If an object reference is passed to a method, is it possible to make the object "Read Only" to the method?
Not strictly speaking. That is, a reference that can mutate an object can not be turned into a reference that can not mutate an object. Also, there is not way to express that a type is immutable or mutable, other than using conventions.
The only feature that ensure some form of immutability would be final fields - once written they can not be modified.
That said, there are ways to design classes so that unwanted mutation are prevented. Here are some techniques:
Defensive Copying. Pass a copy of the object, so that if it is mutated it doesn't break your internal invariants.
Use access modifiers and/or interface to expose only read-only methods. You can use access modifieres (public/private/protected), possibly combined with interface, so that only certain methods are visible to the other object. If the methods that are exposed are read-only by nature, you are safe.
Make your object immutable by default. Any operation on the object returns actually a copy of the object.
Also, note that the API in the SDK have sometimes methods that return an immutable version of an object, e.g. Collections.unmodifiableList. An attempt to mutate an immutable list will throw an exception. This does not enforce immutability statically (at compile-time with the static type system), but is is a cheap and effective way to enforce it dynamically (at run-time).
There has been many research proposals of Java extension to better control of aliasing, and accessibility. For instance, addition of a readonly keyword. None of them is as far as I know planned for inclusion in future version of Java. You can have a look at these pointers if you're interested:
Why We Should Not Add ''Read-Only'' to Java (yet) -- it lists and compare most of the proposals
The Checker Framework: Custom pluggable types for Java -- a non intrusive way to extend the type system, notably with immutable types.
The Checker Framework is very interesting. In the Checker Framework, look at Generic Universe Types checker, IGJ immutability checker, and Javari immutability checker. The framework works using annotations, so it is not intrusive.
No, not without decorating, compositing, cloning, etc.
There's no general mechanism for that. You'll need to write special-case code to achieve it, like writing an immutable wrapper (see Collections.unmodifiableList).
You could achieve a similar thing in most cases by cloning the Object as the first statement of the method, such as this...
public void readOnlyMethod(Object test){
test = test.clone();
// other code here
}
So if you called readOnlyMethod() and pass in any Object, a clone of the Object will be taken. The clone uses the same name as the parameter of the method, so there's no risk of accidentally changing the original Object.
No. But you could try to clone the object before passing it, so any changes made by the method won't affect the original object.
making it implement a interface which has only read only methods (no setter methods) this gives a copy of an object (road-only copy) and returning the read only instance of interface instead of returning the instance of an object itself
You could define all parameters of the objects as final but that makes the object read only to everyone.
I believe your real question is about avoiding escape references.
As pointed out in some answers to extract an Interface from class and expose only get methods. It will prevent modification by accident but it is again not a foolproof solution to avoid above problem.
Consider below example:
Customer.java:
public class Customer implements CustomerReadOnly {
private String name;
private ArrayList<String> list;
public Customer(String name) {
this.name=name;
this.list = new ArrayList<>();
this.list.add("First");
this.list.add("Second");
}
#Override
public String getName() {
return name;
}
public void setName(String name) {
this.name = name;
}
#Override
public ArrayList<String> getList() {
return list;
}
public void setList(ArrayList<String> list) {
this.list = list;
}
}
CustomerReadOnly.java:
public interface CustomerReadOnly {
String getName();
ArrayList<String> getList();
}
Main.java:
public class Test {
public static void main(String[] args) {
CustomerReadOnly c1 = new Customer("John");
System.out.println("printing list of class before modification");
for(String s : c1.getList()) {
System.out.println(s);
}
ArrayList<String> list = c1.getList();
list.set(0, "Not first");
System.out.println("printing list created here");
for(String s : list) {
System.out.println(s);
}
System.out.println("printing list of class after modification");
for(String s : c1.getList()) {
System.out.println(s);
}
}
}
Ouput:
printing list of class before modification
First
Second
printing list created here
Not first
Second
printing list of class after modification
Not first
Second
So, as you can see extracting interface and exposing only get methods works only if you don't have any mutable member variable.
If you have a collection as a member variable whose reference you don't want to get escape from class, you can use Collections.unmodifiableList() as pointed out in ewernli's answer.
With this no external code can modify the underlying collection and your data is fully read only.
But again when it comes to custom objects for doing the same, I am aware of the Interface method only as well which can prevent modification by accident but not sure about the foolproof way to avoid reference escape.
Depending on where you want the rule enforced. If you are working collaboratively on a project, use final with a comment telling the next person they are not meant to modify this value. Otherwise wouldn't you simply write the method to not touch the object?
public static void main(String[] args) {
cantTouchThis("Cant touch this");
}
/**
*
* #param value - break it down
*/
public static void cantTouchThis(final String value) {
System.out.println("Value: " + value);
value = "Nah nah nah nah"; //Compile time error
}
So specifically to this method, the value will never be written to, and it is enforced at compile time making the solution extremely robust. Outside the scope of this method, the object remains unaltered without having to create any sort of wrapper.
private boolean isExecuteWriteQueue = false;
public boolean isWriting(){
final boolean b = isExecuteWriteQueue;
return b;
}
Expanding on ewernli's answer...
If you own the classes, you can use read-only interfaces so that methods using a read-only reference of the object can only get read-only copies of the children; while the main class returns the writable versions.
example
public interface ReadOnlyA {
public ReadOnlyA getA();
}
public class A implements ReadOnlyA {
#Override
public A getA() {
return this;
}
public static void main(String[] cheese) {
ReadOnlyA test= new A();
ReadOnlyA b1 = test.getA();
A b2 = test.getA(); //compile error
}
}
If you don't own the classes, you could extend the class, overriding the setters to throw an error or no-op, and use separate setters. This would effectively make the base class reference the read-only one, however this can easily lead to confusion and hard to understand bugs, so make sure it is well documented.
Related
I need help !. I am trying to access the value of a static variable from one class in another class in an android project. This is the static class...
public class NamesStore {
private static NamesStore sNamesStore ;
private static List<Name> sNames = new ArrayList<>();
public static NamesStore getInstance() {
if (sNamesStore == null) {
return new NamesStore();
} else {
return sNamesStore;
}
}
public List<Name> getNames(){
return sNames;
}
}
now in other class, I try to get the static variable to use the value but modifying it before use like this ...
public class Utils{
public static removeTheseNamesFromTheGeneralNames(List<Name> namesToBeRemoved){
List<Name> names = NamesStore.getInstance().getNames();
names.removeAll(namesToBeRemoved);
return names;
}
}
when I call the method removeTheseNamesFromTheGeneralNames, the static variable in NamesStore is also modified and I can't figure out why.? Is this a normal behavior of a static field? and if so, please how can I copy the value of a static field and modify without changing the value stored in the static field.? I could make it static and final to resolve this but I also need to set that static variable from time to time with a setter method. Thanks for the help in advance.
'static' is not really the core problem here (though it might contribute). The problem is in method getNames() and how the result is used by its caller.
In your NamesStore class, there is one list of names (the ArrayList) and there is one reference to that list of names (sNames).
When you execute return sNames and the caller assigns the return value to his variable names, you still have exactly one list of names (one ArrayList), now with two references to the same list. This is not a consequence of 'static' but a consequence of how Java uses reference types; in short, assignment (and returning a value) makes a copy of a reference, it does not make another instance of the thing being referred to.
So, of course, when the list referred to by names is modified, that does modify the one and only list of names that exists.
If you wish to allow the caller to modify the list returned by your getNames() method without modifying your list, then you need to return a copy of your list, not your list itself.
Writing return new ArrayList<>(sNames) would do that; but note that only the list of names is copied, whatever is in the list is (presumably 'names') is not. In other words, if your caller modifies an actual name, it will modify the only instance of that name. You need to determine what your requirements are.
An alternative approach is to forbid your user from changing the returned list; that can be implemented as return Collections.unmodifiableList(sNames). If an attempt is made to change that list then the code doing that change will fail. Anyone who wants to modify the list (as in your example) must make themselves a copy first.
The decision between these two is probably made on the basis of considering how many users of getNames() expect to modify the result. If that is not the usual case, then making those users do the copying is generally the better approach.
I think is better to read about class members first, to understand how it works. https://docs.oracle.com/javase/tutorial/java/javaOO/classvars.html
My advice is to refactor the code in this way:
public class NamesStore {
private static NamesStore sNamesStore = new NamesStore();
private List<Name> sNames = new ArrayList<>();
private NamesStore(){}
public static NamesStore getInstance() {
return sNamesStore;
}
public List<Name> getNames() {
return Collections.unmodifiableList(sNames);
}
public List<Name> getNamesWithout(List<Name> namesToBeRemoved) {
return sNames.stream().filter(name -> !namesToBeRemoved.contains(name)).collect(Collectors.toList());
}
}
EXPLANTION ABOUT FILTER METHOD
The method getNamesWithout(List namesToBeRemoved) can be written also in this way:
public List<Name> getNamesWithout(List<Name> namesToBeRemoved) {
return sNames.stream().filter(new Predicate<Name>() {
#Override
public boolean test(Name name) {
return !namesToBeRemoved.contains(name);
}
}).collect(Collectors.toList());
}
The interface Predicate, has a single abstract method (a single method that you have to implement in subclasses). In Java, an interface with a single abstract method is called functional interface. When you have to implement a functional interface, you can use lambda expression. What does't mean this: you can omit the boilerplate code and to keep only what is important. In the below picture, the important code is marked in green and the boilerplate code in red.
I hope that my explanation clarifies you what is with that name from the lambda expression.
I want to modify list of already created objects in stream. I realized three approaches that may do that, but I not sure about their performance and possible downsize.
Return same object - not waste of time to creating new object, but object is mutable
Create new object - parameter is not modified, but for huge object creation is time consuming
Modify parameter - can only use ForEach, no parallel usage
Code below code with explaining comments.
public class Test {
public static void main(String[] args) {
//Already created objects
List<Foo> foos0 = Arrays.asList(new Foo("A"));
//However I need to apply some modification on them, that is dependent on themselves
//1. Returning same object
List<Foo> foos1 = foos0.stream().map(Test::modifyValueByReturningSameObject).collect(Collectors.toList());
//2. Creating new object
List<Foo> foos2 = foos0.stream().map(Test::modifyValueByCreatingNewObject).collect(Collectors.toList());
//3. Modifying param
foos0.stream().forEach(Test::modifyValueByModifyingParam);
}
//Lets imagine that all methods below are somehow dependent on param Foo
static Foo modifyValueByReturningSameObject(Foo foo) {
foo.setValue("fieldValueDependentOnParamFoo");
return foo;
}
static Foo modifyValueByCreatingNewObject(Foo foo) {
Foo newFoo = new Foo("fieldValueDependentOnParamFoo");
return newFoo;
}
static void modifyValueByModifyingParam(Foo foo) {
foo.setValue("fieldValueDependentOnParamFoo");
return;
}
}
public class Foo {
public String value;
public Foo(String value) {
this.value = value;
}
public String getValue() {
return value;
}
public void setValue(String value) {
this.value = value;
}
}
So the question is which is the most stream approach?
EDIT:
By stream approach I mean, that the most advantages in sense of performence.
EDIT2:
1. Which is functional approach?
2. Which is best in sense of performance?
The javadoc states that Streams should avoid side effects :
Side-effects in behavioral parameters to stream operations are, in general, discouraged, as they can often lead to unwitting violations of the statelessness requirement, as well as other thread-safety hazards.
So, you should prefer the solution where you create new objects instead of modifying existing ones.
The different aproaches will in your case most likely result in no difference regarding performance.
Reason: optimization. Java will not really create new classes and will use direct access to fields. It might(and will if analysis sugests it) even skip a whole chain of calls and replace it by a precalculated value. Java runtime even utilizes a profiler to optimize and find hotspots...
Also: Regarding performance it is in general(particular cases may differ) more important to create a simple structure and help the runtime to make the right assumptions.
So if you hide what you are doing in unesseary manual "optimization", that hides optimization posibilities(lots of branches/decisions, unnecessary pinning, chain of "unknown" methods ...) from the runtime you might end up with a slower result.
For clarity and sideffects(see also other answer) I rather use the version that creates new instances.
How to create immutable objects in Java?
Which objects should be called immutable?
If I have class with all static members is it immutable?
Below are the hard requirements of an immutable object.
Make the class final
make all members final, set them
explicitly, in a static block, or in the constructor
Make all members private
No Methods that modify state
Be extremely careful to limit access to mutable members(remember the field may be final but the object can still be mutable. ie private final Date imStillMutable). You should make defensive copies in these cases.
The reasoning behind making the class final is very subtle and often overlooked. If its not final people can freely extend your class, override public or protected behavior, add mutable properties, then supply their subclass as a substitute. By declaring the class final you can ensure this won't happen.
To see the problem in action consider the example below:
public class MyApp{
/**
* #param args
*/
public static void main(String[] args){
System.out.println("Hello World!");
OhNoMutable mutable = new OhNoMutable(1, 2);
ImSoImmutable immutable = mutable;
/*
* Ahhhh Prints out 3 just like I always wanted
* and I can rely on this super immutable class
* never changing. So its thread safe and perfect
*/
System.out.println(immutable.add());
/* Some sneak programmer changes a mutable field on the subclass */
mutable.field3=4;
/*
* Ahhh let me just print my immutable
* reference again because I can trust it
* so much.
*
*/
System.out.println(immutable.add());
/* Why is this buggy piece of crap printing 7 and not 3
It couldn't have changed its IMMUTABLE!!!!
*/
}
}
/* This class adheres to all the principles of
* good immutable classes. All the members are private final
* the add() method doesn't modify any state. This class is
* just a thing of beauty. Its only missing one thing
* I didn't declare the class final. Let the chaos ensue
*/
public class ImSoImmutable{
private final int field1;
private final int field2;
public ImSoImmutable(int field1, int field2){
this.field1 = field1;
this.field2 = field2;
}
public int add(){
return field1+field2;
}
}
/*
This class is the problem. The problem is the
overridden method add(). Because it uses a mutable
member it means that I can't guarantee that all instances
of ImSoImmutable are actually immutable.
*/
public class OhNoMutable extends ImSoImmutable{
public int field3 = 0;
public OhNoMutable(int field1, int field2){
super(field1, field2);
}
public int add(){
return super.add()+field3;
}
}
In practice it is very common to encounter the above problem in Dependency Injection environments. You are not explicitly instantiating things and the super class reference you are given may actually be a subclass.
The take away is that to make hard guarantees about immutability you have to mark the class as final. This is covered in depth in Joshua Bloch's Effective Java and referenced explicitly in the specification for the Java memory model.
Just don't add public mutator (setter) methods to the class.
Classes are not immutable, objects are.
Immutable means: my public visible state cannot change after initialization.
Fields do not have to be declared final, though it can help tremendously to ensure thread safety
If you class has only static members, then objects of this class are immutable, because you cannot change the state of that object ( you probably cannot create it either :) )
To make a class immutable in Java , you can keep note of the following points :
1. Do not provide setter methods to modify values of any of the instance variables of the class.
2. Declare the class as 'final' . This would prevent any other class from extending it and hence from overriding any method from it which could modify instance variable values.
3. Declare the instance variables as private and final.
4. You can also declare the constructor of the class as private and add a factory method to create an instance of the class when required.
These points should help!!
From oracle site, how to create immutable objects in Java.
Don't provide "setter" methods — methods that modify fields or objects referred to by fields.
Make all fields final and private.
Don't allow subclasses to override methods. The simplest way to do this is to declare the class as final. A more sophisticated approach is to make the constructor private and construct instances in factory methods.
If the instance fields include references to mutable objects, don't allow those objects to be changed:
I. Don't provide methods that modify the mutable objects.
II. Don't share references to the mutable objects. Never store references to external, mutable objects passed to the constructor; if necessary, create copies, and store references to the copies. Similarly, create copies of your internal mutable objects when necessary to avoid returning the originals in your methods.
An immutable object is an object that will not change its internal state after creation. They are very useful in multithreaded applications because they can be shared between threads without synchronization.
To create an immutable object you need to follow some simple rules:
1. Don't add any setter method
If you are building an immutable object its internal state will never change. Task of a setter method is to change the internal value of a field, so you can't add it.
2. Declare all fields final and private
A private field is not visible from outside the class so no manual changes can't be applied to it.
Declaring a field final will guarantee that if it references a primitive value the value will never change if it references an object the reference can't be changed. This is not enough to ensure that an object with only private final fields is not mutable.
3. If a field is a mutable object create defensive copies of it for
getter methods
We have seen before that defining a field final and private is not enough because it is possible to change its internal state. To solve this problem we need to create a defensive copy of that field and return that field every time it is requested.
4. If a mutable object passed to the constructor must be assigned to a
field create a defensive copy of it
The same problem happens if you hold a reference passed to the constructor because it is possible to change it. So holding a reference to an object passed to the constructor can create mutable objects. To solve this problem it is necessary to create a defensive copy of the parameter if they are mutable objects.
Note that if a field is a reference to an immutable object is not necessary to create defensive copies of it in the constructor and in the getter methods it is enough to define the field as final and private.
5. Don't allow subclasses to override methods
If a subclass override a method it can return the original value of a mutable field instead of a defensive copy of it.
To solve this problem it is possible to do one of the following:
Declare the immutable class as final so it can't be extended
Declare all methods of the immutable class final so they can't be overriden
Create a private constructor and a factory to create instances of the immutable class because a class with private constructors can't be extended
If you follow those simple rules you can freely share your immutable objects between threads because they are thread safe!
Below are few notable points:
Immutable objects do indeed make life simpler in many cases. They are especially applicable for value types, where objects don't have an identity so they can be easily replaced and they can make concurrent programming way safer and cleaner (most of the notoriously hard to find concurrency bugs are ultimately caused by mutable state shared between threads).
However, for large and/or complex objects, creating a new copy of the object for every single change can be very costly and/or tedious. And for objects with a distinct identity, changing an existing objects is much more simple and intuitive than creating a new, modified copy of it.
There are some things you simply can't do with immutable objects, like have bidirectional relationships. Once you set an association value on one object, it's identity changes. So, you set the new value on the other object and it changes as well. The problem is the first object's reference is no longer valid, because a new instance has been created to represent the object with the reference. Continuing this would just result in infinite regressions.
To implement a binary search tree, you have to return a new tree every time: Your new tree will have had to make a copy of each node that has been modified (the un-modified branches are shared). For your insert function this isn't too bad, but for me, things got fairly inefficient quickly when I started to work on delete and re-balance.
Hibernate and JPA essentially dictate that your system uses mutable objects, because the whole premise of them is that they detect and save changes to your data objects.
Depending on the language a compiler can make a bunch of optimizations when dealing with immutable data because it knows the data will never change. All sorts of stuff is skipped over, which gives you tremendous performance benefits.
If you look at other known JVM languages (Scala, Clojure), mutable objects are seen rarely in the code and that's why people start using them in scenarios where single threading is not enough.
There's no right or wrong, it just depends what you prefer. It just depends on your preference, and on what you want to achieve (and being able to easily use both approaches without alienating die-hard fans of one side or another is a holy grail some languages are seeking after).
Don't provide "setter" methods — methods that modify fields or
objects referred to by fields.
Make all fields final and private.
Don't allow subclasses to override methods. The simplest way to do this is to declare the class as final. A more sophisticated approach is to make the constructor private and construct instances in factory methods.
If the instance fields include references to mutable objects, don't allow those objects to be changed:
Don't provide methods that modify the mutable objects.
Don't share references to the mutable objects. Never store references to external, mutable objects passed to the constructor; if necessary, create copies, and store references to the copies. Similarly, create copies of your internal mutable objects when necessary to avoid returning the originals in your methods.
First of all, you know why you need to create immutable object, and what are the advantages of immutable object.
Advantages of an Immutable object
Concurrency and multithreading
It automatically Thread-safe so synchronization issue....etc
Don't need to copy constructor
Don't need to implementation of clone.
Class cannot be override
Make the field as a private and final
Force callers to construct an object completely in a single step, instead of using a no-Argument constructor
Immutable objects are simply objects whose state means object's data can't change after the
immutable object are constructed.
please see the below code.
public final class ImmutableReminder{
private final Date remindingDate;
public ImmutableReminder (Date remindingDate) {
if(remindingDate.getTime() < System.currentTimeMillis()){
throw new IllegalArgumentException("Can not set reminder" +
" for past time: " + remindingDate);
}
this.remindingDate = new Date(remindingDate.getTime());
}
public Date getRemindingDate() {
return (Date) remindingDate.clone();
}
}
Minimize mutability
An immutable class is simply a class whose instances cannot be modified. All of the information contained in each instance is provided when it is created and is fixed for the lifetime of the object.
JDK immutable classes: String, the boxed primitive classes(wrapper classes), BigInteger and BigDecimal etc.
How to make a class immutable?
Don’t provide any methods that modify the object’s state (known as mutators).
Ensure that the class can’t be extended.
Make all fields final.
Make all fields private.
This prevents clients from obtaining access to mutable objects referred to by fields and modifying these objects directly.
Make defensive copies.
Ensure exclusive access to any mutable components.
public List getList() {
return Collections.unmodifiableList(list); <=== defensive copy of the mutable
field before returning it to caller
}
If your class has any fields that refer to mutable objects, ensure that clients of the class cannot obtain references to these objects. Never initialize such a field to a client-provided object reference or return the object reference from an accessor.
import java.util.Date;
public final class ImmutableClass {
public ImmutableClass(int id, String name, Date doj) {
this.id = id;
this.name = name;
this.doj = doj;
}
private final int id;
private final String name;
private final Date doj;
public int getId() {
return id;
}
public String getName() {
return name;
}
/**
* Date class is mutable so we need a little care here.
* We should not return the reference of original instance variable.
* Instead a new Date object, with content copied to it, should be returned.
* */
public Date getDoj() {
return new Date(doj.getTime()); // For mutable fields
}
}
import java.util.Date;
public class TestImmutable {
public static void main(String[] args) {
String name = "raj";
int id = 1;
Date doj = new Date();
ImmutableClass class1 = new ImmutableClass(id, name, doj);
ImmutableClass class2 = new ImmutableClass(id, name, doj);
// every time will get a new reference for same object. Modification in reference will not affect the immutability because it is temporary reference.
Date date = class1.getDoj();
date.setTime(date.getTime()+122435);
System.out.println(class1.getDoj()==class2.getDoj());
}
}
For more information, see my blog:
http://javaexplorer03.blogspot.in/2015/07/minimize-mutability.html
an object is called immutable if its state can not be changed once created. One of the most simple way of creating immutable class in Java is by setting all of it’s fields are final.If you need to write immutable class which includes mutable classes like "java.util.Date". In order to preserve immutability in such cases, its advised to return copy of original object,
Immutable Objects are those objects whose state can not be changed once they are created, for example the String class is an immutable class. Immutable objects can not be modified so they are also thread safe in concurrent execution.
Features of immutable classes:
simple to construct
automatically thread safe
good candidate for Map keys and Set as their internal state would not change while processing
don't need implementation of clone as they always represent same state
Keys to write immutable class:
make sure class can not be overridden
make all member variable private & final
do not give their setter methods
object reference should not be leaked during construction phase
The following few steps must be considered, when you want any class as an immutable class.
Class should be marked as final
All fields must be private and final
Replace setters with constructor(for assigning a value to a
variable).
Lets have a glance what we have typed above:
//ImmutableClass
package younus.attari;
public final class ImmutableExample {
private final String name;
private final String address;
public ImmutableExample(String name,String address){
this.name=name;
this.address=address;
}
public String getName() {
return name;
}
public String getAddress() {
return address;
}
}
//MainClass from where an ImmutableClass will be called
package younus.attari;
public class MainClass {
public static void main(String[] args) {
ImmutableExample example=new ImmutableExample("Muhammed", "Hyderabad");
System.out.println(example.getName());
}
}
Commonly ignored but important properties on immutable objects
Adding over to the answer provided by #nsfyn55, the following aspects also need to be considered for object immutability, which are of prime importance
Consider the following classes:
public final class ImmutableClass {
private final MutableClass mc;
public ImmutableClass(MutableClass mc) {
this.mc = mc;
}
public MutableClass getMutClass() {
return this.mc;
}
}
public class MutableClass {
private String name;
public String getName() {
return this.name;
}
public void setName(String name) {
this.name = name;
}
}
public class MutabilityCheck {
public static void main(String[] args) {
MutableClass mc = new MutableClass();
mc.setName("Foo");
ImmutableClass iMC = new ImmutableClass(mc);
System.out.println(iMC.getMutClass().getName());
mc.setName("Bar");
System.out.println(iMC.getMutClass().getName());
}
}
Following will be the output from MutabilityCheck :
Foo
Bar
It is important to note that,
Constructing mutable objects on an immutable object ( through the constructor ), either by 'copying' or 'cloing' to instance variables of the immutable described by the following changes:
public final class ImmutableClass {
private final MutableClass mc;
public ImmutableClass(MutableClass mc) {
this.mc = new MutableClass(mc);
}
public MutableClass getMutClass() {
return this.mc;
}
}
public class MutableClass {
private String name;
public MutableClass() {
}
//copy constructor
public MutableClass(MutableClass mc) {
this.name = mc.getName();
}
public String getName() {
return this.name;
}
public void setName(String name) {
this.name = name;
}
}
still does not ensure complete immutability since the following is still valid from the class MutabilityCheck:
iMC.getMutClass().setName("Blaa");
However, running MutabilityCheck with the changes made in 1. will result in the output being:
Foo
Foo
In order to achieve complete immutability on an object, all its dependent objects must also be immutable
From JDK 14+ which has JEP 359, we can use "records". It is the simplest and hustle free way of creating Immutable class.
A record class is a shallowly immutable, transparent carrier for a fixed set of fields known as the record components that provides a state description for the record. Each component gives rise to a final field that holds the provided value and an accessor method to retrieve the value. The field name and the accessor name match the name of the component.
Let consider the example of creating an immutable rectangle
record Rectangle(double length, double width) {}
No need to declare any constructor, no need to implement equals & hashCode methods. Just any Records need a name and a state description.
var rectangle = new Rectangle(7.1, 8.9);
System.out.print(rectangle.length()); // prints 7.1
If you want to validate the value during object creation, we have to explicitly declare the constructor.
public Rectangle {
if (length <= 0.0) {
throw new IllegalArgumentException();
}
}
The record's body may declare static methods, static fields, static initializers, constructors, instance methods, and nested types.
Instance Methods
record Rectangle(double length, double width) {
public double area() {
return this.length * this.width;
}
}
static fields, methods
Since state should be part of the components we cannot add instance fields to records. But, we can add static fields and methods:
record Rectangle(double length, double width) {
static double aStaticField;
static void aStaticMethod() {
System.out.println("Hello Static");
}
}
So, I've been reading on Design Patterns and the Prototype Patterns confuses me. I believe one of the points of using it is avoiding the need for using the new operator. Then I look at this example:
http://sourcemaking.com/design_patterns/prototype/java/1
First, Their idea of Prototype implements a clone() method, which is weird. Wikipedia also says I need a pure virtual method clone to be implemented by subclasses (why?). Doesn't Java already provide such a method, doing exactly what we need it to do (which is to create a copy of an object instead of instancing it from scratch)? Second, the clone method invokes the operator new! Surely the example is wrong? (In that case I should be studying Design Patterns elsewhere, heh?). Can someone tell if this correction makes it right?:
static class Tom implements Cloneable implements Xyz {
public Xyz cloan() {
return Tom.clone(); //instead of new I use clone() from Interface Cloneable
}
public String toString() {
return "ttt";
}
}
Any clarification is appreciated.
The idea of prototype pattern is having a blueprint / template from which you can spawn your instance. It's not merely to "avoid using new in Java"
If you implement prototype pattern in Java, then yes by all means override the existing clone() method from Object class, no need to create a new one. (Also need implement Clonable interface or you'll get exception)
As an example:
// Student class implements Clonable
Student rookieStudentPrototype = new Student();
rookieStudentPrototype.setStatus("Rookie");
rookieStudentPrototype.setYear(1);
// By using prototype pattern here we don't need to re-set status and
// year, only the name. Status and year already copied by clone
Student tom = rookieStudentPrototype.clone();
tom.setName("Tom");
Student sarah = rookieStudentPrototype.clone();
sarah.setName("Sarah");
A design pattern is simply a way of representing how software is written in a reproducible way. There are in fact different syntactical approaches to achieving the same thing.
So, the Prototype pattern is simply an approach that uses a master copy to implement some overriding functionality. There are several ways to do this in Java (as well, I believe in other languages). Here is one that uses the 'new' keyword, and it's based on using an interface as a contract with implementing concrete classes. Then a single method takes a concrete implementation of the interface and performs the same operation:
// software contract
interface Shape {
public void draw();
}
// concrete implementations
class Line implements Shape {
public void draw() {
System.out.println("line");
}
}
class Square implements Shape {
public void draw() {
System.out.println("square");
}
}
...
class Painting {
public static void main (String[] args) {
Shape s1 = new Line ();
Shape s2 = new Square ();
...
paint (s1);
paint (s2);
...
}
// single method executes against the software contract as a prototype
static void paint (Shape s) {
s.draw ();
}
}
You can read more at http://www.javacamp.org/designPattern/prototype.html or check out the main Design Pattern site. The information is presented there complete with references.
The example you've linked is correct and your code
return Tom.clone();
won't compile because clone() is not a static method.
Cloning is not about avoiding the use of new operator but creating a new instance that has the same state (values of its member fields) as that of the object that's being cloned. Hence, clone() is not static but an instance method so that you can create a new instance (and using new isn't a problem) that mirrors the state of the object that clone() has been invoked upon.
It's just that your example classes (like Tom) are so simple (with no state) that all that the clone() method is doing is to instantiate a new instance. If it had a bit more complex state (say an ArrayList of objects) the clone() method would have to do a deep copy of the ArrayList as well.
To elaborate with one of your example classes, assume that Tom had some instance state. Now, the clone() would also have to make sure that the copy being returned matches the state of the current one.
static class Tom implements Xyz {
private String name;
public Tom() {
this.name = "Tom"; // some state
}
public Xyz clone() {
Tom t = new Tom();
t.setName(getName()); // copy current state
return t;
}
public String toString() {
return getName();
}
public String getName() {
return name;
}
public void setName(String name) {
this.name = name;
}
}
You can also use BeanUtils.copyProperties method to do the same which is provided by Spring framework org.springframework.beans.BeanUtils;
Prototype actually "Doesn't" save calls to new operator. It simply facilitates that a shallow copy of non-sensitive attributes are made by calling the so called clone. For example,
1) You have UserAccount which has a primary user and linked user details
2) UserAccount also has it's PK called userAccountId.
When you put all your UserAccount objects in a collection, of course, you would like the userAccountId to be different. But you still have to call new UserAccount for each links you have. Otherwise, you will end up modifying one object 100 times expecting 100 things in return. Also, if you have this UserAccount as a composition (not aggregation) depending on the attribute's sensitivity, you may have to call new on them too.
e.g if UserAccount has Person object (and if 'Person' has it's own compositions), you have to call new to ensure that their references are appropriately set.
Sorry for the stupid question.
I'm very sure, that the Java API provides a class which wraps a reference,
and provides a getter and a setter to it.
class SomeWrapperClass<T> {
private T obj;
public T get(){ return obj; }
public void set(T obj){ this.obj=obj; }
}
Am I right? Is there something like this in the Java API?
Thank you.
Yes, I could write it y myself, but why should I mimic existing functionality?
EDIT: I wanted to use it for reference
parameters (like the ref keyword in C#), or more specific,
to be able to "write to method parameters" ;)
There is the AtomicReference class, which provides this. It exists mostly to ensure atomicity, especially with the getAndSet() and compareAndSet() methods, but I guess it does what you want.
When I started programming in Java after years of writing C++, I was concerned with the fact that I could not return multiple objects from a function.
It turned out that not only was it possible but it was also improving the design of my programs.
However, Java's implementation of CORBA uses single-element arrays to pass things by reference. This also works with basic types.
I'm not clear what this would be for, but you could use one of the subclasses of the Reference type. They set the reference in the constructor rather than setter.
It' worth pointing out that the Reference subclasses are primarily intended to facilitate garbage collection, for example when used in conjunction with WeakHashMap.
I'm tempted to ask why you'd want one of these, but I assume it's so you can return multiple objects from a function...
Whenever I've wanted to do that, I've used an array or a container object...
bool doStuff(int params, ... , SomeObject[] returnedObject)
{
returnedObject[0] = new SomeObject();
return true;
}
void main(String[] args)
{
SomeObject myObject;
SomeObject[1] myObjectRef = new SomeObject[1];
if(doStuff(..., myObjectRef))
{
myObject = myObjectRef[0];
//handle stuff
}
//could not initialize.
}
... good question, but have not come across it. I'd vote no.
.... hm, after some reflection, reflection might be what comes close to it:
http://java.sun.com/developer/technicalArticles/ALT/Reflection/
there is java.lang.ref.Reference, but it is immutable (setter is missing). The java.lang.ref documentation says:
Every reference object provides methods for getting and clearing the reference. Aside from the clearing operation reference objects are otherwise immutable, so no set operation is provided. A program may further subclass these subclasses, adding whatever fields and methods are required for its purposes, or it may use these subclasses without change.
EDIT
void refDemo(MyReference<String> changeMe) {
changeMe.set("I like changing!");
...
the caller:
String iWantToChange = "I'm like a woman";
Reference<String> ref = new MyReference<String>(iWantToChange)
refDemo(myRef);
ref.get();
I don't like it however, too much code. This kind of features must be supported at language level as in C#.
If you are trying to return multiple values from a function, I would create a Pair, Triple, &c class that acts like a tuple.
class Pair<A,B> {
A a;
B b;
public void Pair() { }
public void Pair(A a,B b) {
this.a=a;
this.b=b;
}
public void Pair( Pair<? extends A,? extends B> p) {
this.a=p.a;
this.b=p.b;
}
public void setFirst(A a) { this.a=a; }
public A getFirst() { return a; }
public void setSecond(B b) { this.b=b; }
public B getSecond() { return b; }
}
This would allow you to return 2 (techically infinite) return values
/* Reads a line from the provided input stream and returns the number of
* characters read and the line read.*/
public Pair<Integer,String> read(System.in) {
...
}
I think there is no Java API Class designed for your intent, i would also prefer your example (the Wrapper Class) then using this "array-trick" because you could insert later some guards or can check several thinks via aspects or reflection and you're able to add features which are cross-cutting-concerns functionality.
But be sure that's what you want to do! Maybe you could redesign and come to another solutions?