How to read Nutch content from Java/Scala? - java

I'm using Nutch to crawl some websites (as a process that runs separate of everything else), while I want to use a Java (Scala) program to analyse the HTML data of websites using Jsoup.
I got Nutch to work by following the tutorial (without the script, only executing the individual instructions worked), and I think it's saving the websites' HTML in the crawl/segments/<time>/content/part-00000 directory.
The problem is that I cannot figure out how to actually read the website data (URLs and HTML) in a Java/Scala program. I read this document, but find it a bit overwhelming since I've never used Hadoop.
I tried to adapt the example code to my environment, and this is what I arrived at (mostly by guesswprk):
val reader = new MapFile.Reader(FileSystem.getLocal(new Configuration()), ".../apache-nutch-1.8/crawl/segments/20140711115438/content/part-00000", new Configuration())
var key = null
var value = null
reader.next(key, value) // test for a single value
println(key)
println(value)
However, I am getting this exception when I run it:
Exception in thread "main" java.lang.NullPointerException
at org.apache.hadoop.io.SequenceFile$Reader.next(SequenceFile.java:1873)
at org.apache.hadoop.io.MapFile$Reader.next(MapFile.java:517)
I am not sure how to work with a MapFile.Reader, specifically, what constructor parameters I am supposed to pass to it. What Configuration objects am I supposed to pass in? Is that the correct FileSystem? And is that the data file I'm interested in?

Scala:
val conf = NutchConfiguration.create()
val fs = FileSystem.get(conf)
val file = new Path(".../part-00000/data")
val reader = new SequenceFile.Reader(fs, file, conf)
val webdata = Stream.continually {
val key = new Text()
val content = new Content()
reader.next(key, content)
(key, content)
}
println(webdata.head)
Java:
public class ContentReader {
public static void main(String[] args) throws IOException {
Configuration conf = NutchConfiguration.create();
Options opts = new Options();
GenericOptionsParser parser = new GenericOptionsParser(conf, opts, args);
String[] remainingArgs = parser.getRemainingArgs();
FileSystem fs = FileSystem.get(conf);
String segment = remainingArgs[0];
Path file = new Path(segment, Content.DIR_NAME + "/part-00000/data");
SequenceFile.Reader reader = new SequenceFile.Reader(fs, file, conf);
Text key = new Text();
Content content = new Content();
// Loop through sequence files
while (reader.next(key, content)) {
try {
System.out.write(content.getContent(), 0,
content.getContent().length);
} catch (Exception e) {
}
}
}
}
Alternatively, you can use org.apache.nutch.segment.SegmentReader (example).

Related

How to read from PDF using Selenium webdriver and Java

I am trying to read the contents of a PDF file using Java-Selenium. Below is my code. getWebDriver is a custom method in the framework. It returns the webdriver.
URL urlOfPdf = new URL(this.getWebDriver().getCurrentUrl());
BufferedInputStream fileToParse = new BufferedInputStream(urlOfPdf.openStream());
PDFParser parser = new PDFParser((RandomAccessRead) fileToParse);
parser.parse();
String output = new PDFTextStripper().getText(parser.getPDDocument());
The second line of the code gives compile time error if I don't parse it to RandomAccessRead type.
And when I parse it, I get this run time error:
java.lang.ClassCastException: java.io.BufferedInputStream cannot be cast to org.apache.pdfbox.io.RandomAccessRead
I need help with getting rid of these errors.
First of, unless you want to interfere in the PDF loading process, there is no need to explicitly use the PdfParser class. You can instead use a static PDDocument.load method:
URL urlOfPdf = new URL(this.getWebDriver().getCurrentUrl());
BufferedInputStream fileToParse = new BufferedInputStream(urlOfPdf.openStream());
PDDocument document = PDDocument.load(fileToParse);
String output = new PDFTextStripper().getText(document);
Otherwise, if you do want to interfere in the loading process, you have to create a RandomAccessRead instance for your BufferedInputStream, you cannot simply cast it because the classes are not related.
You can do that like this
URL urlOfPdf = new URL(this.getWebDriver().getCurrentUrl());
BufferedInputStream fileToParse = new BufferedInputStream(urlOfPdf.openStream());
MemoryUsageSetting memUsageSetting = MemoryUsageSetting.setupMainMemoryOnly();
ScratchFile scratchFile = new ScratchFile(memUsageSetting);
PDFParser parser;
try
{
RandomAccessRead source = scratchFile.createBuffer(fileToParse);
parser = new PDFParser(source);
parser.parse();
}
catch (IOException ioe)
{
IOUtils.closeQuietly(scratchFile);
throw ioe;
}
String output = new PDFTextStripper().getText(parser.getPDDocument());
(This essentially is copied and pasted from the source of PDDocument.load.)

Map Reduce program to merge multiple xml files to a single xml file

I am new to Hindsight & Hadoop map reduce concept. I am trying to merge multiple XML files to a single XML file using map reduce program. My intention is to merge each XML file into a destination XML file by prepending and appending file name as start and end tag.
For eg. the below XML's should be merged into a single XML shown below
Input XML Files
<xml><a></a></xml>
<xml><b></b></xml>
<xml><c></c></xml>
Output XML File
<xml>
<File1Name><xml><a></a></xml><File2Name>
<File2Name><xml><b></b></xml><File3Name>
<File3Name><xml><c></c></xml><File3Name>
<xml>
Question 1: Is it possible to map a XML file to each mapper and create a key value pair, key as a file name and value as an each XML file prepending and appending file name as start and end tags and reducer to merge all XML's to a single context and output to XML shown above.
Question 2: How can i get file name as key in mapper code?
Answer 1:
I don't suggest sending just a single XML to a mapper unless the files are over 1gb a piece. You can send a list of xml locations to your mapper and then in your mapper code open each location and extract the data into your output.
Answer 2:
If using azure blob storage, you could list all the blobs in a container and assign them to the input split.
How to create your list of InputSplits:
ArrayList<InputSplit> ret = new ArrayList<InputSplit>();
/*Do this for each path we receive. Creates a directory of splits in this order s = input path (S1,1),(s2,1)…(sN,1),(s1,2),(sN,2),(sN,3) etc..
*/
for (int i = numMinNameHashSplits; i <= Math.min(numMaxNameHashSplits,numNameHashSplits–1); i++) {
for (Path inputPath : inputPaths) {
ret.add(new ParseDirectoryInputSplit(inputPath.toString(), i));
System.out.println(i + ” “+inputPath.toString());
}
}
return ret;
}
}
Once the List<InputSplits> is assembled, each InputSplit is handed to a Record Reader class where each Key, Value, pair is read then passed to the map task. The initialization of the recordreader class uses the InputSplit, a string representing the location of a “folder” of invoices in blob storage, to return a list of all blobs within the folder, the blobs variable below. The below Java code demonstrates the creation of the record reader for each hashslot and the resulting list of blobs in that location.
Public class ParseDirectoryFileNameRecordReader
extends RecordReader<IntWritable, Text> {
private int nameHashSlot;
private int numNameHashSlots;
private Path myDir;
private Path currentPath;
private Iterator<ListBlobItem> blobs;
private int currentLocation;
public void initialize(InputSplit split, TaskAttemptContext context)
throws IOException, InterruptedException {
myDir = ((ParseDirectoryInputSplit)split).getDirectoryPath();
//getNameHashSlot tells us which slot this record reader is responsible for
nameHashSlot = ((ParseDirectoryInputSplit)split).getNameHashSlot();
//gets the total number of hashslots
numNameHashSlots = getNumNameHashSplits(context.getConfiguration());
//gets the input credientals to the storage account assigned to this record reader.
String inputCreds = getInputCreds(context.getConfiguration());
//break the directory path to get account name
String[] authComponents = myDir.toUri().getAuthority().split(“#”);
String accountName = authComponents[1].split(“\\.”)[0];
String containerName = authComponents[0];
String accountKey = Utils.returnInputkey(inputCreds, accountName);
System.out.println(“This mapper is assigned the following account:”+accountName);
StorageCredentials creds = new StorageCredentialsAccountAndKey(accountName,accountKey);
CloudStorageAccount account = new CloudStorageAccount(creds);
CloudBlobClient client = account.createCloudBlobClient();
CloudBlobContainer container = client.getContainerReference(containerName);
blobs = container.listBlobs(myDir.toUri().getPath().substring(1) + “/”, true,EnumSet.noneOf(BlobListingDetails.class), null,null).iterator();
currentLocation = –1;
return;
}
Once initialized, the record reader is used to pass the next key to the map task. This is controlled by the nextKeyValue method, and it is called every time map task starts. The blow Java code demonstrates this.
//This checks if the next key value is assigned to this task or is assigned to another mapper. If it assigned to this task the location is passed to the mapper, otherwise return false
#Override
public boolean nextKeyValue() throws IOException, InterruptedException {
while (blobs.hasNext()) {
ListBlobItem currentBlob = blobs.next();
//Returns a number between 1 and number of hashslots. If it matches the number assigned to this Mapper and its length is greater than 0, return the path to the map function
if (doesBlobMatchNameHash(currentBlob) && getBlobLength(currentBlob) > 0) {
String[] pathComponents = currentBlob.getUri().getPath().split(“/”);
String pathWithoutContainer =
currentBlob.getUri().getPath().substring(pathComponents[1].length() + 1);
currentPath = new Path(myDir.toUri().getScheme(), myDir.toUri().getAuthority(),pathWithoutContainer);
currentLocation++;
return true;
}
}
return false;
}
The logic in the map function is than simply as follows, with inputStream containing the entire XML string
Path inputFile = new Path(value.toString());
FileSystem fs = inputFile.getFileSystem(context.getConfiguration());
//Input stream contains all data from the blob in the location provided by Text
FSDataInputStream inputStream = fs.open(inputFile);
Resources:
http://www.andrewsmoll.com/3-hacks-for-hadoop-and-hdinsight-clusters/ "Hack 3"
http://blogs.msdn.com/b/mostlytrue/archive/2014/04/10/merging-small-files-on-hdinsight.aspx

Reading Data From FTP Server in Hadoop/Cascading

I want to read data from FTP Server.I am providing path of the file which resides on FTP server in the format ftp://Username:Password#host/path.
When I use map reduce program to read data from file it works fine. I want to read data from same file through Cascading framework. I am using Hfs tap of cascading framework to read data. It throws following exception
java.io.IOException: Stream closed
at org.apache.hadoop.fs.ftp.FTPInputStream.close(FTPInputStream.java:98)
at java.io.FilterInputStream.close(Unknown Source)
at org.apache.hadoop.util.LineReader.close(LineReader.java:83)
at org.apache.hadoop.mapred.LineRecordReader.close(LineRecordReader.java:168)
at org.apache.hadoop.mapred.MapTask$TrackedRecordReader.close(MapTask.java:254)
at org.apache.hadoop.mapred.MapTask.runOldMapper(MapTask.java:440)
at org.apache.hadoop.mapred.MapTask.run(MapTask.java:372)
at org.apache.hadoop.mapred.LocalJobRunner$Job.run(LocalJobRunner.java:212)
Below is the code of cascading framework from where I am reading the files:
public class FTPWithHadoopDemo {
public static void main(String args[]) {
Tap source = new Hfs(new TextLine(new Fields("line")), "ftp://user:pwd#xx.xx.xx.xx//input1");
Tap sink = new Hfs(new TextLine(new Fields("line1")), "OP\\op", SinkMode.REPLACE);
Pipe pipe = new Pipe("First");
pipe = new Each(pipe, new RegexSplitGenerator("\\s+"));
pipe = new GroupBy(pipe);
Pipe tailpipe = new Every(pipe, new Count());
FlowDef flowDef = FlowDef.flowDef().addSource(pipe, source).addTailSink(tailpipe, sink);
new HadoopFlowConnector().connect(flowDef).complete();
}
}
I tried to look in Hadoop Source code for the same exception. I found that in the MapTask class there is one method runOldMapper which deals with stream. And in the same method there is finally block where stream gets closed (in.close()). When I remove that line from finally block it works fine. Below is the code:
private <INKEY, INVALUE, OUTKEY, OUTVALUE> void runOldMapper(final JobConf job, final TaskSplitIndex splitIndex,
final TaskUmbilicalProtocol umbilical, TaskReporter reporter)
throws IOException, InterruptedException, ClassNotFoundException {
InputSplit inputSplit = getSplitDetails(new Path(splitIndex.getSplitLocation()), splitIndex.getStartOffset());
updateJobWithSplit(job, inputSplit);
reporter.setInputSplit(inputSplit);
RecordReader<INKEY, INVALUE> in = isSkipping()
? new SkippingRecordReader<INKEY, INVALUE>(inputSplit, umbilical, reporter)
: new TrackedRecordReader<INKEY, INVALUE>(inputSplit, job, reporter);
job.setBoolean("mapred.skip.on", isSkipping());
int numReduceTasks = conf.getNumReduceTasks();
LOG.info("numReduceTasks: " + numReduceTasks);
MapOutputCollector collector = null;
if (numReduceTasks > 0) {
collector = new MapOutputBuffer(umbilical, job, reporter);
} else {
collector = new DirectMapOutputCollector(umbilical, job, reporter);
}
MapRunnable<INKEY, INVALUE, OUTKEY, OUTVALUE> runner = ReflectionUtils.newInstance(job.getMapRunnerClass(),
job);
try {
runner.run(in, new OldOutputCollector(collector, conf), reporter);
collector.flush();
} finally {
// close
in.close(); // close input
collector.close();
}
}
please assist me in solving this problem.
Thanks,
Arshadali
After some efforts I found out that hadoop uses org.apache.hadoop.fs.ftp.FTPFileSystem Class for FTP.
This class doesn't supports seek, i.e. Seek to the given offset from the start of the file. Data is read in one block and then file system seeks to next block to read. Default block size is 4KB for FTPFileSystem. As seek is not supported it can only read data less than or equal to 4KB.

How to rename Columns via Lambda function - fasterXML

Im using the FasterXML library to parse my CSV file. The CSV file has the column names in its first line. Unfortunately I need the columns to be renamed. I have a lambda function for this, where I can pass the red value from the csv file in and get the new value.
my code looks like this, but does not work.
CsvSchema csvSchema =CsvSchema.emptySchema().withHeader();
ArrayList<HashMap<String, String>> result = new ArrayList<HashMap<String, String>>();
MappingIterator<HashMap<String,String>> it = new CsvMapper().reader(HashMap.class)
.with(csvSchema )
.readValues(new File(fileName));
while (it.hasNext())
result.add(it.next());
System.out.println("changing the schema columns.");
for (int i=0; i < csvSchema.size();i++) {
String name = csvSchema.column(i).getName();
String newName = getNewName(name);
csvSchema.builder().renameColumn(i, newName);
}
csvSchema.rebuild();
when i try to print out the columns later, they are still the same as in the top line of my CSV file.
Additionally I noticed, that csvSchema.size() equals 0 - why?
You could instead use uniVocity-parsers for that. The following solution streams the input rows to the output so you don't need to load everything in memory to then write your data back with new headers. It will be much faster:
public static void main(String ... args) throws Exception{
Writer output = new StringWriter(); // use a FileWriter for your case
CsvWriterSettings writerSettings = new CsvWriterSettings(); //many options here - check the documentation
final CsvWriter writer = new CsvWriter(output, writerSettings);
CsvParserSettings parserSettings = new CsvParserSettings(); //many options here as well
parserSettings.setHeaderExtractionEnabled(true); // indicates the first row of the input are headers
parserSettings.setRowProcessor(new AbstractRowProcessor(){
public void processStarted(ParsingContext context) {
writer.writeHeaders("Column A", "Column B", "... etc");
}
public void rowProcessed(String[] row, ParsingContext context) {
writer.writeRow(row);
}
public void processEnded(ParsingContext context) {
writer.close();
}
});
CsvParser parser = new CsvParser(parserSettings);
Reader reader = new StringReader("A,B,C\n1,2,3\n4,5,6"); // use a FileReader for your case
parser.parse(reader); // all rows are parsed and submitted to the RowProcessor implementation of the parserSettings.
System.out.println(output.toString());
//nothing else to do. All resources are closed automatically in case of errors.
}
You can easily select the columns by using parserSettings.selectFields("B", "A") in case you want to reorder/eliminate columns.
Disclosure: I am the author of this library. It's open-source and free (Apache V2.0 license).

SVNKit to find diff between two files stored at separate locations with separate revision numbers

I am writing a Java program using the SVNKit API, and I need to use the correct class or call in the API that would allow me to find the diff between files stored in separate locations.
1st file:
https://abc.edc.xyz.corp/svn/di-edc/tags/ab-cde-fgh-axsym-1.0.0/src/site/apt/releaseNotes.apt
2nd file:
https://abc.edc.xyz.corp/svn/di-edc/tags/ab-cde-fgh-axsym-1.1.0/src/site/apt/releaseNotes.apt
I have used the listed API calls to generate the diff output, but I am unsuccessful so far.
DefaultSVNDiffGenerator diffGenerator = new DefaultSVNDiffGenerator();
diffGenerator.displayFileDiff("", file1, file2, "10983", "8971", "text", "text/plain", output);
diffClient.doDiff(svnUrl1, SVNRevision.create(10868), svnUrl2, SVNRevision.create(8971), SVNDepth.IMMEDIATES, false, System.out);
Can anyone provide guidance on the correct way to do this?
Your code looks correct. But prefer using the new API:
final SvnOperationFactory svnOperationFactory = new SvnOperationFactory();
try {
final ByteArrayOutputStream byteArrayOutputStream = new ByteArrayOutputStream();
final SvnDiffGenerator diffGenerator = new SvnDiffGenerator();
diffGenerator.setBasePath(new File(""));
final SvnDiff diff = svnOperationFactory.createDiff();
diff.setSources(SvnTarget.fromURL(url1, svnRevision1), SvnTarget.fromURL(url2, svnRevision1));
diff.setDiffGenerator(diffGenerator);
diff.setOutput(byteArrayOutputStream);
diff.run();
} finally {
svnOperationFactory.dispose();
}

Categories

Resources