java.net/projects/code-tools/jmh/, it helps keep GC, and other JVM stop-the-world events out of the timings. As well as some guidence on how to prevent Hotspot from optimising out the very code that you are trying to measure.

Related

Why does Java CPU profile (using visualvm) show so many hits on a method that does nothing?

This is something I think I've seen before with other profiling tools in other environments, but it's particularly dramatic in this case.
I'm taking a CPU profile of a task that runs for about 12 minutes, and it's showing almost half the time spent in a method that literally does nothing: it's got an empty body. What can cause this? I don't believe that the method is being called a ridiculous number of times, certainly not to account for half the execution time.
For what it's worth, the method in question is called startContent() and it's used to notify a parsing event. The event is passed down a chain of filters (perhaps a dozen of them), and the startContent() method on each filter does almost nothing except to call startContent() on the next filter in the chain.
This is pure Java code, and I'm running it on a Mac.
Attached is a screen shot of the CPU sampler output:
and here is a sample showing the call stack:
(After a delay due to vacation) Here are a couple of pictures showing the output from the profiler. These figures are much more what I would expect the profile to look like. The profiler output seems entirely meaningful, while the sampler output is spurious.
As some of you will have guessed, the job in question is a run of the Saxon XML schema validator (on a 9Gb input file). The profile shows about half the time being spent validating element content against simple types (which happens during endElement processing) and about half being spent testing key constraints for uniqueness; the two profiler views show highlight the activity involved in these two aspects of the task.
I'm not able to supply the data as it comes from a client.
I have not used VisualVM, but I suspect the problem is likely because of the instrumentation overhead on such an empty method. Here's the relevant passage in JProfiler's documentation (which I have used extensively):
If the method call recording type is set to Dynamic instrumentation, all methods of profiled classes are instrumented. This creates some overhead which is significant for methods that have very short execution times. If such methods are called very frequently, the measured time of those method will be far to high. Also, due to the instrumentation, the hot spot compiler might be prevented from optimizing them. In extreme cases, such methods become the dominant hot spots although this is not true for an uninstrumented run. An example is the method of an XML parser that reads the next character. This method returns very quickly, but may be invoked millions of times in a short time span.
Basically, a profiler adds it's own "time length detection code", essentially, but in an empty method the profiler will spend all it's time doing that rather than actually allowing the method to run.
I recommend, if it's possible, to tell VisualVM to stop instrumenting that thread, if it supports such a filtering.
It is generally assumed that using a profiler is much better (for finding performance problems, as opposed to measuring things) than - anything else, really - certainly than the bone-simple way of random pausing.
This assumption is only common wisdom - it has no basis in theory or practice.
There are numerous scholarly peer-reviewed papers about profiling, but none that I've read even address the point, let alone substantiate it.
It's a blind spot in academia, not a big one, but it's there.
Now to your question -
In the screenshot showing the call stack, that is what's known as the "hot path", accounting for roughly 60% of in-thread CPU time. Assuming the code with "saxon" in the name is what you're interested in, it is this:
net.sf.saxon.event.ReceivingContentHandler.startElement
net.sf.saxon.event.ProxyReceiver.startContent
net.sf.saxon.event.ProxyReceiver.startContent
net.sf.saxon.event.StartTagBuffer.startContent
net.sf.saxon.event.ProxyReceiver.startContent
com.saxonica.ee.validate.ValidationStack.startContent
com.saxonica.ee.validate.AttributeValidator.startContent
net.sf.saxon.event.TeeOutputter.startContent
net.sf.saxon.event.ProxyReceiver.startContent
net.sf.saxon.event.ProxyReceiver.startContent
net.sf.saxon.event.Sink.startContent
First, this looks to me like it has to be doing I/O, or at least waiting for some other process to give it content. If so, you should be looking at wall-clock time, not CPU time.
Second, the problem(s) could be at any of those call sites where a function calls the one below. If any such call is not truly necessary and could be skipped or done less often, it will reduce time by a significant fraction.
My suspicion is drawn to StartTagBuffer and to validate, but you know best.
There are other points I could make, but these are the major ones.
ADDED after your edit to the question.
I tend to assume you are looking for ways to optimize the code, not just ways to get numbers for their own sake.
It still looks like only CPU time, not wall-clock time, because there is no I/O in the hot paths. Maybe that's OK in your case, but what it means is, of your 12-minute wall clock time, 11 minutes could be spent in I/O wait, with 1 minute in CPU. If so, you could maybe cut out 30 seconds of fat in the CPU part, and only shorten the time by 30 seconds.
That's why I prefer sampling on wall-clock time, so I have overall perspective.
By looking at hot paths alone, you're not getting a true picture.
For example, if the hot path says function F is on the hot path for, say 40% of the time, that only means F costs no less than 40%. It could be much more, because it could be on other paths that aren't so hot. So you could have a juicy opportunity to speed things up by a lot, but it doesn't get much exposure in the specific path that the profiler chose to show you, so you don't give it much attention.
In fact, a big time-taker might not show up at all because on any specific hot path there's always something else a little bigger, like new, or because it goes by multiple names, such as templated collection class constructors.
It's not showing you any line-resolution information.
If you want to inspect a supposedly high-cost routine for the reason for the cost, you have to look at the lines within it. There's a tendency when looking at a routine to say "It's just doing what it's supposed to do.", but if you are looking at a specific costly line of code, which most often is a method call, you can ask "Is it really necessary to do this call? Maybe I already have the information." It's far more specific in suggesting what you could fix.
Can it actually show you some raw stack samples?
In my experience these are far more informative than any summary, like a hot path, that the profiler can present.
The thing to do is examine the sample and come to a full understanding of what the program was doing, and the reason why, at that point in time.
Then repeat for several more samples.
You will see things that don't need to be done, that you can fix to get substantial speedup.
(Unless the code is already optimal, in which case it will be nice to know.)
The point is, you're looking for problems, not measurements.
Statistically, it's very rough, but good enough, and no problem will escape.
My guess is that the method Sink.startContent actually is called a ridiculous number of times.
Your screenshot shows the Sampling tab, which usually results in realistic timings if user over a long enoung interval. If you use Profiler tab instead, you will also get the invocation count. (You'll also get less realistic timings and your program will get very very slow, but you only need to do this for a few seconds to get a good idea about the invocation counts).
It's hard to predict what optimizations and especially inlining HotSpot performs, and the sampling profiler can only attribute the time of inlined methods to the call sites. I suspect that some of the invocation code in saxon might for some reason be attributed to your empty callback function. In that case, you're just suffering the cost of XML, and switching to a different parser might be the only option.
I've had a lot of useful information and guidance from this thread, for which many thanks. However, I don't think the core question has been answered: why is the CPU sampling in VisualVM giving an absurdly high number of hits in a method that does nothing, and that isn't called any more often than many other methods?
For future investigations I will rely on the profiler rather than the sampler, now I have gained a bit of insight into how they differ.
From the profiler I haven't really gained a lot of new information about this specific task, in so far as it has largely confirmed what I would have guessed; but that itself is useful. It has told me that there's no magic bullet to speeding up this particular process, but has put bounds on what might be achieved by some serious redesign, e.g a possible future enhancement that appears to have some promise is generating a bytecode validator for each user-defined simple type in the schema.

Measuring method time

I want to optimize a method so it runs in less time. I was using System.currentTimeMillis() to calculate the time it lasted.
However, I just read the System.currentTimeMillis() Javadoc and it says this:
This method shouldn't be used for measuring timeouts or other elapsed
time measurements, as changing the system time can affect the results.
So, if I shouldn't use it to measure the elapsed time, how should I measure it?
Android native Traceview will help you measuring the time and also will give you more information.
Using it is as simple as:
// start tracing to "/sdcard/calc.trace"
Debug.startMethodTracing("calc");
// ...
// stop tracing
Debug.stopMethodTracing();
A post with more information in Android Developers Blog
Also take #Rajesh J Advani post into account.
There are a few issues with System.currentTimeMillis().
if you are not in control of the system clock, you may be reading the elapsed time wrong.
For server code or other long running java programs, your code is likely going to be called in over a few thousand iterations. By the end of this time, the JVM will have optimized the bytecode to the extent where the time taken is actually a lot lesser than what you measured as part of your testing.
It doesn't take into account the fact that there might be other processes on your computer or other threads in the JVM that compete for CPU time.
You can still use the method, but you need to keep the above points in mind. As others have mentioned, a profiler is a much better way of measuring system performance.
Welcome to the world of benchmarking.
As others point out - techniques based on timing methods like currentTimeMillis will only tell you elapsed time, rather than how long the method spent in the CPU.
I'm not aware of a way in Java to isolate timings of a method to how long it spent on the CPU - the answer is to either:
1) If the method is long running (or you run it many times, while using benchmarking rules like do not discard every result), use something like the "time" tool on Linux (http://linux.die.net/man/1/time) who will tell you how long the app spent on the CPU (obviously you have to take away the overhead of the application startup etc).
2) Use a profiler as others pointed out. This has dangers such as adding too much overhead using tracing techniques - if it uses stack sampling, it won't be 100% accurate
3) Am not sure how feasible this is on android - but you could get your bechmark running on a quiet multicore system and isolate a core (or ideally whole socket) to only be able to run your application.
You can use something called System.nanoTime(). As given here
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/System.html#nanoTime()
As the document says
This method can only be used to measure elapsed time and is not related to any other notion of system or wall-clock time.
Hope this will help.
SystemClock.elapsedRealtime()
Quoting words in the linked page: elapsedRealtime() and elapsedRealtimeNanos() return the time since the system was booted, and include deep sleep. This clock is guaranteed to be monotonic, and continues to tick even when the CPU is in power saving modes, so is the recommend basis for general purpose interval timing.

Methods of limiting emulated cpu speed

I'm writing a MOS 6502 processor emulator as part of a larger project I've undertaken in my spare time. The emulator is written in Java, and before you say it, I know its not going to be as efficient and optimized as if it was written in c or assembly, but the goal is to make it run on various platforms and its pulling 2.5MHZ on a 1GHZ processor which is pretty good for an interpreted emulator. My problem is quite to the contrary, I need to limit the number of cycles to 1MHZ. Ive looked around but not seen many strategies for doing this. Ive tried a few things including checking the time after a number of cycles and sleeping for the difference between the expected time and the actual time elapsed, but checking the time slows down the emulation by a factor of 8 so does anyone have any better suggestions or perhaps ways to optimize time polling in java to reduce the slowdown?
The problem with using sleep() is that you generally only get a granularity of 1ms, and the actual sleep that you will get isn't necessarily even accurate to the nearest 1ms as it depends on what the rest of the system is doing. A couple of suggestions to try (off the top of my head-- I've not actually written a CPU emulator in Java):
stick to your idea, but check the time between a large-ish number of emulated instructions (execution is going to be a bit "lumpy" anyway especially on a uniprocessor machine, because the OS can potentially take away the CPU from your thread for several milliseconds at a time);
as you want to execute in the order of 1000 emulated instructions per millisecond, you could also try just hanging on to the CPU between "instructions": have your program periodically work out by trial and error how many runs through a loop it needs to go between instructions to "waste" enough CPU to make the timing work out at 1 million emulated instructions / sec on average (you may want to see if setting your thread to low priority helps system performance in this case).
I would use System.nanoTime() in a busy wait as #pst suggested earlier.
You can speed up the emulation by generating byte code. Most instructions should translate quite well and you can add a busy wait call so each instruction takes the amount of time the original instruction would have done. You have an option to increase the delay so you can watch each instruction being executed.
To make it really cool you could generate 6502 assembly code as text with matching line numbers in the byte code. This would allow you to use the debugger to step through the code, breakpoint it and see what the application is doing. ;)
A simple way to emulate the memory is to use direct ByteBuffer or native memory with the Unsafe class to access it. This will give you a block of memory you can access as any data type in any order.
You might be interested in examining the Java Apple Computer Emulator (JACE), which incorporates 6502 emulation. It uses Thread.sleep() in its TimedDevice class.
Have you looked into creating a Timer object that goes off at the cycle length you need it? You could have the timer itself initiate the next loop.
Here is the documentation for the Java 6 version:
http://download.oracle.com/javase/6/docs/api/java/util/Timer.html

How to measure java performance on the i7?

I'm trying to do a typical "A/B testing" like approach on two different implementations of a real-life algorithm, using the same data-set in both cases. The algorithm is deterministic in terms of execution, so I really expect the results to be repeatable.
On the Core 2 Duo, this is also the case. Using just the linux "time" command I'll get variations in execution time around 0.1% (over 10 runs).
On the i7 I will get all sorts of variations, and I can easily have 30% variations up and down from the average. I assume this is due to the various CPU optimizations that the i7 does (dynamic overclocking etc), but it really makes it hard to do this kind of testing. Is there any other way to determine which of 2 algorithms is "best", any other sensible metrics I can use ?
Edit: The algorithm does not sustain for very long and this is actually the real-life scenario I'm trying to benchmark. So running repeatedly is not really an option as such.
See if you can turn off the dynamic over-clocking in your BIOS. Also, ditch all possible other processes running when doing the benchmarking.
Well you could use O-notation principles in determining the performance of algorithms. This will determine the theoretical speed of an algorithm.
http://en.wikipedia.org/wiki/Big_O_notation
If you absolutely must know the real life speed of the alogorithm, then ofc you must benchmark it on a system. But using the O-notation you can see past all that and only focus on the factors/variables that are important.
You didn't indicate how you're benchmarking. You might want to read this if you haven't yet: How do I write a correct micro-benchmark in Java?
If you're running a sustained test I doubt dynamic clocking is causing your variations. It should stay at the maximum turbo speed. If you're running it too long perhaps it's going down one multiplier for heat. Although I doubt that, unless you're over-clocking and are near the thermal envelope.
Hyper-Threading might be playing a role. You could disable that in your BIOS and see if it makes a difference in your numbers.
On linux you can lock the CPU speed to stop clock speed variation. ;)
You need to make the benchmark as realistic as possible. For example, if you run an algorithm flat out and take an average it you might get very different results from performing the same tasks every 10 ms. i.e. I have seen 2x to 10x variation (between flat out and relatively low load), even with a locked clock speed.

Debugging visually using >>, >, >|, ||, |<, <, <<

Debugging performance problems using a standard debugger is almost hopeless since the level of detail is too high. Other ways are using a profiler, but they seldom give me good information, especially when there is GUI and background threads involved, as I never know whether the user was actually waiting for the computer, or not. A different way is simply using Control + C and see where in the code it stops.
What I really would like is to have Fast Forward, Play, Pause and Rewind functionality combined with some visual repressentation of the code. This means that I could set the code to run on Fast Forward until I navigate the GUI to the critical spot. Then I set the code to be run in slow mode, while I get some visual repressentation of, which lines of are being executed (possibly some kind of zoomed out view of the code). I could for example set the execution speed to something like 0.0001x. I believe that I would get a very good visualization this way of whether the problem is inside a specific module, or maybe in the communication between modules.
Does this exist? My specific need is in Python, but I would be interested in seeing such functionality in any language.
The "Fast Forward to critical spot" function already exists in any debugger, it's called a "breakpoint". There are indeed debuggers that can slow down execution, but that will not help you debug performance problems, because it doesn't slow down the computer. The processor and disk and memory is still exactly as slow as before, all that happens is that the debugger inserts delays between each line of code. That means that every line of code suddenly take more or less the same time, which means that it hides any trace of where the performance problem is.
The only way to find the performance problems is to record every call done in the application and how long it took. This is what a profiler does. Indeed, using a profiler is tricky, but there probably isn't a better option. In theory you could record every call and the timing of every call, and then play that back and forwards with a rewind, but that would use an astonishing amount of memory, and it wouldn't actually tell you anything more than a profiler does (indeed, it would tell you less, as it would miss certain types of performance problems).
You should be able to, with the profiler, figure out what is taking a long time. Note that this can be both by certain function calls taking a long time because they do a lot of processing, or it can be system calls that take a long time becomes something (network/disk) is slow. Or it can be that a very fast call is called loads and loads of times. A profiler will help you figure this out. But it helps if you can turn the profiler on just at the critical section (reduces noise) and if you can run that critical section many times (improves accuracy).
The methods you're describing, and many of the comments, seem to me to be relatively weak probabilistic attempts to understand the performance impact. Profilers do work perfectly well for GUIs and other idle-thread programs, though it takes a little practice to read them. I think your best bet is there, though -- learn to use the profiler better, that's what it's for.
The specific use you describe would simply be to attach the profiler but don't record yet. Navigate the GUI to the point in question. Hit the profiler record button, do the action, and stop the recording. View the results. Fix. Do it again.
I assume there is a phase in the app's execution that takes too long - i.e. it makes you wait.
I assume what you really want is to see what you could change to make it faster.
A technique that works is random-pausing.
You run the app under the debugger, and in the part of its execution that makes you wait, pause it, and examine the call stack. Do this a few times.
Here are some ways your program could be spending more time than necessary.
I/O that you didn't know about and didn't really need.
Allocating and releasing objects very frequently.
Runaway notifications on data structures.
others too numerous to mention...
No matter what it is, when it is happening, an examination of the call stack will show it.
Once you know what it is, you can find a better way to do it, or maybe not do it at all.
If the program is taking 5 seconds when it could take 1 second, then the probability you will see the problem on each pause is 4/5. In fact, any function call you see on more than one stack sample, if you could avoid doing it, will give you a significant speedup.
AND, nearly every possible bottleneck can be found this way.
Don't think about function timings or how many times they are called. Look for lines of code that show up often on the stack, that you don't need.
Example Added: If you take 5 samples of the stack, and there's a line of code appearing on 2 of them, then it is responsible for about 2/5 = 40% of the time, give or take. You don't know the precise percent, and you don't need to know.
(Technically, on average it is (2+1)/(5+2) = 3/7 = 43%. Not bad, and you know exactly where it is.)

Categories

Resources