public default constructor error in JAX-RPC 1.1 - java

I wrote a web service and i got this error. How can i fix this error ?
The service class "com.argedor.ttnetMusic.recommendationWebService.Recommender" does not comply to one or more requirements of the JAX-RPC 1.1 specification, and may not deploy or function correctly.
The value type "org.apache.spark.mllib.recommendation.Rating" used via the service class "com.argedor.ttnetMusic.recommendationWebService.Recommender" does not have a public default constructor. Chapter 5.4 of the JAX-RPC 1.1 specification requires a value type to have a public default constructor, otherwise a JAX-RPC 1.1 compliant Web service engine may be unable to construct an instance of the value type during deserialization.

The problem is with the class org.apache.spark.mllib.recommendation.Rating which does not contain a default constructor.
i.e.
public Rating() {}
However, it would appear that this class is not part of your code and hence you cannot add it.
So, my question would be why are you passing a third party type over your web service interface? This does not seem like a good idea to me. You want to have complete control over this interface and the types on it.
Perhaps you could come up with your own type, ensuring it has a default constructor defined and then on receipt, map the data from it to the type org.apache.spark.mllib.recommendation.Rating.

Related

JAX-RS - package private classes

I'm using JAX-RS for exposing REST endpoints.
To maintain a good package state I'd like to have my DTO classes (the one I return as Json and accept from Json) as package-private.
Does JAX-RS require those classes to be always public?
I'd like to apply the same thing to my custom Exception Mapper (#Provider annotated).
According to JAX-RS 2.0 specification (ch. 04, p. 27):
4.1.2 Constructors
Provider classes that are instantiated by the JAX-RS runtime and MUST
have a public constructor for which the JAX-RS runtime can provide all
parameter values. Note that a zero argument constructor is permissible
under this rule.
Effectively public ctors can only exists in public classes.
As discussed, this is a vendor-specific question, but any vendor which allows registering package-private provider doesn't truly follow the specification.

How do entities relate to beans in Java? [duplicate]

I understood, I think, that a "Bean" is a Java-class with properties and getters/setters.
As much as I understand, it is the equivalent of a C struct. Is that true?
Also, is there a real syntactic difference between a JavaBean and a regular class?
Is there any special definition or an Interface?
Basically, why is there a term for this?
Also what does the Serializable interface mean?
A JavaBean is just a standard. It is a regular Java class, except it follows certain conventions:
All properties are private (use getters/setters)
A public no-argument constructor
Implements Serializable.
That's it. It's just a convention. Lots of libraries depend on it though.
With respect to Serializable, from the API documentation:
Serializability of a class is enabled by the class implementing the
java.io.Serializable interface. Classes that do not implement this
interface will not have any of their state serialized or deserialized.
All subtypes of a serializable class are themselves serializable. The
serialization interface has no methods or fields and serves only to
identify the semantics of being serializable.
In other words, serializable objects can be written to streams, and hence files, object databases, anything really.
Also, there is no syntactic difference between a JavaBean and another class -- a class is a JavaBean if it follows the standards.
There is a term for it, because the standard allows libraries to programmatically do things with class instances you define in a predefined way. For example, if a library wants to stream any object you pass into it, it knows it can because your object is serializable (assuming the library requires your objects be proper JavaBeans).
There's a term for it to make it sound special. The reality is nowhere near so mysterious.
Basically, a "Bean":
is a serializable object (that is, it implements java.io.Serializable, and does so correctly), that
has "properties" whose getters and setters are just methods with certain names (like, say, getFoo() is the getter for the "Foo" property), and
has a public zero-argument constructor (so it can be created at will and configured by setting its properties).
As for Serializable: That is nothing but a "marker interface" (an interface that doesn't declare any functions) that tells Java that the implementing class consents to (and implies that it is capable of) "serialization" -- a process that converts an instance into a stream of bytes. Those bytes can be stored in files, sent over a network connection, etc., and have enough information to allow a JVM (at least, one that knows about the object's type) to reconstruct the object later -- possibly in a different instance of the application, or even on a whole other machine!
Of course, in order to do that, the class has to abide by certain limitations. Chief among them is that all instance fields must be either primitive types (int, bool, etc.), instances of some class that is also serializable, or marked as transient so that Java won't try to include them. (This of course means that transient fields will not survive the trip over a stream. A class that has transient fields should be prepared to reinitialize them if necessary.)
A class that can not abide by those limitations should not implement Serializable (and, IIRC, the Java compiler won't even let it do so.)
JavaBeans are Java classes which adhere to an extremely simple coding convention.
All you have to do is to
implement the java.io.Serializable interface - to save the state of an
object
use a public empty argument constructor - to instantiate the object
provide public getter/setter methods - to get and set the values of private variables (properties).
Properties of JavaBeans
A JavaBean is a Java object that satisfies certain programming conventions:
The JavaBean class must implement either Serializable or
Externalizable
The JavaBean class must have a no-arg constructor
All JavaBean properties must have public setter and getter methods
All JavaBean instance variables should be private
Example of JavaBeans
#Entity
public class Employee implements Serializable{
#Id
private int id;
private String name;
private int salary;
public Employee() {}
public Employee(String name, int salary) {
this.name = name;
this.salary = salary;
}
public int getId() {
return id;
}
public void setId( int id ) {
this.id = id;
}
public String getName() {
return name;
}
public void setName( String name ) {
this.name = name;
}
public int getSalary() {
return salary;
}
public void setSalary( int salary ) {
this.salary = salary;
}
}
Explanation with an example.
1. import java.io.Serializable
As for the Serialization, see the documentation.
2. private fields
Fields should be private for prevent outer classes to easily modify those fields.
Instead of directly accesing to those fields, usuagly getter/setter methods are used.
3. Constructor
A public constructor without any argument.
4. getter/setter
Getter and setter methods for accessing and modifying private fields.
/** 1. import java.io.Serializable */
public class User implements java.io.Serializable {
/** 2. private fields */
private int id;
private String name;
/** 3. Constructor */
public User() {
}
public User(int id, String name) {
this.id = id;
this.name = name;
}
/** 4. getter/setter */
// getter
public int getId() {
return id;
}
public String getName() {
return name;
}
// setter
public void setId(int id) {
this.id = id;
}
public void setName(String name) {
this.name = name;
}
}
Java Beans are used for a less code and more work approach...
Java Beans are used throughout Java EE as a universal contract for runtime discovery and access. For example, JavaServer Pages (JSP) uses Java Beans as data transfer objects between pages or between servlets and JSPs. Java EE's JavaBeans Activation Framework uses Java Beans for integrating support for MIME data types into Java EE. The Java EE Management API uses JavaBeans as the foundation for the instrumentation of resources to be managed in a Java EE environment.
About Serialization:
In object serialization an object can be represented as a sequence of bytes that includes the object's data as well as information about the object's type and the types of data stored in the object.
After a serialized object has been written into a file, it can be read from the file and deserialized that is, the type information and bytes that represent the object and its data can be used to recreate the object in memory.
You will find serialization useful when deploying your project across multiple servers since beans will be persisted and transferred across them.
Just a little background/update on the bean concept. Many other answers actually have the what but not so much why of them.
They were invented early on in Java as part of building GUIs. They followed patterns that were easy for tools to pull apart letting them create a properties panel so you could edit the attributes of the Bean. In general, the Bean properties represented a control on the screen (Think x,y,width,height,text,..)
You can also think of it as a strongly typed data structure.
Over time these became useful for lots of tools that used the same type of access (For example, Hibernate to persist data structures to the database)
As the tools evolved, they moved more towards annotations and away from pulling apart the setter/getter names. Now most systems don't require beans, they can take any plain old Java object with annotated properties to tell them how to manipulate them.
Now I see beans as annotated property balls--they are really only useful for the annotations they carry.
Beans themselves are not a healthy pattern. They destroy encapsulation by their nature since they expose all their properties to external manipulation and as they are used there is a tendency (by no means a requirement) to create code to manipulate the bean externally instead of creating code inside the bean (violates "don't ask an object for its values, ask an object to do something for you"). Using annotated POJOs with minimal getters and no setters is much more OO restoring encapsulation and with the possibility of immutability.
By the way, as all this stuff was happening someone extended the concept to something called Enterprise Java Beans. These are... different. and they are complicated enough that many people felt they didn't understand the entire Bean concept and stopped using the term. This is, I think, why you generally hear beans referred to as POJOs (since every Java object is a POJO this is technically OK, but when you hear someone say POJO they are most often thinking about something that follows the bean pattern)
JavaBeans is a standard, and its basic syntax requirements have been clearly explained by the other answers.
However, IMO, it is more than a simple syntax standard. The real meaning or intended usage of JavaBeans is, together with various tool supports around the standard, to facilitate code reuse and component-based software engineering, i.e. enable developers to build applications by assembling existing components (classes) and without having to write any code (or only have to write a little glue code). Unfortunately this technology is way under-estimated and under-utilized by the industry, which can be told from the answers in this thread.
If you read Oracle's tutorial on JavaBeans, you can get a better understanding in that.
For a Java class to be usable as a Java bean, its method names need to be as per the JavaBeans guidelines (also called design patterns) for properties, methods, and events. The class needs to be a public class to be accessible to any beanbox tool or container. The container must be able to instantiate it; with the class as public, the container should be able to do so even if no explicit, public, zero-args constructor is provided. (A Java public class with no explicit constructor has a default public zero-args constructor.) So, minimally, a Java public class, even with a property as the sole member (of course, accompanying public getter and setter required) or a public method as the sole member, is a Java bean. The property can either be a read-only property (it has a getter method but no setter) or write-only property (has a setter method only). A Java public class with a public event listener registration method as the sole member is also a Java bean. The JavaBeans specification doesn’t require that if such a Java class has an explicit public constructor, it should be a zero-args one. If one could provide a file (with an extension, say, .ser) containing a serialized instance, a beanbox tool may be able to use that file to instantiate a prototype bean. Otherwise, the class would need a constructor, either explicit or default, that is public as well as zero-args.
Once the bean is instantiated, the JavaBeans API ( java.beans.*) can introspect it and call methods on it. If no class implementing the interface BeanInfo or extending a BeanInfo implementation,such as the SimpleBeanInfo class, is available, the introspection involves using reflection (implicit introspection) to study the methods supported by a target bean and then applying simple design patterns(the guidelines) to deduce from those methods what properties, events, and public methods are supported. If a class implementing the interface BeanInfo (for a bean Foo, it must be named FooBeanInfo) is available, the API bypasses implicit introspection and uses public methods (getPropertyDescriptor(), getMethodDescriptors(), getEventSetDescriptors() ) of this class to get the information. If a class extending SimpleBeanInfo is available, depending on which of the SimpleBeanInfo public methods (getPropertyDescriptor(), getMethodDescriptors(), getEventSetDescriptors() ) are overridden, it will use those overridden methods(s) to get information; for a method that is not overridden, it’ll default to the corresponding implicit introspection. A bean needs to be instantiated anyway, even if no implicit introspection is carried out on it. Thus, the requirement of a public zero-args constructor. But, of course, the Serializable or Externalizable interface isn’t necessary for it to be recognized. However, the JavaBeans specification says, ‘We’d also like it to be “trivial” for the common case of a tiny Bean that simply wants to have its internal state saved and doesn’t want to think about it.’ So, all beans must implement Serializable or Externalizable interface.
Overall, the JavaBeans specification isn’t hard and fast about what constitutes a bean. "Writing JavaBeans components is surprisingly easy. You don't need a special tool and you don't have to implement any interfaces. Writing beans is simply a matter of following certain coding conventions. All you have to do is make your class look like a bean — tools that use beans will be able to recognize and use your bean." Trivially, even the following class is a Java bean,
public class Trivial implements java.io.Serializable {}
The description so far is the Java SE version (JavaBeans). The beans, as described below, are the Java EE versions. These versions have been built on the underlying ideas as explained above. In particular, one main idea they consider is what if a bean constructor does have some parameters. These parameters could be either simple types, class/interface types or both. There should be a way to let the container know values that it can substitute for the parameters when instantiating the bean. The way to do so is that the programmer can configure (specify values) by say annotations or XML configuration files or a mix of both.
Spring Beans
Spring beans run in a Spring IoC container. The programmer can configure via XML configuration files, annotations or a mix of both.
In Spring, if a bean constructor has simple-type or class/interface type parameters, values can be assigned as strings (as the <value> attribute of a constructor argument element in the former case and as an <idref> element of a constructor argument in the latter case) in a type-safe manner. Making references to other Spring beans (called collaborators; via the <ref> element in a constructor argument element) is basically dependency injection and is also typesafe. Obviously, a dependency (collaborator bean) might have a constructor with injected parameters; those injected dependency(ies) might have a constructor with parameters and so on. This scenario should ultimately terminate at injected dependency(ies) that are prototype beans that the container can instantiate by constructing.
JSF Managed Beans
JSF managed beans run in a web container. They can be configured either with the #ManagedBean annotation or with an application configuration resource file managed-bean.xml. The JSF spec supports injection via resource injection (not typesafe) only. This injection is not fit for injection on constructors. In any case, the spec requires that a JSF managed bean must have a public zero-argument constructor. Further it says, “As of version 2.3 of this specification, use of the managed bean facility as specified in this section is strongly
discouraged. A better and more cohesively integrated solution for solving the same problem is to use Contexts and Dependency Injection (CDI), as specified in JSR-365." In other words, CDI managed beans should be used, which do offer typesafe dependency injection on constructors akin to Spring beans. The CDI specification adopts the Managed Beans specification, which applies to all containers of the JEE platform, not just the web tier. Thus, the web container needs to implement the CDI specification.
Managed Beans
Here is an extract from the Managed Bean specification
“ Managed Beans are container-managed objects with minimal requirements,
otherwise known under the acronym “POJOs” (Plain Old Java Objects)…they can be seen as a Java EE platform-enhanced version of the JavaBeans component model found on the Java SE platform…It won’t be missed by the reader that Managed Beans have a precursor in the homonymous facility found in the JavaServer Faces (JSF) technology…Managed Beans as defined in this specification represent a generalization of those found in JSF; in particular, Managed Beans can be used anywhere in a Java EE application, not just in web modules. For example, in the basic component model, Managed Beans must provide a no-argument constructor, but a specification that builds on Managed Beans, such as CDI (JSR-299), can relax that requirement and allow Managed Beans to provide constructors with more complex signatures, as long as they follow some well-defined rules...A Managed Bean must not be: a final class, an abstract class, or a non-static inner class. A Managed Bean may not be serializable unlike a regular JavaBean component.”
Thus, the specification for Managed Beans, otherwise known as POJOs or POJO beans, allows extension as in CDI.
CDI Beans
The CDI specification re-defines managed beans as:
When running in Java EE, a top-level Java class is a managed bean if it meets the requirements:
• It is not an inner class.
• It is a non-abstract class, or is annotated #Decorator.
• It does not implement javax.enterprise.inject.spi.Extension.
• It is not annotated #Vetoed or in a package annotated #Vetoed.
• It has an appropriate constructor, either: the class has a constructor with no parameters, or the class declares a constructor annotated #Inject.
All Java classes that meet these conditions are managed beans and thus no special declaration is
required to define a managed bean. Or
if it is defined to be a managed bean by any
other Java EE specification and if
• It is not annotated with an EJB component-defining annotation or declared as an EJB bean class
in ejb-jar.xml.
Bean constructors can have simple-type parameters since simple-types can be injected with the #Inject annotation.
EJBs
EJBs run in an EJB container. The EJB specification says: “A session bean component is a Managed Bean." “The class must have a public constructor that takes no arguments,” it says for both session bean and message-driven bean. Furthermore, it says, “The session bean class is not required to implement the SessionBean interface or the Serializable interface.” For the same reason as JSF beans, that EJB3 dependency injection is basically resource injection, JSF beans do not support constructors with arguments, that is, via dependency injection. However, if the EJB container implements CDI, “ Optionally: The class may have an additional constructor annotated with the Inject annotation, “ it says for both session bean and message-driven bean because, “An EJB packaged into a CDI bean archive and not annotated with javax.enterprise.inject.Vetoed annotation, is considered a CDI-enabled bean.”
As per the Wikipedia:
The class must have a public default constructor (with no arguments). This allows easy instantiation within editing and activation frameworks.
The class properties must be accessible using get, set, is (can be used for boolean properties instead of get), and other methods (so-called accessor methods and mutator methods) according to a standard naming convention. This allows easy automated inspection and updating of bean state within frameworks, many of which include custom editors for various types of properties. Setters can have one or more than one argument.
The class should be serializable. (This allows applications and frameworks to reliably save, store, and restore the bean's state in a manner independent of the VM and of the platform.)
For more information follow this link.
Regarding the second part of your question, serialization is a persistence mechanism used to store objects as a sequence of signed bytes. Put less formally, it stores the state of an object so you can retrieve it later, by deserialization.
A Java Bean is a Java class (conceptual) that should follow the following conventions:
It should have a no-argument constructor.
It should be serializable.
It should provide methods to set and get the values of the properties, known as getter and setter methods.
It is a reusable software component. It can encapsulate many objects into one object so that same object can be accessed from multiples places and is a step towards easy maintenance of code.
They are serializable, have a zero-argument constructor, and allow access to properties using getter and setter methods. The name "Bean" was given to encompass this standard, which aims to create reusable software components for Java. According to Wikipedia.
The objects that form the backbone of your application and that are managed by the Spring IoC container are called beans. A bean is an object that is instantiated, assembled, and otherwise managed by a Spring IoC container. Otherwise, a bean is simply one of many objects in your application. According to Spring IoC.
It was repeated 6 or 7 times above that there is a no-argument constructor requirement for JavaBeans.
This is WRONG, there is no such requirement, especially in the context of Java Spring.
There is also no mention of that requirement in version (1.01) of the specification that describes the JavaBeanns APIs (https://download.oracle.com/otndocs/jcp/7224-javabeans-1.01-fr-spec-oth-JSpec/). Even more - this specification mentions 'null constructor' only 2 times in the following contexts:
"Each customizer should have a null constructor."
"Each PropertyEditor should have a null constructor."
So, it does not seem like the authors of the spec don't know or are not willing to use the term "null constructor", still no mention of it for the JavaBeans proper.
A Java Bean is any Java class that satisfies the following three criteria:
It should implement the serializable interface (a Marker interface).
The constructor should be public and have no arguments (what other people call a "no-arg constructor").
It should have getter and setters.
Good to note the serialVersionUID field is important for maintaining object state.
The below code qualifies as a bean:
public class DataDog implements java.io.Serializable {
private static final long serialVersionUID = -3774654564564563L;
private int id;
private String nameOfDog;
// The constructor should NOT have arguments
public DataDog () {}
/** 4. getter/setter */
// Getter(s)
public int getId() {
return id;
}
public String getNameOfDog() {
return nameOfDog;
}
// Setter(s)
public void setId(int id) {
this.id = id;
}
public void setNameOfDog(String nameOfDog) {
this.nameOfDog = nameOfDog;
}}
If you are familiar with C/Golang, you never heard C bean or Go bean because they have struct keyword, that developers can easily define structure types without writing complicated OOP keywords.
type User struct {
Name string
Age int
}
var user User
user.Name = "name"
user.Age = 18
var bytes, err = json.Marshal(user)
It's Java's mistake that lack of struct types, and developers find this bad shortage.
Then Java Bean is invented as just another boring rule to make class pretending struct, peace your editor or compiler won't be crying or yelling about your unsafe access to class members.
To understand JavaBean you need to notice the following:
JavaBean is conceptual stuff and can not represent a class of specific things
JavaBean is a development tool can be visualized in the operation of reusable software components
JavaBean is based on the Sun JavaBeans specification and can be reusable components. Its biggest feature is the re-usability.
POJO (plain old Java object): POJOs are ordinary Java objects, with no restriction other than those forced by the Java Language.
Serialization: It is used to save state of an object and send it across a network. It converts the state of an object into a byte stream. We can recreate a Java object from the byte stream by process called deserialization.
Make your class implement java.io.Serializable interface. And use writeObject() method of ObjectOutputStream class to achive Serialization.
JavaBean class: It is a special POJO which have some restriction (or convention).
Implement serialization
Have public no-arg constructor
All properties private with public getters & setter methods.
Many frameworks - like Spring - use JavaBean objects.
If you want to understand Java-Beans, you first have to understand software-components.
Software components
A software-component is a part of an application that runs a specific operation. A software component can also be part of a service.
A component is:
Coupled (has dependencies)
Statefull (it saves the states of instance variables)
Not standarised, it is designed for a specific use case (main difference between Java-EE Beans)
Runs in client machine
Java Beans (Enterprise Beans)
Standarised components that run in a Java EE-server
Including different business logics to complete a specific service
Simplify development of complex multilayer distributed systems
Java Beans are more of a concept to manage big systems. Thats why they need standarization.
Source
In practice, Beans are just objects which are handy to use. Serializing them means to be able easily to persist them (store in a form that is easily recovered).
Typical uses of Beans in real world:
simple reusable objects POJO (Plain Old Java Objects)
visual objects
Spring uses Beans for objects to handle (for instance, User object that needs to be serialized in session)
EJB (Enterprise Java Beans), more complex objects, like JSF Beans (JSF is old quite outdated technology) or JSP Beans
So in fact, Beans are just a convention / standard to expect something from a Java object that it would behave (serialization) and give some ways to change it (setters for properties) in a certain way.
How to use them, is just your invention, but most common cases I enlisted above.
A Java Bean is a component or the basic building block in the JavaBeans architecture. The JavaBeans architecture is a component architecture that benefits from reusability and interoperability of a component-based approach.
A valid component architecture should allow programs to be assembled from
software building blocks (Beans in this case), perhaps provided by different vendors and also make it possible for an architect / developer to select a component (Bean), understand its capabilities, and incorporate it into an application.
Since classes/objects are the basic building blocks of an OOP language like Java, they are the natural contenders for being the Bean in the JavaBeans architecture.
The process of converting a plain Java class to a Java bean is actually nothing more than making it a reusable and interoperable component. This would translate into a Java class having abilities like:
controlling the properties, events, and methods of a class that are exposed to another application. (You can have a BeanInfo class that reports only those properties, events and methods that the external application needs.)
persistence (being serialisable or externizable - this would also imply having no-argument constructors, using transient for fields)
ability to register for events and also to generate events (e.g., making use of bound and constraint properties)
customizers (to customise the Bean via GUIs or by providing documentation)
In order for a Java class to be termed a Java bean it is not necessary that they need to possess all the above abilities. Instead, it implies to implement a subset of the above relevant to the context (e.g., a bean in a certain framework may not need customizers, some other bean may not need bound and constrained properties, etc.)
Almost all leading frameworks and libraries in Java adhere to the JavaBeans architecture implicitly, in order to reap the above benefits.
Spring #Bean annotation indicates that a method produces a bean to be managed by the Spring container.
More reference: https://www.concretepage.com/spring-5/spring-bean-annotation

CXF JAXRS | Complex response types are not present in the generated wadl

We use cxf 2.5.2 along with spring for exposing and consuming restful services.
For distributing the service interface classes, we started using wadl2java goal (which generates interface classes based on the given wadl file)
The generated wadl doesnt contain the proper response type, because of which i guess, the generated interfaces all have 'Response' as the return type.
Ex. if the restful get method returns 'List' , the generated wadl contains the following segment only:
<response><representation mediaType="application/json"/></response>
and the corresponding interface generated from this wadl file contains the return type as 'Response'
Can someone suggest what needs to be done to prevent the actual response type from getting lost?
Are any annotations (like ElementClass ? how to use it ?) or providers required?
Current code:
#GET
#Path("/itemsForCategory")
#Produces("application/json")
#Description("getItemsForCategory")
public List<Item> getItemsForCategory(#QueryParam("category")String category) {
The generic "Response" return type seems to be unrelated to the fact that you are trying to return a list. That is, even using "Item" as the return type would result in a method in the generated interface with a return type of "Response". To remedy this, you need to add the element attribute in the WADL resource response:
<response><representation mediaType="application/json" element="item"/></response>
This works if you modify the WADL directly, an equivalent JAX-RS annotation may or may not be supported. This also does not address your problem returning a list. My suggestion (which I have previously used) is to create a wrapper list type (e.g. ItemList) that encapsulates the List return type.
In either case, you will need to flip from a bottom up to a top down (i.e., WADL first) implementation. This should not be too bad, since you already have the implementation and you can just make it implement the generated interface.
To clarify all this, I made a simple example project based on the standard JAX-RS "Bookstore" example. You can view the pom (with the wadl2java configuration) and the actual wadl on github. The generated code is there as well (e.g., BookstoreidResource.java).
I had similar issues when dealing with lists, maps etc. Because collections don't know their type at runtime when generating a WSDL the types that you put into the collection are ignored. The exception to this, I found, was when another web service exposed method used that particular type. As a work around I created a dummy method that used every type I needed for lists and maps.
So for example, I had a class called User that extended an abstract class called BaseObject that was not used directly by the webservice. However it was sometimes passed through lists when searching for users. The following code was my workaround.
#WebService
public interface MyService
{
// Various #WebMethods here
/**
* This method should not be used. This is a workaround to ensure that
* User is known to the JAXB context. Otherwise you will get exceptions like this:
* javax.xml.bind.JAXBException: class java.util.User nor any of its super class is known to this context.
* Or it will assume that using BaseObject is OK and deserialisation will fail
* since BaseObject is abstract.
* This issue occurs because the classes available to the JAXB context
* are loaded when the endpoint is published. At that time it is not known
* that User will be needed since it is not explicitly referenced
* in any of these methods. Adding user here will cause it to be added to
* the context.
* #param user
* #return
*/
#WebMethod
void dummy(#WebParam(name="user") User user);
}
I admit this is a bit of a nasty work around and I don't consider it a proper fix, but maybe it will keep you going until someone can provide a better solution.
Hope this helps.

Annotation concepts in Java

To quote this link :
Some developers think that the Java compiler understands the tag and
work accordingly. This is not right. The tags actually have no meaning
to the Java compiler or runtime itself. There are tools that can
interpret these tags
.
If the information contained in the annotation is only metadata, why wont my code compile if I annotate wrongly ? That particular annotation should be simply ignored right ?
Edit :
Just to provide an example... A simple JAX-RS web service on Jersey uses an annotation like :
#Path("mypath")
Now, if I change this to :
#Paths("mypath")
OR
#Path(123)
it should NOT stop me from compiling the code according to the above link...
The article is wrong for at least some annotations. Thinks like #SuppressWarnings and #Override the compiler does have very specific knowledge. In fact, the article points this out itself:
Metadata is used by the compiler to perform some basic compile-time checking. For example there is a override annotation that lets you specify that a method overrides another method from a superclass.
Quite how it can be used by the compiler if "the tags actually have no meaning to the Java compiler", I don't know...
Additionally, even for annotations that the compiler doesn't attach any semantic meaning to, it will still verify that when you try to specify particular arguments etc, that those arguments have sensible names and types for the annotation you're using.
Annotations are basically a special form of interface, so the compiler has to be able to load the annotation definition in order to encode the information so it can be included in the class file. Once it's in the class file, the class loader will load it as part of the class, so that annotation-processing tools can access the information. The compiler will verify that only defined arguments are used, as well as supplying default values for attributes that aren't specified (and have defaults defined).

gwt - Using List<Serializable> in a RPC call?

I have a RPC service with the following method:
public List<Serializable> myMethod(TransactionCall call) {...}
But I get a warning when this method is analyzed, and then the rpc call fails
Analyzing 'my.project.package.myService' for serializable types
Analyzing methods:
public abstract java.util.List<java.io.Serializable> myMethod(my.project.package.TransactionCall call)
Return type: java.util.List<java.io.Serializable>
[...]
java.io.Serializable
Verifying instantiability
(!) Checking all subtypes of Object which qualify for serialization
It seems I can't use Serializable for my List... I could use my own interface instead (something like AsyncDataInterface, which implements the Serializable interface) but the fact is that my method will return a list custom objects AND basic objects (such as Strings, int....).
So my questions are:
Is it a standard behavior? (I can't figure out why I can't use this interface in that case)
Does anyone have a workaround for that kind of situation?
When passing objects across RPC call's its a good practice to declare concrete parameter types in the RPC interface. If for some reason you cannot use concrete class in the RPC interface try to be as specific as possible.
This is because the GWT compiler while emitting javascript has to take into account all possible variants of List in the compilation unit. This includes all the classes extending List and Serializable interface in the class path. The permutations can be huge, which will effect your compile time as well as the application download size.
So the best approach is to define your interface as
public ArrayList<YourType> myMethod(TransactionCall call) {...}
rather than
public List<Serializable> myMethod(TransactionCall call) {...}
That way compiler has to generate compilation units for ArrayList and YourType extensions only. The benifit is in faster compile times and smaller compiled javascript files, hence faster downloads of your application.
In case you have to return a wide range of unrelated objects in your RPC call, try creating a wrapper class and return object of the wrapper class with the return value wrapped. Use the wrapper class in the RPC method definition. Resist the urge to declare the wrapped field as Object or Serializable, you will negate all serialization benefits you gained by using a wrapper. Instead you can define a Wrapper interface and a small set of Wrapper implementation for each concrete type you wish to return through your RPC call.
You might want to check that serialization policy file isn't the source of the problem.
Quote from GWT documentation:
However, there is one condition to enable support for java.io.Serializable in the new GWT RPC system.
RPC now generates a serialization policy file during GWT compilation. The serialization policy file contains a whitelist of allowed types which may be serialized. Its name is a strong hash name followed by .gwt.rpc. In order to enable support for java.io.Serializable, the types that your application will send over the wire must be included in the serialization policy whitelist. Also, the serialization policy file must be deployed to your web server as a public resource, accessible from a RemoteServiceServlet via ServletContext.getResource(). If it is not deployed properly, RPC will run in 1.3.3 compatibility mode and refuse to serialize types implementing java.io.Serializable.
I don't see the point of defining List<Serializable> as the return value. The type Serializable provides no additional information in the service API declaration. GWT will make the serialization check at runtime anyway.
In your case, where the list elements have no common ancestor other than Object, I would use List<?>.

Categories

Resources