This is a Thread, which handles input and output from the serverside:
public void run() {
Thread currentThread = Thread.currentThread();
while (!currentThread.isInterrupted()) {
SocketChannel socketChannel = null;
try {
socketChannel = serverSocketChannel.accept();
readFromSocket(socketChannel);
} catch (ClosedByInterruptException e) {
// closed due to interrupt
connected = false;
} catch (IOException e) {
if (!isInterrupted()) {
e.printStackTrace();
}
connected = false;
} finally {
quietClose(socketChannel);
}
}
}
/**
* Reads an message from socketChannel and executes
* {#link AbstractServer#handleMessage(String)}. Initializes
* {#link #writer} with the socketChannel.
*
* #param socketChannel
* #throws IOException
*/
public void readFromSocket(SocketChannel socketChannel) throws IOException {
reader = null;
writer = null;
try {
reader = new BufferedReader(new InputStreamReader(socketChannel.socket().getInputStream()));
if (writer == null) {
writer = new PrintWriter(socketChannel.socket().getOutputStream(), true);
}
String message;
while ((message = reader.readLine()) != null) {
handleMessage(message);
}
} catch (ClosedByInterruptException e) {
throw e;
} catch (IOException e) {
e.printStackTrace();
} finally {
quietClose(reader);
quietClose(writer);
}
}
If i call the print-method the thread is getting stucked. Which means the "before" is printed, but the "after" is never reached.
The CheckError method of the printwriter returns false!
/**
* Sends a message to the client.
*
* #param message
*/
public void sendMessage(final String message) {
System.out.println("before");
writer.print(message);
System.out.println("after");
writer.flush();
}
It is in an AbstractServer which is used by two different Servers. The first one was used before already and always worked without a problem (and still does).
The other one is new and causes this problem. It is definitly only one writer for every connection (both localhost with different ports) initialized.
The Client side Datafetcher looks like this:
protected void fetchDataFromSocket() {
if (socketDataFetcher != null) {
socketDataFetcher.interrupt();
}
socketDataFetcher = new Thread(new Runnable() {
#Override
public void run() {
while (!Thread.currentThread().isInterrupted()) {
try {
String message = socketConnection.readLine();
if (messageHandler != null) {
messageHandler.handleMessage(message);
}
} catch (IOException e) {
Thread.currentThread().interrupt();
}
}
}
});
socketDataFetcher.start();
}
Its also pretty much the same as the other one that works with only little changes which actually can't cause the problem.
What could be the reason that the printwriter behaves like this?
edit: If i don't start the socketDataFetcher on the client side, the printwriter is not getting stucked!
While I don't see the declarations, the reader and writer objects (referenced in the readFromSocket() method) look like they might be member variables. I would be concerned about the reader and writer not being thread-safe. I would see about about removing these member variables and see if you still have issues with the writer.
Related
Edited my question for clarification and code:
My goal is to pass my String data from my background thread, to my main application thread. Any help is appreciated.
Here is the code that creates the main background thread. This is located in my Server.java class
public class Server {
boolean isConnected = false;
Controller controller = new Controller();
public void startHost() {
Thread host = new Thread(() -> {
Controller controller = new Controller();
ServerSocket server = null;
try {
server = new ServerSocket(GeneralConstants.applicationPort);
} catch (BindException e2) {
System.out.println("Port Already in Use!");
} catch (IOException e) {
//do nothing
}
while (true) {
if (server == null) { break; }
try {
Socket client = server.accept();
System.out.println("Client Connected: " + isConnected);
if (!isConnected) {
controller.createClientHandler(client);
isConnected = true;
System.out.println("Client Connected: " + isConnected);
}
} catch (IOException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
}
});
host.setDaemon(true);
host.start();
}
Here is the code that is then called when a client is connected, located in my Controller.java class.
public synchronized void createClientHandler(Socket client) {
boolean alreadyConnected = false;
if (alreadyConnected) {
//do NOT assign multiple threads for each client
} else {
ClientHandler handleClients = new ClientHandler("client", client);
}
}
The program then creates two background threads for my client, one to manage receiving messages, and sending messages.
public ClientHandler(String name, Socket s) {
clientSocket = s;
clientName = name;
receiveThread = new Thread(this::receive);
sendThread = new Thread(this::send);
connected = clientSocket.isConnected();
receiveThread.start();
sendThread.start();
}
The thread then successfully creates the inputstream and passes the object to my controller. Which then process and grabs a string assigning it to a variable
public synchronized void handleReceivedPacket(String name, BufferedReader in) {
try {
data = in.readLine();
System.out.println("Successfully assigned data to: " + data);
} catch (IOException e) {
System.out.println("Unable to read result data");
}
}
How do I access my String data from the main thread without getting null?
Aka I can call (or something similar)
controller.returnData();
from my main application. From which it'll either return null (no data yet), or actually return my data. Right now, it's always null.
Edit, this is what's actually calling controller.returnData() {
I don't want to paste a massive amount of code for fear of reaching StackOverflow's code limit, so here's my application structure.
My JavaFX creates the scene, and creates a root gridpane, it then calls a method that creates sub gridpanes based the specified input. Aka, a user can press "Main Menu" that calls my method setScene() which removes the current "sub-root" gridpane and creates a "new" scene. Right now, I have a GameBoard.java class which on button press, calls controller.returnData()
PassOption.setOnAction(event -> {
System.out.println(controller.returnData());
});
There is no functional purpose for this besides testing. If I can receive the data, then I can expand on this using the data.
Start thinking about design. In network applications you typically have to manage the following responsibilites:
Connected clients and their state (connection state, heartbeats, ...)
Received messages from the clients
Messages to transmit to the clients
It makes sense to separate those responsibilities in order to keep the code clean, readable and maintainable.
Separation can mean both, thread-wise and class-wise.
For example, you could implement it as follows:
The class ClientAcceptor is responsible for opening the socket and accepting clients. As soon as a client has connected, it delegates the further work to a controller and then waits for other clients:
public class ClientAcceptor implements Runnable {
#Override
public void run() {
while (true) {
ServerSocket server;
try {
server = new ServerSocket(1992);
Socket client = server.accept();
if (client.isConnected()) {
controller.createClientHandler(client);
}
} catch (IOException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
}
}
}
The controller could then create a handler (if the controller decides to do so, e.g. it could also decline the client). The ClientHandler class could look as follows:
public class ClientHandler {
private Thread receiveThread;
private Thread sendThread;
private boolean connected;
private Socket clientSocket;
private String clientName;
private LinkedBlockingDeque<byte[]> sendQueue;
public ClientHandler(String name, Socket s) {
clientSocket = s;
clientName = name;
receiveThread = new Thread(() -> receive());
sendThread = new Thread(() -> send());
connected = clientSocket.isConnected();
receiveThread.start();
sendThread.start();
}
private void receive() {
BufferedInputStream in = null;
try {
in = new BufferedInputStream(clientSocket.getInputStream());
} catch (IOException e) {
connected = false;
}
while (connected) {
try {
byte[] bytes = in.readAllBytes();
if (bytes != null && bytes.length > 0) {
controller.handleReceivedPacket(clientName, bytes);
}
} catch (IOException e) {
e.printStackTrace();
}
}
}
private void send() {
BufferedOutputStream out = null;
try {
out = new BufferedOutputStream(clientSocket.getOutputStream());
} catch (IOException e) {
connected = false;
}
while (connected) {
byte[] toSend = sendQueue.getFirst();
if (toSend != null && toSend.length > 0) {
try {
out.write(toSend);
} catch (IOException e) {
e.printStackTrace();
}
}
}
}
public void send(byte[] packet) {
sendQueue.add(packet);
}
public void close() {
connected = false;
}
}
The ClientHandler is responsible for receiving and transmitting data. If a packet arrives it informes the controller, which parses the packet. The ClientHandler also provides a public API to send data (which is stored in a queue and handled by a thread) and close the connection.
The above code examples are neither tested, nor complete. Take it as a starting point.
I would like to test the connection between a client and a server in a ScheduledExecutorService every x ms while processing received data from the distant host.
So I did something like this:
public class MyClass {
private final ScheduledExecutorService _timer = Executors.newScheduledThreadPool(1);
private Socket _connection;
public void connectToDistantHost() {
try {
_connection = new Socket();
_connection.connect(_adresseServeur);
new Thread(new Runnable() {
#Override
public void run() {
try {
//let another object know the connection is ok
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}).start();
} catch (IOException e) {
e.printStackTrace();
}
_timer.scheduleAtFixedRate(new Runnable() {
#Override
public void run() {
testConnection();
}
}, 0, 200, TimeUnit.MILLISECONDS);
}
private void testConnection() {
//would like to peek on the socket's inputstream to know if something's wrong
}
private void myProcessing() {
while (true) {
...
//read what's inside stream
//process it in a thread
}
}
}
So, if I .read() on the Socket's inputstream it'll screw myProcessing(). I thought about wraping the inputstream in a BufferedReader and mark the buffer position before I read and then reset the position, but as the testing and the processing are in two differents thread it won't work anyway.
How can I do that? Knowing that I did it in c# without much problem:
class TraitementEnvoiClient {
...
private void testConnection(Object obj, ElapsedEventArgs args) {
_connectionIsOk = _connexionAuServeur.IsConnected();
if (!_connectionIsOk) {
tryToReconnect();
}
}
}
public static class ExtensionTcpClient {
//Credit to ElFenix: http://social.msdn.microsoft.com/Forums/en-US/c857cad5-2eb6-4b6c-b0b5-7f4ce320c5cd/c-how-to-determine-if-a-tcpclient-has-been-disconnected?forum=netfxnetcom
public static bool IsConnected(this TcpClient client) {
// Detect if client disconnected
try {
if (client.Client.Poll(0, SelectMode.SelectRead)) {
byte[] buff = new byte[1];
if (client.Client.Receive(buff, SocketFlags.Peek) == 0) {
// Client disconnected
return false;
}
}
} catch (SocketException se) {
return false;
}
return true;
}
}
Thank you
Edit: I would like to make something like that:
private static boolean isConnected(Socket client) {
try {
InputStream is = client.getInputStream();
if(is.peek() == -1) return false;
OutputStream os = client.getOutputStream();
os.write(new byte[]{}); //if it fails a IOException will trigger
} catch(SocketException se) {
return false;
} catch(IOException ioe) {
return false;
}
return true;
}
The testing is redundant. The read or write operations will return -1 if the other end closes or disconnects before or during the operation. There is no point in "testing" the connection first because it may subsequently fail during your IO operation.
See also the other answer mentioned in the comments.
I am using RXTX to communicate between JAVA and a microcontroller.
This is the JAVA code for opening a connection, sending and receiving data
package app;
import gnu.io.CommPort;
import gnu.io.CommPortIdentifier;
import gnu.io.SerialPort;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
public class SerialCommunication1 {
private static SerialCommunication1 instance = null;
private static boolean coonected = false;
public static SerialCommunication1 getInstance(){
if(instance == null)
instance = new SerialCommunication1();
return instance;
}
private SerialCommunication1() {
super();
try {
connect("COM4");
} catch (Exception e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
SerialCommunication1.coonected = true;
}
void connect(String portName) throws Exception {
CommPortIdentifier portIdentifier = CommPortIdentifier
.getPortIdentifier(portName);
if (portIdentifier.isCurrentlyOwned()) {
System.out.println("Error: Port is currently in use");
} else {
CommPort commPort = portIdentifier.open(this.getClass().getName(),
2000);
if (commPort instanceof SerialPort) {
SerialPort serialPort = (SerialPort) commPort;
serialPort.setSerialPortParams(9600, SerialPort.DATABITS_8,
SerialPort.STOPBITS_2, SerialPort.PARITY_NONE);
InputStream in = serialPort.getInputStream();
OutputStream out = serialPort.getOutputStream();
(new Thread(new SerialReader(in))).start();
(new Thread(new SerialWriter(out))).start();
} else {
System.out
.println("Error: Only serial ports are handled by this example.");
}
}
}
/** */
public static class SerialReader implements Runnable {
InputStream in;
public SerialReader(InputStream in) {
this.in = in;
}
public void run() {
byte[] buffer = new byte[1024];
int len = -1;
try {
while ((len = this.in.read(buffer)) > -1) {
System.out.print(new String(buffer, 0, len));
}
} catch (IOException e) {
e.printStackTrace();
}
}
}
/** */
public static class SerialWriter implements Runnable {
OutputStream out;
static String str = null;
public SerialWriter(OutputStream out) {
this.out = out;
}
public void run() {
System.out.println("Will try to execute");
try {
if(str.length() > 0){
this.out.write(str.getBytes());
str = null;
}
} catch (IOException e) {
e.printStackTrace();
}
}
}
}
And this is the Java code that is calling when an event triggers
SerialCommunication1.getInstance();
if(ledStatus == true) {SerialCommunication1.SerialWriter.str = "4A01";}
else {SerialCommunication1.SerialWriter.str = "4A00";}
stopProcess();
And now the problem. I need to send a command to my microcontroller with the code 4A01 and, after receiving the answer, I need to call it again with the code 4A00. The calls are triggered by a button from my Java interface. The problem is that the second call is not executed (4A00 is not sending). I tried to inverse the command codes and they work well. After the first one (4A01) is executed, my microcontroller reacts and sends the response which is read by java and my interface is updated. When I send the invers command (4A00) it stops exactly at this line SerialCommunication1.SerialWriter.str = "4A00"; and doesn't even enter inside the SerialWriter's run() method.
Do you have any idea why is this happening? From the side of my microcontroller there is no problem, I checked all the possibilities with a tool.
I hope I made myself clear.
Thank you!
LE: I forgot to tel you that it didn't throw any errors or exceptions
I'm not sure because I'm not able to test your code but I think your problem is in SerialWriter class:
public static class SerialWriter implements Runnable {
OutputStream out;
static String str = null; // Here str is initialized to null
public SerialWriter(OutputStream out) {
this.out = out;
}
public void run() {
System.out.println("Will try to execute");
try {
if(str.length() > 0) { // this should throw NPE because str is null
this.out.write(str.getBytes());
str = null;
}
} catch (IOException e) {
e.printStackTrace();
}
}
}
Since there is no loop in this method, then the thread created within SerialCommunication1 at this line:
(new Thread(new SerialWriter(out))).start();
most likely finishes its execution after sending the first str.
Honestly I don't understand how does it even send a single string, since str is initialized to null in first place and it should throw NullPointerException at str.length() line.
I would suggest you this approach:
Don't trigger a writer thread when connection is established, just trigger a new one every time a message will be sent.
Use Singleton pattern correctly.
Keep a reference to the serial port in SerialCommunication1 class.
Translated to code it would be something like this:
class SerialWriter implements Runnable {
OutputStream out;
String message;
public SerialWriter(OutputStream out) {
this.out = out;
}
public void setMessage(String msg) {
this.message = msg;
}
public void run() {
try {
if(message != null) {
this.out.write(str.getBytes());
}
} catch (IOException e) {
e.printStackTrace();
}
}
}
Then in SerialCommunication1 class add this public method:
public void sendMessage(String msg) {
SerialWriter writer = new SerialWriter(serialPort.getOutputStream()); // of course you'll have to keep reference to serialPort when connection is established
writer.setMessage(msg);
(new Thread(writer)).start();
}
And finally call this method in this way:
SerialCommunication1.getInstance().sendMessage("4A01");
tzortzik,
I think tha is a timeout problem. Try to addding a delay to writer :
/** */
public static class SerialWriter implements Runnable {
OutputStream out;
static String str = null;
public SerialWriter(OutputStream out) {
this.out = out;
}
public void run() {
Thread.sleep(500); //<----------- this should be in mainThread before to SerialWriter.start();
System.out.println("Will try to execute");
try {
if(str.length() > 0){
this.out.write(str.getBytes());
str = null;
}
} catch (IOException e) {
e.printStackTrace();
}
}
}
It happens to me many times, "we should learn to wait for a response" (^_^)
Check if you are executing well a secuence like the next:
Send command 4A01
Receive response 4A01 from micro
WAIT FOR RESPONSE BEFORE SEND SECOND COMMAND. Thread.sleep(500); //wait for 500 milis or more
Send command 4A00
Receive response 4A00 from micro
I hope it could help you.
When reading from a socket using a BufferedReader it states that the readLine() method returns
A String containing the contents of the line, not including any line-termination characters, or null if the end of the stream has been reached
How does it know that it's reached the end of the stream? What sequence of characters does it use to determine this.
I want to simulate sending the same sequence of characters to properly close another connection that uses PipedStreams.
Edit:
Here is the code in question. From the responses it looks like there is no such sequence and calling close() on the PipedOutput stream should unblock the readLine() on the output stream. It doesn't appear to be doing this at the moment which is why I was confused so I'm thinking it might be a bug somewhere else.
What's happening is the incomingEventIn.close() line appears to be blocking when inputLine = incomingEventIn.readLine() is blocking. If inputLine = incomingEventIn.readLine() isn't being executed on the other thread then incomingEventIn.close() executes fine. Why is this happening?
public class SocketManager {
private Socket socket = null;
private PrintWriter out = null;
private BufferedReader in = null;
private PipedOutputStream incomingEventOutStream = null;
private PrintWriter incomingEventOut = null;
private BufferedReader incomingEventIn = null;
private PipedOutputStream incomingResponsOutStream = null;
private PrintWriter incomingResponseOut = null;
private BufferedReader incomingResponseIn = null;
private ArrayList<AsteriskLiveComsEventListener> listeners = new ArrayList<AsteriskLiveComsEventListener>();
private final ExecutorService eventsDispatcherExecutor;
private String ip;
private int port;
private Object socketLock = new Object();
public SocketManager(String ip, int port) {
this.ip = ip;
this.port = port;
eventsDispatcherExecutor = Executors.newSingleThreadExecutor();
}
public void connect() throws UnableToConnectException, AlreadyConnectedException {
synchronized(socketLock) {
if (socket != null && !socket.isClosed()) {
throw (new AlreadyConnectedException());
}
try {
socket = new Socket(ip, port);
out = new PrintWriter(socket.getOutputStream(), true);
in = new BufferedReader(new InputStreamReader(socket.getInputStream()));
incomingEventOutStream = new PipedOutputStream();
incomingEventIn = new BufferedReader(new InputStreamReader(new PipedInputStream(incomingEventOutStream)));
incomingEventOut = new PrintWriter(incomingEventOutStream);
incomingResponsOutStream = new PipedOutputStream();
incomingResponseIn = new BufferedReader(new InputStreamReader(new PipedInputStream(incomingResponsOutStream)));
incomingResponseOut = new PrintWriter(incomingResponsOutStream);
} catch (IOException e) {
throw (new UnableToConnectException());
}
new Thread(new IncomingEventThread()).start();
new Thread(new SocketThread()).start();
}
}
public void disconnect() throws NotConnectedException {
disconnect(false);
}
private void disconnect(boolean notRequested) throws NotConnectedException {
synchronized(socketLock) {
if (!isConnected()) {
throw (new NotConnectedException());
}
try {
incomingEventIn.close();
} catch (IOException e2) {}
// IT NEVER GETS TO HERE!
incomingEventOut.close();
try {
incomingResponseIn.close();
} catch (IOException e1) {}
System.out.println("disconnecting");
incomingResponseOut.close();
try {
socket.shutdownInput();
} catch (IOException e) {}
try {
socket.shutdownOutput();
} catch (IOException e) {}
try {
socket.close();
} catch (IOException e) {}
if (notRequested) {
System.out.println("disconnecting event");
dispatchEvent(new ConnectionLostEvent());
}
}
}
public boolean isConnected() {
synchronized(socketLock) {
return (socket != null && !socket.isClosed());
}
}
public void addEventListener(AsteriskLiveComsEventListener a) {
synchronized(listeners) {
listeners.add(a);
}
}
public void removeEventListener(AsteriskLiveComsEventListener a) {
synchronized(listeners) {
listeners.remove(a);
}
}
private void dispatchEvent(final AsteriskLiveComsEvent e) {
synchronized (listeners) {
synchronized (eventsDispatcherExecutor) {
eventsDispatcherExecutor.execute(new Runnable()
{
public void run()
{
for(int i=0; i<listeners.size(); i++) {
listeners.get(i).onAsteriskLiveComsEvent(e);
}
}
});
}
}
}
public JSONObject sendRequest(JSONObject request) throws JSONException, NotConnectedException {
synchronized(socketLock) {
System.out.println("sending request "+request.toString());
out.println(request.toString());
try {
return new JSONObject(incomingResponseIn.readLine());
} catch (IOException e) {
// lets close the connection
try {
disconnect(true);
} catch (NotConnectedException e1) {}
throw(new NotConnectedException());
}
}
}
private class SocketThread implements Runnable {
#Override
public void run() {
String inputLine = null;
try {
while((inputLine = in.readLine()) != null) {
// determine if this is a response or event and send to necessary location
JSONObject lineJSON = new JSONObject(inputLine);
if (lineJSON.getString("type").equals("response")) {
incomingResponseOut.println(inputLine);
incomingResponseOut.flush();
}
else if (lineJSON.getString("type").equals("event")) {
incomingEventOut.println(inputLine);
incomingEventOut.flush();
}
}
if (isConnected()) {
try {
disconnect(true);
} catch (NotConnectedException e) {}
}
} catch (IOException e) {
// try and disconnect (if not already disconnected) and end thread
if (isConnected()) {
try {
disconnect(true);
} catch (NotConnectedException e1) {}
}
}
}
}
private class IncomingEventThread implements Runnable {
#Override
public void run() {
String inputLine = null;
try {
while((inputLine = incomingEventIn.readLine()) != null) {
JSONObject lineJSON = new JSONObject(inputLine);
String eventType = lineJSON.getString("eventType");
// determine what type of event it is and then fire one that represents it
if (eventType.equals("channelAdded")) {
JSONObject a = lineJSON.getJSONObject("payload");
Hashtable<String,Object> data = new Hashtable<String,Object>();
Object[] keys = a.keySet().toArray();
for(int i=0; i<keys.length; i++) {
data.put((String) keys[i], a.get((String) keys[i]));
}
dispatchEvent(new ChannelAddedEvent(data));
}
else if (eventType.equals("channelRemoved")) {
dispatchEvent(new ChannelRemovedEvent(lineJSON.getJSONObject("payload").getInt("channelId")));
}
else if (eventType.equals("channelsToRoom")) {
ArrayList<Integer> data = new ArrayList<Integer>();
JSONObject a = lineJSON.getJSONObject("payload");
JSONArray ids = a.getJSONArray("channelIds");
for(int i=0; i<ids.length(); i++) {
data.add(ids.getInt(i));
}
dispatchEvent(new ChannelsToRoomEvent(data));
}
else if (eventType.equals("channelToHolding")) {
dispatchEvent(new ChannelToHoldingEvent(lineJSON.getJSONObject("payload").getInt("channelId")));
}
else if (eventType.equals("channelVerified")) {
dispatchEvent(new ChannelVerifiedEvent(lineJSON.getJSONObject("payload").getInt("channelId")));
}
else if (eventType.equals("serverResetting")) {
dispatchEvent(new ServerResettingEvent());
}
}
} catch (IOException e) {}
System.out.println("here");
}
}
Edit 2:
I think it's a deadlock issue somewhere because if I put some breakpoints in before it in the debugger it runs fine and inputLine = incomingEventIn.readLine() returns null. If I try and run it normally it locks up.
Edit 3: Solved thanks to Gray's answer. The input stream is being closed before the output which was causing the lock up. It needs to be the other way around. Closing the output stream first then informs the input stream that the stream is closed and unblocks the readLine() method.
How does it know that it's reached the end of the stream? What sequence of characters does it use to determine this.
The answer to this is OS dependent but the OS' I'm familiar with, no EOF characters are read. The OS returns to the underlying caller the return values that indicate that the stream (file-descriptor) has reached EOF. The JVM sees the return value and returns the appropriate return (null, -1, ...) to the InputStream or Reader caller depending on the method.
I want to simulate sending the same sequence of characters to properly close another connection that uses PipedStreams.
If you are reading from a PipedReader then you close the associated PipedWriter. The Reader or InputStream will then return the appropriate EOF value to the caller.
Edit:
Since your IncomingEventThread is reading from incomingEventIn, the disconnect() method should close the incomingEventOut first. The thread should close the in side itself. Then you should close the response out.
I would not have the thread call disconnect(...). It should only close it's reader and writer, not all of the streams.
Check out this question:
what is character for end of file of filestream?
There isn't one. The OS knows when the stream reaches its end via the file size, the TCP FIN bit, or other out-of-band mechanisms depending on the source. The only exception I'm aware of is that the terminal driver recognizes Ctrl/d or Ctrl/z as EOF when types by a keyboard, but again that's the OS, not the Java stream or reader.
From your point of view, just call close on PipedOutputStream that you use to connect to your test.
The actual close of the socket is performed by the TCP stack on client and server.
This should do (note that you cannot read/write piped streams on the same thread, hence the 2 methods and a thread creation):
void runTest ( final PipedInputStream sink ) throws Exception
{
try( final PipedOutputStream stream = new PipedOutputStream( sink ) )
{
try ( final OutputStreamWriter swriter =
new OutputStreamWriter( stream, "UTF-8" )
)
{
try ( final PrintWriter writer = new PrintWriter( swriter ) )
{
writer.println( "Hello" );
writer.println( "World!" );
}
}
}
}
void test ( final PipedInputStream sink ) throws InterruptedException
{
final Thread outputThread =
new Thread(
new Runnable ( )
{
#Override
public void run ( )
{
try
{
runTest( sink );
}
catch ( final Exception ex )
{
throw new RuntimeException( ex );
}
}
}
);
outputThread.start( );
outputThread.join( );
}
I have the following code structure.
A transaction handler of type Transaction which is a field in a Client Handler class, which talks to a Server. (the client handler and the server are collocated), the client talks to the client handler via serialized object messages.
When a new transaction request comes in from the client, (comes on thread using the readObject() method of an object input stream), I then do a series of trx_handler.setFoo(trx.getFoo))). This works fine, I can handle the first request. But when a subsequent request comes in (which only starts getting executed after the first request finished due to the loop structure, I find that the trx handler has been reinitialised to its default values, the object is still there, but all the values inside are the defaut ones. What can cause this problem?
My first guess would be garbage collection, but in my Client Handler class, there is always a pointer to this trx_handler.
The code below illustrates what happens. A statement would first be of type start, so the trx_handler will be correctly initialised. handle_statement will then be called. Subsequent statements should then be received, but at this point the trx_handler has been reinitialised to its default settings, so the access_set field is null, the session id as well, and none of the modification made to the object in hande_statement are visible
Thanks
public class Handler {
private Statement trx_handler;
/* Constructor initialises trx_handler to new Statement(); */
public ClientHandler(final Socket socket, long uid, Server server, ObjectInputStream ois) throws IOException, Exception {
LOGGER.info("Constructing Handler");
this.uid = uid;
this.server = server;
this.socket = socket;
this.database = server.getDB();
this.trx_sys = database.getTransactionManager();
create_listening(socket, ois);
out = socket.getOutputStream();
oos = new ObjectOutputStream(out);
this.trx_handler = new Statement(false);
}
private void create_incoming(final Socket socket, final ObjectInputStream stream) {
Thread incoming = new Thread() {
#Override
public void run() {
ObjectInputStream ois = stream;
InputStream in = null;
while (true) {
Object statement = null;
try {
statement = ois.readObject();
execute_stat(statement, socket, null);
LOGGER.info("Ready to execute next ");
} catch (SocketException e) {
LOGGER.severe("Connection Closed");
return;
} catch (IOException e) {
LOGGER.severe("Connection Closed");
return;
} catch (ClassNotFoundException e) {
e.printStackTrace();
} catch (Exception e) {
e.printStackTrace();
String error_message = e.getMessage();
send_error(socket, error_message);
}
}
}
};
incoming.setDaemon(true);
incoming.start();
}
private synchronized void execute_stat(Statement trx) {
if (trx.getTransactionState() == Consts.trx_end) {
trx_sys.commitTransaction(trx_handler);
return;
} else if (trx.getTransactionState() == Consts.trx_start) {
try {
trx_handler.setAccessSet(trx.getAccessSet());
trx_handler.setSession_id(trx.getSession_id());
trx_sys.startTransaction(trx_handler);
handle_statement(socket, trx_handler);
/* TEST HERE THAT FIELDS IN TRX_HANDLER ARE CORRECTLY SET (INCLUDING SOME MODIFIED IN
handle_statement and they are correctly set */
return;
} catch (Exception ex) {
Logger.getLogger(ClientHandler.class.getName()).log(Level.SEVERE, null, ex);
}
}
try {
LOGGER.info("Execute Trx: stat");
/* Can't see modifications made in the start case */
Statement stats = trx.getStatement();
trx_handler.setStatement(stats);
handle_statement(stats, socket, trx_handler);
} catch (Exception e) {
e.printStackTrace();
}
return;
}
You need to either send a brand new object for each transaction, use ObjectOutputStream.writeUnshared(), or else call ObjectOutputStream.reset() between sends.