Is the 0/1 knapsack algorithm a suitable candidate here? - java

I have three categories of input , each with a impact range.
Cat 1 : 20 - 16
Cat 2 : 15 - 5
Cat 3 : 4 -1
I have a file with say N randomly generated categories.
I am trying to take a sum of impact for all the 100 entries through a logic that looks something like this :
// calculate sum of impacts
getSum(){
Generate a random class with seed as current system execution time
for(as many entries in file){
switch(category)
case 1 : i = random input between 20 - 16
case 2 : i = random input between 15 - 5
case 3 : i = random input between 4 - 1
some default case here
sum = sum + i
}
return sum
}
.
.
// loop until you get a desired sum
while(true){
if(Call to getSum() returns value within a desired range){
display some statistics;
break;
}
}
However , i see that the program generally runs infinitely , as the random generation and subsequent summation is giving result beyond the desired range. So , to get things in range , I have to manually tune the max-min ranges for each execution.
Can someone suggest an algorithm that will automatically vary the max min ranges for each category , by learning the trend of obtained sum as the program is running , so as to quickly give a solution ?
Edit : i have just read about the 0/1 knapsack algorithm.. and it seems promising , but unsure if that is the algorithm for this case. Any help would be great.

A couple band-aids:
1) use a long int instead of a regular int t give you a longer range.
2) use an unsigned long, since all of your relevant numbers are positive (then be careful of underflow errors when you subtract.
A couple possible strategies:
1) (This contradicts your question, but it is how things are usually done.) Determine the static maximum for each category, and design to it, using long unsigned int if that is large enough, or some larger data structure as necessary.
2) (This is exactly what you are asking.) Use, and build if necessary, a data structure which expands when an overflow occurs.
Solution for strategy 2:
I will get back to you on this. :)

Related

How is it possible to get a random number with a specific probability?

I wanted to make a random number picker in the range 1-50000.
But I want to do it so that the larger the number, the smaller the probability.
Probability like (1/2*number) or something else.
Can anybody help?
You need a mapping function of some sort. What you get from Random is a few 'primitive' constructs that you can trust do exactly what their javadoc spec says they do:
.nextInt(X) which returns, uniform random (i.e. the probability chart is an exact horizontal line), a randomly chosen number between 0 and X-1 inclusive.
.nextBoolean() which gives you 1 bit of randomness.
.nextDouble(), giving you a mostly uniform random number between 0.0 and 1.0
nextGaussian() which gives you a random number whose probability chart is a uniform normal curve with standard deviation = 1.0 and midpoint (average) of 0.0.
For the double-returning methods, you run into some trouble if you want exact precision. Computers aren't magical. As a consequence, if you e.g. write this mapping function to turn nextDouble() into a standard uniformly distributed 6-sided die roll, you'd think: int dieRoll = 1 + (int) (rnd.nextDouble() * 6); would do it. Had double been perfect, you'd be right. But they aren't, so, instead, best case scenario, 4 of 6 die faces are going to come up 750599937895083 times, and the other 2 die faces are going to come up 750599937895082 times. It'll be hard to really notice that, but it is provably imperfect. I assume this kind of tiny deviation doesn't matter to you, but, it's good to be aware that anytime you so much as mention double, inherent tiny errors creep into everything and you can't really stop that from happening.
What you need is some sort of mapping function that takes any amount of such randomly provided data (from those 3 primitives, and really only from nextInt/nextBoolean if you want to avoid the errors that double inherently brings) to produce what you want.
For example, imagine instead the 'primitive' I gave you is a uniform random value between 1 and 6, inclusive, i.e.: A standard 6-sided die roll. And I ask you to come up with a uniform algorithm (as in, each value is equally likely) to produce a number between 2 and 12, inclusive.
Perhaps you might think: Easy, just roll 2 dice and add em up. But that would be incorrect: 7 is far more likely than 12.
Instead, you'd roll 1 die and just register if it was even or odd. Then you roll the second die and that's your result, unless the first die was odd in which case you add 6 to it. If you get odd on the first die and 1 on the second die, you start the process over again; eventually you're bound to not roll snake eyes.
That'd be uniform random.
You can apply the same principle to your question. You need a mathematical function that maps the 'horizontal line' of .nextInt() to whatever curve you want. For example, sounds like you want to perhaps generate something and then take the square root and round it down, maybe. You're going to have to draw out or write a formula that precisely describes the probability density.
Here's an example:
while (true) {
int v = (int) (50000.0 * Math.abs(r.nextGaussian()));
if (v >= 1 && v <= 50000) return v;
}
That returns you a roughly normally distributed value, 1 being the most likely, 50000 being the least likely.
One simple formula that will give you a very close approximation to what you want is
Random random = new Random();
int result = (int) Math.pow( 50001, random.nextDouble());
That will give a result in the range 1 - 50000, where the probability of each result is approximately proportional to 1 / result, which is what you asked for.
The reason why it works is that the probability of result being any value n within the range is P( n <= 50001^x < n+1) where x is randomly distributed in [0,1). That's the probability that x falls between log(n) and log(n+1), where the logs are base 50001. But that probability is proportional to log (1 + 1/n), which is very close to 1/n.

Generate N random numbers in given ranges that sum up to a given sum

first time here at Stackoverflow. I hope someone can help me with my search of an algorithm.
I need to generate N random numbers in given Ranges that sum up to a given sum!
For example: Generatare 3 Numbers that sum up to 11.
Ranges:
Value between 1 and 3.
Value between 5 and 8.
value between 3 and 7.
The Generated numbers for this examle could be: 2, 5, 4.
I already searched alot and couldnt find the solution i need.
It is possible to generate like N Numbers of a constant sum unsing modulo like this:
generate random numbers of which the sum is constant
But i couldnt get that done with ranges.
Or by generating N random values, sum them up and then divide the constant sum by the random sum and afterwards multiplying each random number with that quotient as proposed here.
Main Problem, why i cant adopt those solution is that every of my random values has different ranges and i need the values to be uniformly distributed withing the ranges (no frequency occurances at min/max for example, which happens if i cut off the values which are less/greater than min/max).
I also thought of an soultion, taking a random number (in that Example, Value 1,2 or 3), generate the value within the range (either between min/max or min and the rest of the sum, depending on which is smaller), substracting that number of my given sum, and keep that going until everything is distributed. But that would be horrible inefficiant. I could really use a way where the runtime of the algorithm is fixed.
I'm trying to get that running in Java. But that Info is not that importend, except if someone already has a solution ready. All i need is a description or and idea of an algorithm.
First, note that the problem is equivalent to:
Generate k numbers that sums to a number y, such that x_1, ..., x_k -
each has a limit.
The second can be achieved by simply reducing the lower bound from the number - so in your example, it is equivalent to:
Generate 3 numbers such that x1 <= 2; x2 <= 3; x3 <= 4; x1+x2+x3 = 2
Note that the 2nd problem can be solved in various ways, one of them is:
Generate a list with h_i repeats per element - where h_i is the limit for element i - shuffle the list, and pick the first elements.
In your example, the list is:[x1,x1,x2,x2,x2,x3,x3,x3,x3] - shuffle it and choose first two elements.
(*) Note that shuffling the list can be done using fisher-yates algorithm. (you can abort the algorithm in the middle after you passed the desired limit).
Add up the minimum values. In this case 1 + 5 + 3 = 9
11 - 9 = 2, so you have to distribute 2 between the three numbers (eg: +2,+0,+0 or +0,+1,+1).
I leave the rest for you, it's relatively easy to create a uniform distribution after this transformation.
This problem is equivalent to randomly distributing an excess of 2 over the minimum of 9 on 3 positions.
So you start with the minima (1/5/3) and then cycle 2 times, generating a (pseudo-)random value of [0-2] (3 positions) and increment the indexed value.
e.g.
Start 1/5/3
1st random=1 ... increment index 1 ... 1/6/3
2nd random=0 ... increment index 0 ... 2/6/3
2+6+3=11
Edit
Reading this a second time, I understand, this is exactly what #KarolyHorvath mentioned.

Selecting a value proportionally based on its double key

I have a list of values, keyed with doubles between 0 and 1 that represent how likely I think it is for a thing to be useful to me. For example, for getting an answer to a question:
0.5 call your mom
0.25 go to the library
0.6 StackOverflow
0.9 just Google it
So, we think that Googling it is (about) twice as likely to be helpful as asking your mom. When I attempt to figure out the next thing to do, I'd like "just Google it" to be returned about twice as often as "call your mom".
I've been searching for solutions with little success. Most of the things that I've found rely on having integer keys (like How to randomly select a key based on its Integer value in a Map with respect to the other values in O(n) time?), which I don't have and which I can't easily generate.
I feel like there should be some Java datatype that can do this for me. Any suggestions?
You can think of a solution based on the java interface NavigableMap, and if you use the TreeMap implementation you will always get a O(logn) complexity.
You can use one of the following:
lowerEntry
ceilingEntry
floorEntry
higherEntry
Now you just need to extract random numbers with the right probability. For that I would refer to this post:
How to generate a random number from specified discrete distribution?
If I understood correctly, what you're looking for is a weighted random.
You should sum all your weights, and maybe normalize this to an integer value, so you will be able to use the rand.nextInt as suggested by comments.
Normalization can be done by multiplying by 100 for example, so your normalized weights are now:
50, 25, 60, 90 - The sum is 225.
You should define ranges:
0 - 49 is for "calling your mum"
50 - 74 - is for "go to library"
Now you need to perform this.rand.nextInt(sum) - and get a value,
and this value should be mapped to one of the defined ranges.
If you keep track of what the total value of the probabilities are, you can do something like this:
double interval = 100;
double counter = 0;
double totalProbabilities = 2.25;
int randInt = new Random().nextInt((int)interval);
for (Element e: list) {
counter += (interval * e.probability() / totalProbabilities);
if (randInt < counter) {
return e.activity();
}
}

Random int generation from existing int

Consider the following int;
int start = 287729472784;
From that int, I need to create a new int that is only three digits in length, I can use any of the values from 0-9.
However, in order to create the new int, I cannot use any form of already existing random number generators.
I was wondering if it possible to use a combination of modular, xor, and, bit-shift- operations to somehow reduce the number down. Such as xor the last digit with the one before it, but I'm not sure if that is even possible.
Basically I need to create a three digit long int from the starting int, ideally reducing the starting int down to three digits in length.
I hope that makes sense and I'd appreciate any input.
Thanks
Not sure to understand your need but if your only wish is to generate a 3 digits number from another number maybe that the modulo function could help you :
var startNumber = 287729472784;
var modifiedNumber = startNumber % 1000;
If you wish a pseudo-randomn modifiedNumber that changes for each generation you can use time in miliseconds :
var startNumber = 287729472784;
var modifiedNumber = startNumber * new Date().getTime() % 1000;
I hope it'll help.
vaL
Hm. I don't understand the problem, but... start % 1000 would yield the least significant 3 digits of start (though: be careful with negative values)?
The best answer really depends on the use of that final number. Since SHA1's are reasonably "random" to start with, using % 1000 should suffice -- you'll get a good spread over the range of all possible SHA1 inputs, if all you're looking for is a hash into a table.
However, if you're looking for a transform where the 3 digit number has little or no relationship (meaning, not just a modulo ...) to the input, you'll need some way to bang all the bits into the result. If that's the case, I'd suggest a transform such as CRC16. Feed the SHA1 value into your favorite CRC16 routine, then return the modulo 1000 value of that, keeping in mind that some results will show up more often than others.

How to multiply two big big numbers

You are given a list of n numbers L=<a_1, a_2,...a_n>. Each of them is
either 0 or of the form +/- 2k, 0 <= k <= 30. Describe and implement an
algorithm that returns the largest product of a CONTINUOUS SUBLIST
p=a_i*a_i+1*...*a_j, 1 <= i <= j <= n.
For example, for the input <8 0 -4 -2 0 1> it should return 8 (either 8
or (-4)*(-2)).
You can use any standard programming language and can assume that
the list is given in any standard data structure, e.g. int[],
vector<int>, List<Integer>, etc.
What is the computational complexity of your algorithm?
In my first answer I addressed the OP's problem in "multiplying two big big numbers". As it turns out, this wish is only a small part of a much bigger problem which I'm going to address now:
"I still haven't arrived at the final skeleton of my algorithm I wonder if you could help me with this."
(See the question for the problem description)
All I'm going to do is explain the approach Amnon proposed in little more detail, so all the credit should go to him.
You have to find the largest product of a continuous sublist from a list of integers which are powers of 2. The idea is to:
Compute the product of every continuous sublist.
Return the biggest of all these products.
You can represent a sublist by its start and end index. For start=0 there are n-1 possible values for end, namely 0..n-1. This generates all sublists that start at index 0. In the next iteration, You increment start by 1 and repeat the process (this time, there are n-2 possible values for end). This way You generate all possible sublists.
Now, for each of these sublists, You have to compute the product of its elements - that is come up with a method computeProduct(List wholeList, int startIndex, int endIndex). You can either use the built in BigInteger class (which should be able to handle the input provided by Your assignment) to save You from further trouble or try to implement a more efficient way of multiplication as described by others. (I would start with the simpler approach since it's easier to see if Your algorithm works correctly and first then try to optimize it.)
Now that You're able to iterate over all sublists and compute the product of their elements, determining the sublist with the maximum product should be the easiest part.
If it's still to hard for You to make the connections between two steps, let us know - but please also provide us with a draft of Your code as You work on the problem so that we don't end up incrementally constructing the solution and You copy&pasting it.
edit: Algorithm skeleton
public BigInteger listingSublist(BigInteger[] biArray)
{
int start = 0;
int end = biArray.length-1;
BigInteger maximum;
for (int i = start; i <= end; i++)
{
for (int j = i; j <= end; j++)
{
//insert logic to determine the maximum product.
computeProduct(biArray, i, j);
}
}
return maximum;
}
public BigInteger computeProduct(BigInteger[] wholeList, int startIndex,
int endIndex)
{
//insert logic here to return
//wholeList[startIndex].multiply(wholeList[startIndex+1]).mul...(
// wholeList[endIndex]);
}
Since k <= 30, any integer i = 2k will fit into a Java int. However the product of such two integers might not necessarily fit into a Java int since 2k * 2k = 22*k <= 260 which fill into a Java long. This should answer Your question regarding the "(multiplication of) two numbers...".
In case that You might want to multiply more than two numbers, which is implied by Your assignment saying "...largest product of a CONTINUOUS SUBLIST..." (a sublist's length could be > 2), have a look at Java's BigInteger class.
Actually, the most efficient way of multiplication is doing addition instead. In this special case all you have is numbers that are powers of two, and you can get the product of a sublist by simply adding the expontents together (and counting the negative numbers in your product, and making it a negative number in case of odd negatives).
Of course, to store the result you may need the BigInteger, if you run out of bits. Or depending on how the output should look like, just say (+/-)2^N, where N is the sum of the exponents.
Parsing the input could be a matter of switch-case, since you only have 30 numbers to take care of. Plus the negatives.
That's the boring part. The interesting part is how you get the sublist that produces the largest number. You can take the dumb approach, by checking every single variation, but that would be an O(N^2) algorithm in the worst case (IIRC). Which is really not very good for longer inputs.
What can you do? I'd probably start from the largest non-negative number in the list as a sublist, and grow the sublist to get as many non-negative numbers in each direction as I can. Then, having all the positives in reach, proceed with pairs of negatives on both sides, eg. only grow if you can grow on both sides of the list. If you cannot grow in both directions, try one direction with two (four, six, etc. so even) consecutive negative numbers. If you cannot grow even in this way, stop.
Well, I don't know if this alogrithm even works, but if it (or something similar) does, its an O(N) algorithm, which means great performance. Lets try it out! :-)
Hmmm.. since they're all powers of 2, you can just add the exponent instead of multiplying the numbers (equivalent to taking the logarithm of the product). For example, 2^3 * 2^7 is 2^(7+3)=2^10.
I'll leave handling the sign as an exercise to the reader.
Regarding the sublist problem, there are less than n^2 pairs of (begin,end) indices. You can check them all, or try a dynamic programming solution.
EDIT: I adjusted the algorithm outline to match the actual pseudo code and put the complexity analysis directly into the answer:
Outline of algorithm
Go seqentially over the sequence and store value and first/last index of the product (positive) since the last 0. Do the same for another product (negative) which only consists of the numbers since the first sign change of the sequence. If you hit a negative sequence element swap the two products (positive and negative) along with the associagted starting indices. Whenever the positive product hits a new maximum store it and the associated start and end indices. After going over the whole sequence the result is stored in the maximum variables.
To avoid overflow calculate in binary logarithms and an additional sign.
Pseudo code
maxProduct = 0
maxProductStartIndex = -1
maxProductEndIndex = -1
sequence.push_front( 0 ) // reuses variable intitialization of the case n == 0
for every index of sequence
n = sequence[index]
if n == 0
posProduct = 0
negProduct = 0
posProductStartIndex = index+1
negProductStartIndex = -1
else
if n < 0
swap( posProduct, negProduct )
swap( posProductStartIndex, negProductStartIndex )
if -1 == posProductStartIndex // start second sequence on sign change
posProductStartIndex = index
end if
n = -n;
end if
logN = log2(n) // as indicated all arithmetic is done on the logarithms
posProduct += logN
if -1 < negProductStartIndex // start the second product as soon as the sign changes first
negProduct += logN
end if
if maxProduct < posProduct // update current best solution
maxProduct = posProduct
maxProductStartIndex = posProductStartIndex
maxProductEndIndex = index
end if
end if
end for
// output solution
print "The maximum product is " 2^maxProduct "."
print "It is reached by multiplying the numbers from sequence index "
print maxProductStartIndex " to sequence index " maxProductEndIndex
Complexity
The algorithm uses a single loop over the sequence so its O(n) times the complexity of the loop body. The most complicated operation of the body is log2. Ergo its O(n) times the complexity of log2. The log2 of a number of bounded size is O(1) so the resulting complexity is O(n) aka linear.
I'd like to combine Amnon's observation about multiplying powers of 2 with one of mine concerning sublists.
Lists are terminated hard by 0's. We can break the problem down into finding the biggest product in each sub-list, and then the maximum of that. (Others have mentioned this).
This is my 3rd revision of this writeup. But 3's the charm...
Approach
Given a list of non-0 numbers, (this is what took a lot of thinking) there are 3 sub-cases:
The list contains an even number of negative numbers (possibly 0). This is the trivial case, the optimum result is the product of all numbers, guaranteed to be positive.
The list contains an odd number of negative numbers, so the product of all numbers would be negative. To change the sign, it becomes necessary to sacrifice a subsequence containing a negative number. Two sub-cases:
a. sacrifice numbers from the left up to and including the leftmost negative; or
b. sacrifice numbers from the right up to and including the rightmost negative.
In either case, return the product of the remaining numbers. Having sacrificed exactly one negative number, the result is certain to be positive. Pick the winner of (a) and (b).
Implementation
The input needs to be split into subsequences delimited by 0. The list can be processed in place if a driver method is built to loop through it and pick out the beginnings and ends of non-0 sequences.
Doing the math in longs would only double the possible range. Converting to log2 makes arithmetic with large products easier. It prevents program failure on large sequences of large numbers. It would alternatively be possible to do all math in Bignums, but that would probably perform poorly.
Finally, the end result, still a log2 number, needs to be converted into printable form. Bignum comes in handy there. There's new BigInteger("2").pow(log); which will raise 2 to the power of log.
Complexity
This algorithm works sequentially through the sub-lists, only processing each one once. Within each sub-list, there's the annoying work of converting the input to log2 and the result back, but the effort is linear in the size of the list. In the worst case, the sum of much of the list is computed twice, but that's also linear complexity.
See this code. Here I implement exact factorial of a huge large number. I am just using integer array to make big numbers. Download the code from Planet Source Code.

Categories

Resources