Most people with a degree in CS will certainly know what Big O stands for.
It helps us to measure how well an algorithm scales.
But I'm curious, how do you calculate or approximate the complexity of your algorithms?
I'll do my best to explain it here on simple terms, but be warned that this topic takes my students a couple of months to finally grasp. You can find more information on the Chapter 2 of the Data Structures and Algorithms in Java book.
There is no mechanical procedure that can be used to get the BigOh.
As a "cookbook", to obtain the BigOh from a piece of code you first need to realize that you are creating a math formula to count how many steps of computations get executed given an input of some size.
The purpose is simple: to compare algorithms from a theoretical point of view, without the need to execute the code. The lesser the number of steps, the faster the algorithm.
For example, let's say you have this piece of code:
int sum(int* data, int N) {
int result = 0; // 1
for (int i = 0; i < N; i++) { // 2
result += data[i]; // 3
}
return result; // 4
}
This function returns the sum of all the elements of the array, and we want to create a formula to count the computational complexity of that function:
Number_Of_Steps = f(N)
So we have f(N), a function to count the number of computational steps. The input of the function is the size of the structure to process. It means that this function is called such as:
Number_Of_Steps = f(data.length)
The parameter N takes the data.length value. Now we need the actual definition of the function f(). This is done from the source code, in which each interesting line is numbered from 1 to 4.
There are many ways to calculate the BigOh. From this point forward we are going to assume that every sentence that doesn't depend on the size of the input data takes a constant C number computational steps.
We are going to add the individual number of steps of the function, and neither the local variable declaration nor the return statement depends on the size of the data array.
That means that lines 1 and 4 takes C amount of steps each, and the function is somewhat like this:
f(N) = C + ??? + C
The next part is to define the value of the for statement. Remember that we are counting the number of computational steps, meaning that the body of the for statement gets executed N times. That's the same as adding C, N times:
f(N) = C + (C + C + ... + C) + C = C + N * C + C
There is no mechanical rule to count how many times the body of the for gets executed, you need to count it by looking at what does the code do. To simplify the calculations, we are ignoring the variable initialization, condition and increment parts of the for statement.
To get the actual BigOh we need the Asymptotic analysis of the function. This is roughly done like this:
Take away all the constants C.
From f() get the polynomium in its standard form.
Divide the terms of the polynomium and sort them by the rate of growth.
Keep the one that grows bigger when N approaches infinity.
Our f() has two terms:
f(N) = 2 * C * N ^ 0 + 1 * C * N ^ 1
Taking away all the C constants and redundant parts:
f(N) = 1 + N ^ 1
Since the last term is the one which grows bigger when f() approaches infinity (think on limits) this is the BigOh argument, and the sum() function has a BigOh of:
O(N)
There are a few tricks to solve some tricky ones: use summations whenever you can.
As an example, this code can be easily solved using summations:
for (i = 0; i < 2*n; i += 2) { // 1
for (j=n; j > i; j--) { // 2
foo(); // 3
}
}
The first thing you needed to be asked is the order of execution of foo(). While the usual is to be O(1), you need to ask your professors about it. O(1) means (almost, mostly) constant C, independent of the size N.
The for statement on the sentence number one is tricky. While the index ends at 2 * N, the increment is done by two. That means that the first for gets executed only N steps, and we need to divide the count by two.
f(N) = Summation(i from 1 to 2 * N / 2)( ... ) =
= Summation(i from 1 to N)( ... )
The sentence number two is even trickier since it depends on the value of i. Take a look: the index i takes the values: 0, 2, 4, 6, 8, ..., 2 * N, and the second for get executed: N times the first one, N - 2 the second, N - 4 the third... up to the N / 2 stage, on which the second for never gets executed.
On formula, that means:
f(N) = Summation(i from 1 to N)( Summation(j = ???)( ) )
Again, we are counting the number of steps. And by definition, every summation should always start at one, and end at a number bigger-or-equal than one.
f(N) = Summation(i from 1 to N)( Summation(j = 1 to (N - (i - 1) * 2)( C ) )
(We are assuming that foo() is O(1) and takes C steps.)
We have a problem here: when i takes the value N / 2 + 1 upwards, the inner Summation ends at a negative number! That's impossible and wrong. We need to split the summation in two, being the pivotal point the moment i takes N / 2 + 1.
f(N) = Summation(i from 1 to N / 2)( Summation(j = 1 to (N - (i - 1) * 2)) * ( C ) ) + Summation(i from 1 to N / 2) * ( C )
Since the pivotal moment i > N / 2, the inner for won't get executed, and we are assuming a constant C execution complexity on its body.
Now the summations can be simplified using some identity rules:
Summation(w from 1 to N)( C ) = N * C
Summation(w from 1 to N)( A (+/-) B ) = Summation(w from 1 to N)( A ) (+/-) Summation(w from 1 to N)( B )
Summation(w from 1 to N)( w * C ) = C * Summation(w from 1 to N)( w ) (C is a constant, independent of w)
Summation(w from 1 to N)( w ) = (N * (N + 1)) / 2
Applying some algebra:
f(N) = Summation(i from 1 to N / 2)( (N - (i - 1) * 2) * ( C ) ) + (N / 2)( C )
f(N) = C * Summation(i from 1 to N / 2)( (N - (i - 1) * 2)) + (N / 2)( C )
f(N) = C * (Summation(i from 1 to N / 2)( N ) - Summation(i from 1 to N / 2)( (i - 1) * 2)) + (N / 2)( C )
f(N) = C * (( N ^ 2 / 2 ) - 2 * Summation(i from 1 to N / 2)( i - 1 )) + (N / 2)( C )
=> Summation(i from 1 to N / 2)( i - 1 ) = Summation(i from 1 to N / 2 - 1)( i )
f(N) = C * (( N ^ 2 / 2 ) - 2 * Summation(i from 1 to N / 2 - 1)( i )) + (N / 2)( C )
f(N) = C * (( N ^ 2 / 2 ) - 2 * ( (N / 2 - 1) * (N / 2 - 1 + 1) / 2) ) + (N / 2)( C )
=> (N / 2 - 1) * (N / 2 - 1 + 1) / 2 =
(N / 2 - 1) * (N / 2) / 2 =
((N ^ 2 / 4) - (N / 2)) / 2 =
(N ^ 2 / 8) - (N / 4)
f(N) = C * (( N ^ 2 / 2 ) - 2 * ( (N ^ 2 / 8) - (N / 4) )) + (N / 2)( C )
f(N) = C * (( N ^ 2 / 2 ) - ( (N ^ 2 / 4) - (N / 2) )) + (N / 2)( C )
f(N) = C * (( N ^ 2 / 2 ) - (N ^ 2 / 4) + (N / 2)) + (N / 2)( C )
f(N) = C * ( N ^ 2 / 4 ) + C * (N / 2) + C * (N / 2)
f(N) = C * ( N ^ 2 / 4 ) + 2 * C * (N / 2)
f(N) = C * ( N ^ 2 / 4 ) + C * N
f(N) = C * 1/4 * N ^ 2 + C * N
And the BigOh is:
O(N²)
Big O gives the upper bound for time complexity of an algorithm. It is usually used in conjunction with processing data sets (lists) but can be used elsewhere.
A few examples of how it's used in C code.
Say we have an array of n elements
int array[n];
If we wanted to access the first element of the array this would be O(1) since it doesn't matter how big the array is, it always takes the same constant time to get the first item.
x = array[0];
If we wanted to find a number in the list:
for(int i = 0; i < n; i++){
if(array[i] == numToFind){ return i; }
}
This would be O(n) since at most we would have to look through the entire list to find our number. The Big-O is still O(n) even though we might find our number the first try and run through the loop once because Big-O describes the upper bound for an algorithm (omega is for lower bound and theta is for tight bound).
When we get to nested loops:
for(int i = 0; i < n; i++){
for(int j = i; j < n; j++){
array[j] += 2;
}
}
This is O(n^2) since for each pass of the outer loop ( O(n) ) we have to go through the entire list again so the n's multiply leaving us with n squared.
This is barely scratching the surface but when you get to analyzing more complex algorithms complex math involving proofs comes into play. Hope this familiarizes you with the basics at least though.
While knowing how to figure out the Big O time for your particular problem is useful, knowing some general cases can go a long way in helping you make decisions in your algorithm.
Here are some of the most common cases, lifted from http://en.wikipedia.org/wiki/Big_O_notation#Orders_of_common_functions:
O(1) - Determining if a number is even or odd; using a constant-size lookup table or hash table
O(logn) - Finding an item in a sorted array with a binary search
O(n) - Finding an item in an unsorted list; adding two n-digit numbers
O(n2) - Multiplying two n-digit numbers by a simple algorithm; adding two n×n matrices; bubble sort or insertion sort
O(n3) - Multiplying two n×n matrices by simple algorithm
O(cn) - Finding the (exact) solution to the traveling salesman problem using dynamic programming; determining if two logical statements are equivalent using brute force
O(n!) - Solving the traveling salesman problem via brute-force search
O(nn) - Often used instead of O(n!) to derive simpler formulas for asymptotic complexity
Small reminder: the big O notation is used to denote asymptotic complexity (that is, when the size of the problem grows to infinity), and it hides a constant.
This means that between an algorithm in O(n) and one in O(n2), the fastest is not always the first one (though there always exists a value of n such that for problems of size >n, the first algorithm is the fastest).
Note that the hidden constant very much depends on the implementation!
Also, in some cases, the runtime is not a deterministic function of the size n of the input. Take sorting using quick sort for example: the time needed to sort an array of n elements is not a constant but depends on the starting configuration of the array.
There are different time complexities:
Worst case (usually the simplest to figure out, though not always very meaningful)
Average case (usually much harder to figure out...)
...
A good introduction is An Introduction to the Analysis of Algorithms by R. Sedgewick and P. Flajolet.
As you say, premature optimisation is the root of all evil, and (if possible) profiling really should always be used when optimising code. It can even help you determine the complexity of your algorithms.
Seeing the answers here I think we can conclude that most of us do indeed approximate the order of the algorithm by looking at it and use common sense instead of calculating it with, for example, the master method as we were thought at university.
With that said I must add that even the professor encouraged us (later on) to actually think about it instead of just calculating it.
Also I would like to add how it is done for recursive functions:
suppose we have a function like (scheme code):
(define (fac n)
(if (= n 0)
1
(* n (fac (- n 1)))))
which recursively calculates the factorial of the given number.
The first step is to try and determine the performance characteristic for the body of the function only in this case, nothing special is done in the body, just a multiplication (or the return of the value 1).
So the performance for the body is: O(1) (constant).
Next try and determine this for the number of recursive calls. In this case we have n-1 recursive calls.
So the performance for the recursive calls is: O(n-1) (order is n, as we throw away the insignificant parts).
Then put those two together and you then have the performance for the whole recursive function:
1 * (n-1) = O(n)
Peter, to answer your raised issues; the method I describe here actually handles this quite well. But keep in mind that this is still an approximation and not a full mathematically correct answer. The method described here is also one of the methods we were taught at university, and if I remember correctly was used for far more advanced algorithms than the factorial I used in this example.
Of course it all depends on how well you can estimate the running time of the body of the function and the number of recursive calls, but that is just as true for the other methods.
If your cost is a polynomial, just keep the highest-order term, without its multiplier. E.g.:
O((n/2 + 1)*(n/2)) = O(n2/4 + n/2) = O(n2/4) = O(n2)
This doesn't work for infinite series, mind you. There is no single recipe for the general case, though for some common cases, the following inequalities apply:
O(log N) < O(N) < O(N log N) < O(N2) < O(Nk) < O(en) < O(n!)
I think about it in terms of information. Any problem consists of learning a certain number of bits.
Your basic tool is the concept of decision points and their entropy. The entropy of a decision point is the average information it will give you. For example, if a program contains a decision point with two branches, it's entropy is the sum of the probability of each branch times the log2 of the inverse probability of that branch. That's how much you learn by executing that decision.
For example, an if statement having two branches, both equally likely, has an entropy of 1/2 * log(2/1) + 1/2 * log(2/1) = 1/2 * 1 + 1/2 * 1 = 1. So its entropy is 1 bit.
Suppose you are searching a table of N items, like N=1024. That is a 10-bit problem because log(1024) = 10 bits. So if you can search it with IF statements that have equally likely outcomes, it should take 10 decisions.
That's what you get with binary search.
Suppose you are doing linear search. You look at the first element and ask if it's the one you want. The probabilities are 1/1024 that it is, and 1023/1024 that it isn't. The entropy of that decision is 1/1024*log(1024/1) + 1023/1024 * log(1024/1023) = 1/1024 * 10 + 1023/1024 * about 0 = about .01 bit. You've learned very little! The second decision isn't much better. That is why linear search is so slow. In fact it's exponential in the number of bits you need to learn.
Suppose you are doing indexing. Suppose the table is pre-sorted into a lot of bins, and you use some of all of the bits in the key to index directly to the table entry. If there are 1024 bins, the entropy is 1/1024 * log(1024) + 1/1024 * log(1024) + ... for all 1024 possible outcomes. This is 1/1024 * 10 times 1024 outcomes, or 10 bits of entropy for that one indexing operation. That is why indexing search is fast.
Now think about sorting. You have N items, and you have a list. For each item, you have to search for where the item goes in the list, and then add it to the list. So sorting takes roughly N times the number of steps of the underlying search.
So sorts based on binary decisions having roughly equally likely outcomes all take about O(N log N) steps. An O(N) sort algorithm is possible if it is based on indexing search.
I've found that nearly all algorithmic performance issues can be looked at in this way.
Lets start from the beginning.
First of all, accept the principle that certain simple operations on data can be done in O(1) time, that is, in time that is independent of the size of the input. These primitive operations in C consist of
Arithmetic operations (e.g. + or %).
Logical operations (e.g., &&).
Comparison operations (e.g., <=).
Structure accessing operations (e.g. array-indexing like A[i], or pointer fol-
lowing with the -> operator).
Simple assignment such as copying a value into a variable.
Calls to library functions (e.g., scanf, printf).
The justification for this principle requires a detailed study of the machine instructions (primitive steps) of a typical computer. Each of the described operations can be done with some small number of machine instructions; often only one or two instructions are needed.
As a consequence, several kinds of statements in C can be executed in O(1) time, that is, in some constant amount of time independent of input. These simple include
Assignment statements that do not involve function calls in their expressions.
Read statements.
Write statements that do not require function calls to evaluate arguments.
The jump statements break, continue, goto, and return expression, where
expression does not contain a function call.
In C, many for-loops are formed by initializing an index variable to some value and
incrementing that variable by 1 each time around the loop. The for-loop ends when
the index reaches some limit. For instance, the for-loop
for (i = 0; i < n-1; i++)
{
small = i;
for (j = i+1; j < n; j++)
if (A[j] < A[small])
small = j;
temp = A[small];
A[small] = A[i];
A[i] = temp;
}
uses index variable i. It increments i by 1 each time around the loop, and the iterations
stop when i reaches n − 1.
However, for the moment, focus on the simple form of for-loop, where the difference between the final and initial values, divided by the amount by which the index variable is incremented tells us how many times we go around the loop. That count is exact, unless there are ways to exit the loop via a jump statement; it is an upper bound on the number of iterations in any case.
For instance, the for-loop iterates ((n − 1) − 0)/1 = n − 1 times,
since 0 is the initial value of i, n − 1 is the highest value reached by i (i.e., when i
reaches n−1, the loop stops and no iteration occurs with i = n−1), and 1 is added
to i at each iteration of the loop.
In the simplest case, where the time spent in the loop body is the same for each
iteration, we can multiply the big-oh upper bound for the body by the number of
times around the loop. Strictly speaking, we must then add O(1) time to initialize
the loop index and O(1) time for the first comparison of the loop index with the
limit, because we test one more time than we go around the loop. However, unless
it is possible to execute the loop zero times, the time to initialize the loop and test
the limit once is a low-order term that can be dropped by the summation rule.
Now consider this example:
(1) for (j = 0; j < n; j++)
(2) A[i][j] = 0;
We know that line (1) takes O(1) time. Clearly, we go around the loop n times, as
we can determine by subtracting the lower limit from the upper limit found on line
(1) and then adding 1. Since the body, line (2), takes O(1) time, we can neglect the
time to increment j and the time to compare j with n, both of which are also O(1).
Thus, the running time of lines (1) and (2) is the product of n and O(1), which is O(n).
Similarly, we can bound the running time of the outer loop consisting of lines
(2) through (4), which is
(2) for (i = 0; i < n; i++)
(3) for (j = 0; j < n; j++)
(4) A[i][j] = 0;
We have already established that the loop of lines (3) and (4) takes O(n) time.
Thus, we can neglect the O(1) time to increment i and to test whether i < n in
each iteration, concluding that each iteration of the outer loop takes O(n) time.
The initialization i = 0 of the outer loop and the (n + 1)st test of the condition
i < n likewise take O(1) time and can be neglected. Finally, we observe that we go
around the outer loop n times, taking O(n) time for each iteration, giving a total
O(n^2) running time.
A more practical example.
If you want to estimate the order of your code empirically rather than by analyzing the code, you could stick in a series of increasing values of n and time your code. Plot your timings on a log scale. If the code is O(x^n), the values should fall on a line of slope n.
This has several advantages over just studying the code. For one thing, you can see whether you're in the range where the run time approaches its asymptotic order. Also, you may find that some code that you thought was order O(x) is really order O(x^2), for example, because of time spent in library calls.
Basically the thing that crops up 90% of the time is just analyzing loops. Do you have single, double, triple nested loops? The you have O(n), O(n^2), O(n^3) running time.
Very rarely (unless you are writing a platform with an extensive base library (like for instance, the .NET BCL, or C++'s STL) you will encounter anything that is more difficult than just looking at your loops (for statements, while, goto, etc...)
Less useful generally, I think, but for the sake of completeness there is also a Big Omega Ω, which defines a lower-bound on an algorithm's complexity, and a Big Theta Θ, which defines both an upper and lower bound.
Big O notation is useful because it's easy to work with and hides unnecessary complications and details (for some definition of unnecessary). One nice way of working out the complexity of divide and conquer algorithms is the tree method. Let's say you have a version of quicksort with the median procedure, so you split the array into perfectly balanced subarrays every time.
Now build a tree corresponding to all the arrays you work with. At the root you have the original array, the root has two children which are the subarrays. Repeat this until you have single element arrays at the bottom.
Since we can find the median in O(n) time and split the array in two parts in O(n) time, the work done at each node is O(k) where k is the size of the array. Each level of the tree contains (at most) the entire array so the work per level is O(n) (the sizes of the subarrays add up to n, and since we have O(k) per level we can add this up). There are only log(n) levels in the tree since each time we halve the input.
Therefore we can upper bound the amount of work by O(n*log(n)).
However, Big O hides some details which we sometimes can't ignore. Consider computing the Fibonacci sequence with
a=0;
b=1;
for (i = 0; i <n; i++) {
tmp = b;
b = a + b;
a = tmp;
}
and lets just assume the a and b are BigIntegers in Java or something that can handle arbitrarily large numbers. Most people would say this is an O(n) algorithm without flinching. The reasoning is that you have n iterations in the for loop and O(1) work in side the loop.
But Fibonacci numbers are large, the n-th Fibonacci number is exponential in n so just storing it will take on the order of n bytes. Performing addition with big integers will take O(n) amount of work. So the total amount of work done in this procedure is
1 + 2 + 3 + ... + n = n(n-1)/2 = O(n^2)
So this algorithm runs in quadradic time!
Familiarity with the algorithms/data structures I use and/or quick glance analysis of iteration nesting. The difficulty is when you call a library function, possibly multiple times - you can often be unsure of whether you are calling the function unnecessarily at times or what implementation they are using. Maybe library functions should have a complexity/efficiency measure, whether that be Big O or some other metric, that is available in documentation or even IntelliSense.
Break down the algorithm into pieces you know the big O notation for, and combine through big O operators. That's the only way I know of.
For more information, check the Wikipedia page on the subject.
As to "how do you calculate" Big O, this is part of Computational complexity theory. For some (many) special cases you may be able to come with some simple heuristics (like multiplying loop counts for nested loops), esp. when all you want is any upper bound estimation, and you do not mind if it is too pessimistic - which I guess is probably what your question is about.
If you really want to answer your question for any algorithm the best you can do is to apply the theory. Besides of simplistic "worst case" analysis I have found Amortized analysis very useful in practice.
For the 1st case, the inner loop is executed n-i times, so the total number of executions is the sum for i going from 0 to n-1 (because lower than, not lower than or equal) of the n-i. You get finally n*(n + 1) / 2, so O(n²/2) = O(n²).
For the 2nd loop, i is between 0 and n included for the outer loop; then the inner loop is executed when j is strictly greater than n, which is then impossible.
I would like to explain the Big-O in a little bit different aspect.
Big-O is just to compare the complexity of the programs which means how fast are they growing when the inputs are increasing and not the exact time which is spend to do the action.
IMHO in the big-O formulas you better not to use more complex equations (you might just stick to the ones in the following graph.) However you still might use other more precise formula (like 3^n, n^3, ...) but more than that can be sometimes misleading! So better to keep it as simple as possible.
I would like to emphasize once again that here we don't want to get an exact formula for our algorithm. We only want to show how it grows when the inputs are growing and compare with the other algorithms in that sense. Otherwise you would better use different methods like bench-marking.
In addition to using the master method (or one of its specializations), I test my algorithms experimentally. This can't prove that any particular complexity class is achieved, but it can provide reassurance that the mathematical analysis is appropriate. To help with this reassurance, I use code coverage tools in conjunction with my experiments, to ensure that I'm exercising all the cases.
As a very simple example say you wanted to do a sanity check on the speed of the .NET framework's list sort. You could write something like the following, then analyze the results in Excel to make sure they did not exceed an n*log(n) curve.
In this example I measure the number of comparisons, but it's also prudent to examine the actual time required for each sample size. However then you must be even more careful that you are just measuring the algorithm and not including artifacts from your test infrastructure.
int nCmp = 0;
System.Random rnd = new System.Random();
// measure the time required to sort a list of n integers
void DoTest(int n)
{
List<int> lst = new List<int>(n);
for( int i=0; i<n; i++ )
lst[i] = rnd.Next(0,1000);
// as we sort, keep track of the number of comparisons performed!
nCmp = 0;
lst.Sort( delegate( int a, int b ) { nCmp++; return (a<b)?-1:((a>b)?1:0)); }
System.Console.Writeline( "{0},{1}", n, nCmp );
}
// Perform measurement for a variety of sample sizes.
// It would be prudent to check multiple random samples of each size, but this is OK for a quick sanity check
for( int n = 0; n<1000; n++ )
DoTest(n);
Don't forget to also allow for space complexities that can also be a cause for concern if one has limited memory resources. So for example you may hear someone wanting a constant space algorithm which is basically a way of saying that the amount of space taken by the algorithm doesn't depend on any factors inside the code.
Sometimes the complexity can come from how many times is something called, how often is a loop executed, how often is memory allocated, and so on is another part to answer this question.
Lastly, big O can be used for worst case, best case, and amortization cases where generally it is the worst case that is used for describing how bad an algorithm may be.
First of all, the accepted answer is trying to explain nice fancy stuff,
but I think, intentionally complicating Big-Oh is not the solution,
which programmers (or at least, people like me) search for.
Big Oh (in short)
function f(text) {
var n = text.length;
for (var i = 0; i < n; i++) {
f(text.slice(0, n-1))
}
// ... other JS logic here, which we can ignore ...
}
Big Oh of above is f(n) = O(n!) where n represents number of items in input set,
and f represents operation done per item.
Big-Oh notation is the asymptotic upper-bound of the complexity of an algorithm.
In programming: The assumed worst-case time taken,
or assumed maximum repeat count of logic, for size of the input.
Calculation
Keep in mind (from above meaning) that; We just need worst-case time and/or maximum repeat count affected by N (size of input),
Then take another look at (accepted answer's) example:
for (i = 0; i < 2*n; i += 2) { // line 123
for (j=n; j > i; j--) { // line 124
foo(); // line 125
}
}
Begin with this search-pattern:
Find first line that N caused repeat behavior,
Or caused increase of logic executed,
But constant or not, ignore anything before that line.
Seems line hundred-twenty-three is what we are searching ;-)
On first sight, line seems to have 2*n max-looping.
But looking again, we see i += 2 (and that half is skipped).
So, max repeat is simply n, write it down, like f(n) = O( n but don't close parenthesis yet.
Repeat search till method's end, and find next line matching our search-pattern, here that's line 124
Which is tricky, because strange condition, and reverse looping.
But after remembering that we just need to consider maximum repeat count (or worst-case time taken).
It's as easy as saying "Reverse-Loop j starts with j=n, am I right? yes, n seems to be maximum possible repeat count", so:
Add n to previous write down's end,
but like "( n " instead of "+ n" (as this is inside previous loop),
and close parenthesis only if we find something outside of previous loop.
Search Done! why? because line 125 (or any other line after) does not match our search-pattern.
We can now close any parenthesis (left-open in our write down), resulting in below:
f(n) = O( n( n ) )
Try to further shorten "n( n )" part, like:
n( n ) = n * n
= n2
Finally, just wrap it with Big Oh notation, like O(n2) or O(n^2) without formatting.
What often gets overlooked is the expected behavior of your algorithms. It doesn't change the Big-O of your algorithm, but it does relate to the statement "premature optimization. . .."
Expected behavior of your algorithm is -- very dumbed down -- how fast you can expect your algorithm to work on data you're most likely to see.
For instance, if you're searching for a value in a list, it's O(n), but if you know that most lists you see have your value up front, typical behavior of your algorithm is faster.
To really nail it down, you need to be able to describe the probability distribution of your "input space" (if you need to sort a list, how often is that list already going to be sorted? how often is it totally reversed? how often is it mostly sorted?) It's not always feasible that you know that, but sometimes you do.
great question!
Disclaimer: this answer contains false statements see the comments below.
If you're using the Big O, you're talking about the worse case (more on what that means later). Additionally, there is capital theta for average case and a big omega for best case.
Check out this site for a lovely formal definition of Big O: https://xlinux.nist.gov/dads/HTML/bigOnotation.html
f(n) = O(g(n)) means there are positive constants c and k, such that 0 ≤ f(n) ≤ cg(n) for all n ≥ k. The values of c and k must be fixed for the function f and must not depend on n.
Ok, so now what do we mean by "best-case" and "worst-case" complexities?
This is probably most clearly illustrated through examples. For example if we are using linear search to find a number in a sorted array then the worst case is when we decide to search for the last element of the array as this would take as many steps as there are items in the array. The best case would be when we search for the first element since we would be done after the first check.
The point of all these adjective-case complexities is that we're looking for a way to graph the amount of time a hypothetical program runs to completion in terms of the size of particular variables. However for many algorithms you can argue that there is not a single time for a particular size of input. Notice that this contradicts with the fundamental requirement of a function, any input should have no more than one output. So we come up with multiple functions to describe an algorithm's complexity. Now, even though searching an array of size n may take varying amounts of time depending on what you're looking for in the array and depending proportionally to n, we can create an informative description of the algorithm using best-case, average-case, and worst-case classes.
Sorry this is so poorly written and lacks much technical information. But hopefully it'll make time complexity classes easier to think about. Once you become comfortable with these it becomes a simple matter of parsing through your program and looking for things like for-loops that depend on array sizes and reasoning based on your data structures what kind of input would result in trivial cases and what input would result in worst-cases.
I don't know how to programmatically solve this, but the first thing people do is that we sample the algorithm for certain patterns in the number of operations done, say 4n^2 + 2n + 1 we have 2 rules:
If we have a sum of terms, the term with the largest growth rate is kept, with other terms omitted.
If we have a product of several factors constant factors are omitted.
If we simplify f(x), where f(x) is the formula for number of operations done, (4n^2 + 2n + 1 explained above), we obtain the big-O value [O(n^2) in this case]. But this would have to account for Lagrange interpolation in the program, which may be hard to implement. And what if the real big-O value was O(2^n), and we might have something like O(x^n), so this algorithm probably wouldn't be programmable. But if someone proves me wrong, give me the code . . . .
For code A, the outer loop will execute for n+1 times, the '1' time means the process which checks the whether i still meets the requirement. And inner loop runs n times, n-2 times.... Thus,0+2+..+(n-2)+n= (0+n)(n+1)/2= O(n²).
For code B, though inner loop wouldn't step in and execute the foo(), the inner loop will be executed for n times depend on outer loop execution time, which is O(n)
Related
Most people with a degree in CS will certainly know what Big O stands for.
It helps us to measure how well an algorithm scales.
But I'm curious, how do you calculate or approximate the complexity of your algorithms?
I'll do my best to explain it here on simple terms, but be warned that this topic takes my students a couple of months to finally grasp. You can find more information on the Chapter 2 of the Data Structures and Algorithms in Java book.
There is no mechanical procedure that can be used to get the BigOh.
As a "cookbook", to obtain the BigOh from a piece of code you first need to realize that you are creating a math formula to count how many steps of computations get executed given an input of some size.
The purpose is simple: to compare algorithms from a theoretical point of view, without the need to execute the code. The lesser the number of steps, the faster the algorithm.
For example, let's say you have this piece of code:
int sum(int* data, int N) {
int result = 0; // 1
for (int i = 0; i < N; i++) { // 2
result += data[i]; // 3
}
return result; // 4
}
This function returns the sum of all the elements of the array, and we want to create a formula to count the computational complexity of that function:
Number_Of_Steps = f(N)
So we have f(N), a function to count the number of computational steps. The input of the function is the size of the structure to process. It means that this function is called such as:
Number_Of_Steps = f(data.length)
The parameter N takes the data.length value. Now we need the actual definition of the function f(). This is done from the source code, in which each interesting line is numbered from 1 to 4.
There are many ways to calculate the BigOh. From this point forward we are going to assume that every sentence that doesn't depend on the size of the input data takes a constant C number computational steps.
We are going to add the individual number of steps of the function, and neither the local variable declaration nor the return statement depends on the size of the data array.
That means that lines 1 and 4 takes C amount of steps each, and the function is somewhat like this:
f(N) = C + ??? + C
The next part is to define the value of the for statement. Remember that we are counting the number of computational steps, meaning that the body of the for statement gets executed N times. That's the same as adding C, N times:
f(N) = C + (C + C + ... + C) + C = C + N * C + C
There is no mechanical rule to count how many times the body of the for gets executed, you need to count it by looking at what does the code do. To simplify the calculations, we are ignoring the variable initialization, condition and increment parts of the for statement.
To get the actual BigOh we need the Asymptotic analysis of the function. This is roughly done like this:
Take away all the constants C.
From f() get the polynomium in its standard form.
Divide the terms of the polynomium and sort them by the rate of growth.
Keep the one that grows bigger when N approaches infinity.
Our f() has two terms:
f(N) = 2 * C * N ^ 0 + 1 * C * N ^ 1
Taking away all the C constants and redundant parts:
f(N) = 1 + N ^ 1
Since the last term is the one which grows bigger when f() approaches infinity (think on limits) this is the BigOh argument, and the sum() function has a BigOh of:
O(N)
There are a few tricks to solve some tricky ones: use summations whenever you can.
As an example, this code can be easily solved using summations:
for (i = 0; i < 2*n; i += 2) { // 1
for (j=n; j > i; j--) { // 2
foo(); // 3
}
}
The first thing you needed to be asked is the order of execution of foo(). While the usual is to be O(1), you need to ask your professors about it. O(1) means (almost, mostly) constant C, independent of the size N.
The for statement on the sentence number one is tricky. While the index ends at 2 * N, the increment is done by two. That means that the first for gets executed only N steps, and we need to divide the count by two.
f(N) = Summation(i from 1 to 2 * N / 2)( ... ) =
= Summation(i from 1 to N)( ... )
The sentence number two is even trickier since it depends on the value of i. Take a look: the index i takes the values: 0, 2, 4, 6, 8, ..., 2 * N, and the second for get executed: N times the first one, N - 2 the second, N - 4 the third... up to the N / 2 stage, on which the second for never gets executed.
On formula, that means:
f(N) = Summation(i from 1 to N)( Summation(j = ???)( ) )
Again, we are counting the number of steps. And by definition, every summation should always start at one, and end at a number bigger-or-equal than one.
f(N) = Summation(i from 1 to N)( Summation(j = 1 to (N - (i - 1) * 2)( C ) )
(We are assuming that foo() is O(1) and takes C steps.)
We have a problem here: when i takes the value N / 2 + 1 upwards, the inner Summation ends at a negative number! That's impossible and wrong. We need to split the summation in two, being the pivotal point the moment i takes N / 2 + 1.
f(N) = Summation(i from 1 to N / 2)( Summation(j = 1 to (N - (i - 1) * 2)) * ( C ) ) + Summation(i from 1 to N / 2) * ( C )
Since the pivotal moment i > N / 2, the inner for won't get executed, and we are assuming a constant C execution complexity on its body.
Now the summations can be simplified using some identity rules:
Summation(w from 1 to N)( C ) = N * C
Summation(w from 1 to N)( A (+/-) B ) = Summation(w from 1 to N)( A ) (+/-) Summation(w from 1 to N)( B )
Summation(w from 1 to N)( w * C ) = C * Summation(w from 1 to N)( w ) (C is a constant, independent of w)
Summation(w from 1 to N)( w ) = (N * (N + 1)) / 2
Applying some algebra:
f(N) = Summation(i from 1 to N / 2)( (N - (i - 1) * 2) * ( C ) ) + (N / 2)( C )
f(N) = C * Summation(i from 1 to N / 2)( (N - (i - 1) * 2)) + (N / 2)( C )
f(N) = C * (Summation(i from 1 to N / 2)( N ) - Summation(i from 1 to N / 2)( (i - 1) * 2)) + (N / 2)( C )
f(N) = C * (( N ^ 2 / 2 ) - 2 * Summation(i from 1 to N / 2)( i - 1 )) + (N / 2)( C )
=> Summation(i from 1 to N / 2)( i - 1 ) = Summation(i from 1 to N / 2 - 1)( i )
f(N) = C * (( N ^ 2 / 2 ) - 2 * Summation(i from 1 to N / 2 - 1)( i )) + (N / 2)( C )
f(N) = C * (( N ^ 2 / 2 ) - 2 * ( (N / 2 - 1) * (N / 2 - 1 + 1) / 2) ) + (N / 2)( C )
=> (N / 2 - 1) * (N / 2 - 1 + 1) / 2 =
(N / 2 - 1) * (N / 2) / 2 =
((N ^ 2 / 4) - (N / 2)) / 2 =
(N ^ 2 / 8) - (N / 4)
f(N) = C * (( N ^ 2 / 2 ) - 2 * ( (N ^ 2 / 8) - (N / 4) )) + (N / 2)( C )
f(N) = C * (( N ^ 2 / 2 ) - ( (N ^ 2 / 4) - (N / 2) )) + (N / 2)( C )
f(N) = C * (( N ^ 2 / 2 ) - (N ^ 2 / 4) + (N / 2)) + (N / 2)( C )
f(N) = C * ( N ^ 2 / 4 ) + C * (N / 2) + C * (N / 2)
f(N) = C * ( N ^ 2 / 4 ) + 2 * C * (N / 2)
f(N) = C * ( N ^ 2 / 4 ) + C * N
f(N) = C * 1/4 * N ^ 2 + C * N
And the BigOh is:
O(N²)
Big O gives the upper bound for time complexity of an algorithm. It is usually used in conjunction with processing data sets (lists) but can be used elsewhere.
A few examples of how it's used in C code.
Say we have an array of n elements
int array[n];
If we wanted to access the first element of the array this would be O(1) since it doesn't matter how big the array is, it always takes the same constant time to get the first item.
x = array[0];
If we wanted to find a number in the list:
for(int i = 0; i < n; i++){
if(array[i] == numToFind){ return i; }
}
This would be O(n) since at most we would have to look through the entire list to find our number. The Big-O is still O(n) even though we might find our number the first try and run through the loop once because Big-O describes the upper bound for an algorithm (omega is for lower bound and theta is for tight bound).
When we get to nested loops:
for(int i = 0; i < n; i++){
for(int j = i; j < n; j++){
array[j] += 2;
}
}
This is O(n^2) since for each pass of the outer loop ( O(n) ) we have to go through the entire list again so the n's multiply leaving us with n squared.
This is barely scratching the surface but when you get to analyzing more complex algorithms complex math involving proofs comes into play. Hope this familiarizes you with the basics at least though.
While knowing how to figure out the Big O time for your particular problem is useful, knowing some general cases can go a long way in helping you make decisions in your algorithm.
Here are some of the most common cases, lifted from http://en.wikipedia.org/wiki/Big_O_notation#Orders_of_common_functions:
O(1) - Determining if a number is even or odd; using a constant-size lookup table or hash table
O(logn) - Finding an item in a sorted array with a binary search
O(n) - Finding an item in an unsorted list; adding two n-digit numbers
O(n2) - Multiplying two n-digit numbers by a simple algorithm; adding two n×n matrices; bubble sort or insertion sort
O(n3) - Multiplying two n×n matrices by simple algorithm
O(cn) - Finding the (exact) solution to the traveling salesman problem using dynamic programming; determining if two logical statements are equivalent using brute force
O(n!) - Solving the traveling salesman problem via brute-force search
O(nn) - Often used instead of O(n!) to derive simpler formulas for asymptotic complexity
Small reminder: the big O notation is used to denote asymptotic complexity (that is, when the size of the problem grows to infinity), and it hides a constant.
This means that between an algorithm in O(n) and one in O(n2), the fastest is not always the first one (though there always exists a value of n such that for problems of size >n, the first algorithm is the fastest).
Note that the hidden constant very much depends on the implementation!
Also, in some cases, the runtime is not a deterministic function of the size n of the input. Take sorting using quick sort for example: the time needed to sort an array of n elements is not a constant but depends on the starting configuration of the array.
There are different time complexities:
Worst case (usually the simplest to figure out, though not always very meaningful)
Average case (usually much harder to figure out...)
...
A good introduction is An Introduction to the Analysis of Algorithms by R. Sedgewick and P. Flajolet.
As you say, premature optimisation is the root of all evil, and (if possible) profiling really should always be used when optimising code. It can even help you determine the complexity of your algorithms.
Seeing the answers here I think we can conclude that most of us do indeed approximate the order of the algorithm by looking at it and use common sense instead of calculating it with, for example, the master method as we were thought at university.
With that said I must add that even the professor encouraged us (later on) to actually think about it instead of just calculating it.
Also I would like to add how it is done for recursive functions:
suppose we have a function like (scheme code):
(define (fac n)
(if (= n 0)
1
(* n (fac (- n 1)))))
which recursively calculates the factorial of the given number.
The first step is to try and determine the performance characteristic for the body of the function only in this case, nothing special is done in the body, just a multiplication (or the return of the value 1).
So the performance for the body is: O(1) (constant).
Next try and determine this for the number of recursive calls. In this case we have n-1 recursive calls.
So the performance for the recursive calls is: O(n-1) (order is n, as we throw away the insignificant parts).
Then put those two together and you then have the performance for the whole recursive function:
1 * (n-1) = O(n)
Peter, to answer your raised issues; the method I describe here actually handles this quite well. But keep in mind that this is still an approximation and not a full mathematically correct answer. The method described here is also one of the methods we were taught at university, and if I remember correctly was used for far more advanced algorithms than the factorial I used in this example.
Of course it all depends on how well you can estimate the running time of the body of the function and the number of recursive calls, but that is just as true for the other methods.
If your cost is a polynomial, just keep the highest-order term, without its multiplier. E.g.:
O((n/2 + 1)*(n/2)) = O(n2/4 + n/2) = O(n2/4) = O(n2)
This doesn't work for infinite series, mind you. There is no single recipe for the general case, though for some common cases, the following inequalities apply:
O(log N) < O(N) < O(N log N) < O(N2) < O(Nk) < O(en) < O(n!)
I think about it in terms of information. Any problem consists of learning a certain number of bits.
Your basic tool is the concept of decision points and their entropy. The entropy of a decision point is the average information it will give you. For example, if a program contains a decision point with two branches, it's entropy is the sum of the probability of each branch times the log2 of the inverse probability of that branch. That's how much you learn by executing that decision.
For example, an if statement having two branches, both equally likely, has an entropy of 1/2 * log(2/1) + 1/2 * log(2/1) = 1/2 * 1 + 1/2 * 1 = 1. So its entropy is 1 bit.
Suppose you are searching a table of N items, like N=1024. That is a 10-bit problem because log(1024) = 10 bits. So if you can search it with IF statements that have equally likely outcomes, it should take 10 decisions.
That's what you get with binary search.
Suppose you are doing linear search. You look at the first element and ask if it's the one you want. The probabilities are 1/1024 that it is, and 1023/1024 that it isn't. The entropy of that decision is 1/1024*log(1024/1) + 1023/1024 * log(1024/1023) = 1/1024 * 10 + 1023/1024 * about 0 = about .01 bit. You've learned very little! The second decision isn't much better. That is why linear search is so slow. In fact it's exponential in the number of bits you need to learn.
Suppose you are doing indexing. Suppose the table is pre-sorted into a lot of bins, and you use some of all of the bits in the key to index directly to the table entry. If there are 1024 bins, the entropy is 1/1024 * log(1024) + 1/1024 * log(1024) + ... for all 1024 possible outcomes. This is 1/1024 * 10 times 1024 outcomes, or 10 bits of entropy for that one indexing operation. That is why indexing search is fast.
Now think about sorting. You have N items, and you have a list. For each item, you have to search for where the item goes in the list, and then add it to the list. So sorting takes roughly N times the number of steps of the underlying search.
So sorts based on binary decisions having roughly equally likely outcomes all take about O(N log N) steps. An O(N) sort algorithm is possible if it is based on indexing search.
I've found that nearly all algorithmic performance issues can be looked at in this way.
Lets start from the beginning.
First of all, accept the principle that certain simple operations on data can be done in O(1) time, that is, in time that is independent of the size of the input. These primitive operations in C consist of
Arithmetic operations (e.g. + or %).
Logical operations (e.g., &&).
Comparison operations (e.g., <=).
Structure accessing operations (e.g. array-indexing like A[i], or pointer fol-
lowing with the -> operator).
Simple assignment such as copying a value into a variable.
Calls to library functions (e.g., scanf, printf).
The justification for this principle requires a detailed study of the machine instructions (primitive steps) of a typical computer. Each of the described operations can be done with some small number of machine instructions; often only one or two instructions are needed.
As a consequence, several kinds of statements in C can be executed in O(1) time, that is, in some constant amount of time independent of input. These simple include
Assignment statements that do not involve function calls in their expressions.
Read statements.
Write statements that do not require function calls to evaluate arguments.
The jump statements break, continue, goto, and return expression, where
expression does not contain a function call.
In C, many for-loops are formed by initializing an index variable to some value and
incrementing that variable by 1 each time around the loop. The for-loop ends when
the index reaches some limit. For instance, the for-loop
for (i = 0; i < n-1; i++)
{
small = i;
for (j = i+1; j < n; j++)
if (A[j] < A[small])
small = j;
temp = A[small];
A[small] = A[i];
A[i] = temp;
}
uses index variable i. It increments i by 1 each time around the loop, and the iterations
stop when i reaches n − 1.
However, for the moment, focus on the simple form of for-loop, where the difference between the final and initial values, divided by the amount by which the index variable is incremented tells us how many times we go around the loop. That count is exact, unless there are ways to exit the loop via a jump statement; it is an upper bound on the number of iterations in any case.
For instance, the for-loop iterates ((n − 1) − 0)/1 = n − 1 times,
since 0 is the initial value of i, n − 1 is the highest value reached by i (i.e., when i
reaches n−1, the loop stops and no iteration occurs with i = n−1), and 1 is added
to i at each iteration of the loop.
In the simplest case, where the time spent in the loop body is the same for each
iteration, we can multiply the big-oh upper bound for the body by the number of
times around the loop. Strictly speaking, we must then add O(1) time to initialize
the loop index and O(1) time for the first comparison of the loop index with the
limit, because we test one more time than we go around the loop. However, unless
it is possible to execute the loop zero times, the time to initialize the loop and test
the limit once is a low-order term that can be dropped by the summation rule.
Now consider this example:
(1) for (j = 0; j < n; j++)
(2) A[i][j] = 0;
We know that line (1) takes O(1) time. Clearly, we go around the loop n times, as
we can determine by subtracting the lower limit from the upper limit found on line
(1) and then adding 1. Since the body, line (2), takes O(1) time, we can neglect the
time to increment j and the time to compare j with n, both of which are also O(1).
Thus, the running time of lines (1) and (2) is the product of n and O(1), which is O(n).
Similarly, we can bound the running time of the outer loop consisting of lines
(2) through (4), which is
(2) for (i = 0; i < n; i++)
(3) for (j = 0; j < n; j++)
(4) A[i][j] = 0;
We have already established that the loop of lines (3) and (4) takes O(n) time.
Thus, we can neglect the O(1) time to increment i and to test whether i < n in
each iteration, concluding that each iteration of the outer loop takes O(n) time.
The initialization i = 0 of the outer loop and the (n + 1)st test of the condition
i < n likewise take O(1) time and can be neglected. Finally, we observe that we go
around the outer loop n times, taking O(n) time for each iteration, giving a total
O(n^2) running time.
A more practical example.
If you want to estimate the order of your code empirically rather than by analyzing the code, you could stick in a series of increasing values of n and time your code. Plot your timings on a log scale. If the code is O(x^n), the values should fall on a line of slope n.
This has several advantages over just studying the code. For one thing, you can see whether you're in the range where the run time approaches its asymptotic order. Also, you may find that some code that you thought was order O(x) is really order O(x^2), for example, because of time spent in library calls.
Basically the thing that crops up 90% of the time is just analyzing loops. Do you have single, double, triple nested loops? The you have O(n), O(n^2), O(n^3) running time.
Very rarely (unless you are writing a platform with an extensive base library (like for instance, the .NET BCL, or C++'s STL) you will encounter anything that is more difficult than just looking at your loops (for statements, while, goto, etc...)
Less useful generally, I think, but for the sake of completeness there is also a Big Omega Ω, which defines a lower-bound on an algorithm's complexity, and a Big Theta Θ, which defines both an upper and lower bound.
Big O notation is useful because it's easy to work with and hides unnecessary complications and details (for some definition of unnecessary). One nice way of working out the complexity of divide and conquer algorithms is the tree method. Let's say you have a version of quicksort with the median procedure, so you split the array into perfectly balanced subarrays every time.
Now build a tree corresponding to all the arrays you work with. At the root you have the original array, the root has two children which are the subarrays. Repeat this until you have single element arrays at the bottom.
Since we can find the median in O(n) time and split the array in two parts in O(n) time, the work done at each node is O(k) where k is the size of the array. Each level of the tree contains (at most) the entire array so the work per level is O(n) (the sizes of the subarrays add up to n, and since we have O(k) per level we can add this up). There are only log(n) levels in the tree since each time we halve the input.
Therefore we can upper bound the amount of work by O(n*log(n)).
However, Big O hides some details which we sometimes can't ignore. Consider computing the Fibonacci sequence with
a=0;
b=1;
for (i = 0; i <n; i++) {
tmp = b;
b = a + b;
a = tmp;
}
and lets just assume the a and b are BigIntegers in Java or something that can handle arbitrarily large numbers. Most people would say this is an O(n) algorithm without flinching. The reasoning is that you have n iterations in the for loop and O(1) work in side the loop.
But Fibonacci numbers are large, the n-th Fibonacci number is exponential in n so just storing it will take on the order of n bytes. Performing addition with big integers will take O(n) amount of work. So the total amount of work done in this procedure is
1 + 2 + 3 + ... + n = n(n-1)/2 = O(n^2)
So this algorithm runs in quadradic time!
Familiarity with the algorithms/data structures I use and/or quick glance analysis of iteration nesting. The difficulty is when you call a library function, possibly multiple times - you can often be unsure of whether you are calling the function unnecessarily at times or what implementation they are using. Maybe library functions should have a complexity/efficiency measure, whether that be Big O or some other metric, that is available in documentation or even IntelliSense.
Break down the algorithm into pieces you know the big O notation for, and combine through big O operators. That's the only way I know of.
For more information, check the Wikipedia page on the subject.
As to "how do you calculate" Big O, this is part of Computational complexity theory. For some (many) special cases you may be able to come with some simple heuristics (like multiplying loop counts for nested loops), esp. when all you want is any upper bound estimation, and you do not mind if it is too pessimistic - which I guess is probably what your question is about.
If you really want to answer your question for any algorithm the best you can do is to apply the theory. Besides of simplistic "worst case" analysis I have found Amortized analysis very useful in practice.
For the 1st case, the inner loop is executed n-i times, so the total number of executions is the sum for i going from 0 to n-1 (because lower than, not lower than or equal) of the n-i. You get finally n*(n + 1) / 2, so O(n²/2) = O(n²).
For the 2nd loop, i is between 0 and n included for the outer loop; then the inner loop is executed when j is strictly greater than n, which is then impossible.
I would like to explain the Big-O in a little bit different aspect.
Big-O is just to compare the complexity of the programs which means how fast are they growing when the inputs are increasing and not the exact time which is spend to do the action.
IMHO in the big-O formulas you better not to use more complex equations (you might just stick to the ones in the following graph.) However you still might use other more precise formula (like 3^n, n^3, ...) but more than that can be sometimes misleading! So better to keep it as simple as possible.
I would like to emphasize once again that here we don't want to get an exact formula for our algorithm. We only want to show how it grows when the inputs are growing and compare with the other algorithms in that sense. Otherwise you would better use different methods like bench-marking.
In addition to using the master method (or one of its specializations), I test my algorithms experimentally. This can't prove that any particular complexity class is achieved, but it can provide reassurance that the mathematical analysis is appropriate. To help with this reassurance, I use code coverage tools in conjunction with my experiments, to ensure that I'm exercising all the cases.
As a very simple example say you wanted to do a sanity check on the speed of the .NET framework's list sort. You could write something like the following, then analyze the results in Excel to make sure they did not exceed an n*log(n) curve.
In this example I measure the number of comparisons, but it's also prudent to examine the actual time required for each sample size. However then you must be even more careful that you are just measuring the algorithm and not including artifacts from your test infrastructure.
int nCmp = 0;
System.Random rnd = new System.Random();
// measure the time required to sort a list of n integers
void DoTest(int n)
{
List<int> lst = new List<int>(n);
for( int i=0; i<n; i++ )
lst[i] = rnd.Next(0,1000);
// as we sort, keep track of the number of comparisons performed!
nCmp = 0;
lst.Sort( delegate( int a, int b ) { nCmp++; return (a<b)?-1:((a>b)?1:0)); }
System.Console.Writeline( "{0},{1}", n, nCmp );
}
// Perform measurement for a variety of sample sizes.
// It would be prudent to check multiple random samples of each size, but this is OK for a quick sanity check
for( int n = 0; n<1000; n++ )
DoTest(n);
Don't forget to also allow for space complexities that can also be a cause for concern if one has limited memory resources. So for example you may hear someone wanting a constant space algorithm which is basically a way of saying that the amount of space taken by the algorithm doesn't depend on any factors inside the code.
Sometimes the complexity can come from how many times is something called, how often is a loop executed, how often is memory allocated, and so on is another part to answer this question.
Lastly, big O can be used for worst case, best case, and amortization cases where generally it is the worst case that is used for describing how bad an algorithm may be.
First of all, the accepted answer is trying to explain nice fancy stuff,
but I think, intentionally complicating Big-Oh is not the solution,
which programmers (or at least, people like me) search for.
Big Oh (in short)
function f(text) {
var n = text.length;
for (var i = 0; i < n; i++) {
f(text.slice(0, n-1))
}
// ... other JS logic here, which we can ignore ...
}
Big Oh of above is f(n) = O(n!) where n represents number of items in input set,
and f represents operation done per item.
Big-Oh notation is the asymptotic upper-bound of the complexity of an algorithm.
In programming: The assumed worst-case time taken,
or assumed maximum repeat count of logic, for size of the input.
Calculation
Keep in mind (from above meaning) that; We just need worst-case time and/or maximum repeat count affected by N (size of input),
Then take another look at (accepted answer's) example:
for (i = 0; i < 2*n; i += 2) { // line 123
for (j=n; j > i; j--) { // line 124
foo(); // line 125
}
}
Begin with this search-pattern:
Find first line that N caused repeat behavior,
Or caused increase of logic executed,
But constant or not, ignore anything before that line.
Seems line hundred-twenty-three is what we are searching ;-)
On first sight, line seems to have 2*n max-looping.
But looking again, we see i += 2 (and that half is skipped).
So, max repeat is simply n, write it down, like f(n) = O( n but don't close parenthesis yet.
Repeat search till method's end, and find next line matching our search-pattern, here that's line 124
Which is tricky, because strange condition, and reverse looping.
But after remembering that we just need to consider maximum repeat count (or worst-case time taken).
It's as easy as saying "Reverse-Loop j starts with j=n, am I right? yes, n seems to be maximum possible repeat count", so:
Add n to previous write down's end,
but like "( n " instead of "+ n" (as this is inside previous loop),
and close parenthesis only if we find something outside of previous loop.
Search Done! why? because line 125 (or any other line after) does not match our search-pattern.
We can now close any parenthesis (left-open in our write down), resulting in below:
f(n) = O( n( n ) )
Try to further shorten "n( n )" part, like:
n( n ) = n * n
= n2
Finally, just wrap it with Big Oh notation, like O(n2) or O(n^2) without formatting.
What often gets overlooked is the expected behavior of your algorithms. It doesn't change the Big-O of your algorithm, but it does relate to the statement "premature optimization. . .."
Expected behavior of your algorithm is -- very dumbed down -- how fast you can expect your algorithm to work on data you're most likely to see.
For instance, if you're searching for a value in a list, it's O(n), but if you know that most lists you see have your value up front, typical behavior of your algorithm is faster.
To really nail it down, you need to be able to describe the probability distribution of your "input space" (if you need to sort a list, how often is that list already going to be sorted? how often is it totally reversed? how often is it mostly sorted?) It's not always feasible that you know that, but sometimes you do.
great question!
Disclaimer: this answer contains false statements see the comments below.
If you're using the Big O, you're talking about the worse case (more on what that means later). Additionally, there is capital theta for average case and a big omega for best case.
Check out this site for a lovely formal definition of Big O: https://xlinux.nist.gov/dads/HTML/bigOnotation.html
f(n) = O(g(n)) means there are positive constants c and k, such that 0 ≤ f(n) ≤ cg(n) for all n ≥ k. The values of c and k must be fixed for the function f and must not depend on n.
Ok, so now what do we mean by "best-case" and "worst-case" complexities?
This is probably most clearly illustrated through examples. For example if we are using linear search to find a number in a sorted array then the worst case is when we decide to search for the last element of the array as this would take as many steps as there are items in the array. The best case would be when we search for the first element since we would be done after the first check.
The point of all these adjective-case complexities is that we're looking for a way to graph the amount of time a hypothetical program runs to completion in terms of the size of particular variables. However for many algorithms you can argue that there is not a single time for a particular size of input. Notice that this contradicts with the fundamental requirement of a function, any input should have no more than one output. So we come up with multiple functions to describe an algorithm's complexity. Now, even though searching an array of size n may take varying amounts of time depending on what you're looking for in the array and depending proportionally to n, we can create an informative description of the algorithm using best-case, average-case, and worst-case classes.
Sorry this is so poorly written and lacks much technical information. But hopefully it'll make time complexity classes easier to think about. Once you become comfortable with these it becomes a simple matter of parsing through your program and looking for things like for-loops that depend on array sizes and reasoning based on your data structures what kind of input would result in trivial cases and what input would result in worst-cases.
I don't know how to programmatically solve this, but the first thing people do is that we sample the algorithm for certain patterns in the number of operations done, say 4n^2 + 2n + 1 we have 2 rules:
If we have a sum of terms, the term with the largest growth rate is kept, with other terms omitted.
If we have a product of several factors constant factors are omitted.
If we simplify f(x), where f(x) is the formula for number of operations done, (4n^2 + 2n + 1 explained above), we obtain the big-O value [O(n^2) in this case]. But this would have to account for Lagrange interpolation in the program, which may be hard to implement. And what if the real big-O value was O(2^n), and we might have something like O(x^n), so this algorithm probably wouldn't be programmable. But if someone proves me wrong, give me the code . . . .
For code A, the outer loop will execute for n+1 times, the '1' time means the process which checks the whether i still meets the requirement. And inner loop runs n times, n-2 times.... Thus,0+2+..+(n-2)+n= (0+n)(n+1)/2= O(n²).
For code B, though inner loop wouldn't step in and execute the foo(), the inner loop will be executed for n times depend on outer loop execution time, which is O(n)
This question already has answers here:
Big O, how do you calculate/approximate it?
(24 answers)
Closed 27 days ago.
In a Java app, I have the following algorithm that is used for "Longest Substring with K Distinct Characters" as shown below:
Input: String="araaci", K=2
Output: 4
Explanation: The longest substring with no more than '2' distinct characters is "araa".
Input: String="cbbebi", K=3
Output: 5
Explanation: The longest substrings with no more than '3' distinct characters are "cbbeb" & "bbebi".
Here is the code:
public static int longestSubstring(String str, int k) {
Map<Character, Integer> map = new HashMap<>();
int maxLength = 0;
int l = 0;
for (int r = 0; r < str.length(); r++) {
char cRight = str.charAt(r);
map.put(cRight, map.getOrDefault(cRight, 0) + 1);
while (map.size() > k) {
char cLeft = str.charAt(l);
map.put(cLeft, map.getOrDefault(cLeft, 0) - 1);
if (map.get(cLeft) == 0) {
map.remove(cLeft);
}
l++;
}
maxLength = Math.max(maxLength, r - l + 1);
}
return maxLength;
}
I could not understand the time complexity in the following definition:
Time Complexity
The time complexity of the above algorithm will be O(N) where ‘N’ is the number of characters in the input string. The outer for loop runs for all characters and the inner while loop processes each character only once, therefore the time complexity of the algorithm will be O(N+N) which is asymptotically equivalent to O(N).
So, I thought when there is a while loop inside another for loop, I thought time complexity is O(n^2). But here I could not understand "inner while loop processes each character only once". Can you explain this state if it is correct?
In order to analyse the complexity of an algorithm, most of the time you'll need to understand what the code does in details (you don't need to understand if what it does is correct tho). Using the structure of the code (ie. whether loops are nested) or just looking at the big picture is usually a bad idea. In other words, computing the complexity of an algorithm takes a lot of (your) time.
As you stated "the inner while loop processes each character only once", which is indeed important to notice, but that's not sufficient in my opinion.
Loops do not matter per se, what matters is the total number of instructions your program will run depending on the input size. You can read "instruction" as "a function that runs in constant time" (independently of the input size).
Making sure all function calls are in O(1)
Let's first look at the complexity of all function calls:
We have several a map reads, all in O(1) (read this as "constant time read"):
map.getOrDefault(cRight, 0)
map.getOrDefault(cLeft, 0)
Also several map insertions, also all in O(1):
map.put(cRight, ...)
map.put(cLeft, ...)
And map item deletion map.remove(cLeft), also in O(1)
The Math.max(..., ...) is also in O(1)
str.charAt(..) is also in O(1)
There is also increments/decrements of loop variables and check their values and also a few other +1, -1 that are all in O(1).
Ok, now we can safely say that all external functions are "instructions" (or more accurately, all these function use a "constant size number of instructions"). Notice that all hashmap complexities are not exactly accurate but this is a detail you can look at separately
Which means we now only need to call how many of these functions are called.
Analyzing the number of function calls
The argument made in the comments is accurate but using the fact that char cLeft = str.charAt(l) will crash the program if l > N is not very satisfactory in my opinion. But this is a valid point, its impossible for the inner loop to be executed more than l times in total (which leads directly to the expected O(N) time complexity).
If this was given as an exercise, I doubt that was the expected answer. Let's analyze the program like it was written using char cLeft = str.charAt(l % str.length()) instead to make it a little more interesting.
I feel like the main argument should be based on the "total number of character count" stored in map (a map of character to counter pairs). Here are some facts, mainly:
The outter loop always increases a single counter by exactly one.
The inner loop always decreases a single counter by exactly one.
Also:
The inner loop ensure that all counters are positive (removes counters when they are equal to 0).
The inner loop runs as long as the number of (positive) counters is > k.
Lemma For the inner loop to be executed C times in total, the outer loop needs to be executed at least C times in total.
Proof Suppose the outer loop is executed C times, and the inner loop at least C + 1 times, that means it exists an iteration r of the outer loop in which the inner loop is executed r + 1 times. During this iteration r of the outer loop, at some point (by 1. and 2.) the sum of all character counters in map will equal 0. By fact 3., this means that there are no counter left (map.size() equals 0). Since k > 0, during iteration r it is impossible to enter the inner loop for a r + 1 time because of 4.. A contradiction that proves the Lemma is true.
Less formally, the inner loop will never execute if the sum of counters is 0 because the total sum of k (> 0) positives counters is greater than 0. In other words, the consumer (inner loop) can't consume more than what is being produced (by the outer loop).
Because of this Lemma and because the outer loop executes exactly N times, the inner loop executes at most N times. In total we will execute at most A * N function calls in the outter loop, and B * N function calls in the inner loop, both A and B are constants and all functions are in O(1), therefore (A + B) * N ∈ O(N).
Also note that writing O(N + N) is a pleonasm (or doesn't make sense) because big-O is supposed to ignore all constant factors (both multiplicative and additive). Usually people will not write equations using big-O notations because it is hard to write something correct and formal (appart for obvious set inclusions like O(log N) ∈ O(N)). Usually you would say something like "all operations are in O(N), therefore the algorithm is in O(N)".
I have gone through Google and Stack Overflow search, but nowhere I was able to find a clear and straightforward explanation for how to calculate time complexity.
What do I know already?
Say for code as simple as the one below:
char h = 'y'; // This will be executed 1 time
int abc = 0; // This will be executed 1 time
Say for a loop like the one below:
for (int i = 0; i < N; i++) {
Console.Write('Hello, World!!');
}
int i=0; This will be executed only once.
The time is actually calculated to i=0 and not the declaration.
i < N; This will be executed N+1 times
i++ This will be executed N times
So the number of operations required by this loop are {1+(N+1)+N} = 2N+2. (But this still may be wrong, as I am not confident about my understanding.)
OK, so these small basic calculations I think I know, but in most cases I have seen the time complexity as O(N), O(n^2), O(log n), O(n!), and many others.
How to find time complexity of an algorithm
You add up how many machine instructions it will execute as a function of the size of its input, and then simplify the expression to the largest (when N is very large) term and can include any simplifying constant factor.
For example, lets see how we simplify 2N + 2 machine instructions to describe this as just O(N).
Why do we remove the two 2s ?
We are interested in the performance of the algorithm as N becomes large.
Consider the two terms 2N and 2.
What is the relative influence of these two terms as N becomes large? Suppose N is a million.
Then the first term is 2 million and the second term is only 2.
For this reason, we drop all but the largest terms for large N.
So, now we have gone from 2N + 2 to 2N.
Traditionally, we are only interested in performance up to constant factors.
This means that we don't really care if there is some constant multiple of difference in performance when N is large. The unit of 2N is not well-defined in the first place anyway. So we can multiply or divide by a constant factor to get to the simplest expression.
So 2N becomes just N.
This is an excellent article: Time complexity of algorithm
The below answer is copied from above (in case the excellent link goes bust)
The most common metric for calculating time complexity is Big O notation. This removes all constant factors so that the running time can be estimated in relation to N as N approaches infinity. In general you can think of it like this:
statement;
Is constant. The running time of the statement will not change in relation to N.
for ( i = 0; i < N; i++ )
statement;
Is linear. The running time of the loop is directly proportional to N. When N doubles, so does the running time.
for ( i = 0; i < N; i++ ) {
for ( j = 0; j < N; j++ )
statement;
}
Is quadratic. The running time of the two loops is proportional to the square of N. When N doubles, the running time increases by N * N.
while ( low <= high ) {
mid = ( low + high ) / 2;
if ( target < list[mid] )
high = mid - 1;
else if ( target > list[mid] )
low = mid + 1;
else break;
}
Is logarithmic. The running time of the algorithm is proportional to the number of times N can be divided by 2. This is because the algorithm divides the working area in half with each iteration.
void quicksort (int list[], int left, int right)
{
int pivot = partition (list, left, right);
quicksort(list, left, pivot - 1);
quicksort(list, pivot + 1, right);
}
Is N * log (N). The running time consists of N loops (iterative or recursive) that are logarithmic, thus the algorithm is a combination of linear and logarithmic.
In general, doing something with every item in one dimension is linear, doing something with every item in two dimensions is quadratic, and dividing the working area in half is logarithmic. There are other Big O measures such as cubic, exponential, and square root, but they're not nearly as common. Big O notation is described as O ( <type> ) where <type> is the measure. The quicksort algorithm would be described as O (N * log(N )).
Note that none of this has taken into account best, average, and worst case measures. Each would have its own Big O notation. Also note that this is a VERY simplistic explanation. Big O is the most common, but it's also more complex that I've shown. There are also other notations such as big omega, little o, and big theta. You probably won't encounter them outside of an algorithm analysis course. ;)
Taken from here - Introduction to Time Complexity of an Algorithm
1. Introduction
In computer science, the time complexity of an algorithm quantifies the amount of time taken by an algorithm to run as a function of the length of the string representing the input.
2. Big O notation
The time complexity of an algorithm is commonly expressed using big O notation, which excludes coefficients and lower order terms. When expressed this way, the time complexity is said to be described asymptotically, i.e., as the input size goes to infinity.
For example, if the time required by an algorithm on all inputs of size n is at most 5n3 + 3n, the asymptotic time complexity is O(n3). More on that later.
A few more examples:
1 = O(n)
n = O(n2)
log(n) = O(n)
2 n + 1 = O(n)
3. O(1) constant time:
An algorithm is said to run in constant time if it requires the same amount of time regardless of the input size.
Examples:
array: accessing any element
fixed-size stack: push and pop methods
fixed-size queue: enqueue and dequeue methods
4. O(n) linear time
An algorithm is said to run in linear time if its time execution is directly proportional to the input size, i.e. time grows linearly as input size increases.
Consider the following examples. Below I am linearly searching for an element, and this has a time complexity of O(n).
int find = 66;
var numbers = new int[] { 33, 435, 36, 37, 43, 45, 66, 656, 2232 };
for (int i = 0; i < numbers.Length - 1; i++)
{
if(find == numbers[i])
{
return;
}
}
More Examples:
Array: Linear Search, Traversing, Find minimum etc
ArrayList: contains method
Queue: contains method
5. O(log n) logarithmic time:
An algorithm is said to run in logarithmic time if its time execution is proportional to the logarithm of the input size.
Example: Binary Search
Recall the "twenty questions" game - the task is to guess the value of a hidden number in an interval. Each time you make a guess, you are told whether your guess is too high or too low. Twenty questions game implies a strategy that uses your guess number to halve the interval size. This is an example of the general problem-solving method known as binary search.
6. O(n2) quadratic time
An algorithm is said to run in quadratic time if its time execution is proportional to the square of the input size.
Examples:
Bubble Sort
Selection Sort
Insertion Sort
7. Some useful links
Big-O Misconceptions
Determining The Complexity Of Algorithm
Big O Cheat Sheet
Several examples of loop.
O(n) time complexity of a loop is considered as O(n) if the loop variables is incremented / decremented by a constant amount. For example following functions have O(n) time complexity.
// Here c is a positive integer constant
for (int i = 1; i <= n; i += c) {
// some O(1) expressions
}
for (int i = n; i > 0; i -= c) {
// some O(1) expressions
}
O(nc) time complexity of nested loops is equal to the number of times the innermost statement is executed. For example, the following sample loops have O(n2) time complexity
for (int i = 1; i <=n; i += c) {
for (int j = 1; j <=n; j += c) {
// some O(1) expressions
}
}
for (int i = n; i > 0; i += c) {
for (int j = i+1; j <=n; j += c) {
// some O(1) expressions
}
For example, selection sort and insertion sort have O(n2) time complexity.
O(log n) time complexity of a loop is considered as O(log n) if the loop variables is divided / multiplied by a constant amount.
for (int i = 1; i <=n; i *= c) {
// some O(1) expressions
}
for (int i = n; i > 0; i /= c) {
// some O(1) expressions
}
For example, [binary search][3] has _O(log n)_ time complexity.
O(log log n) time complexity of a loop is considered as O(log log n) if the loop variables is reduced / increased exponentially by a constant amount.
// Here c is a constant greater than 1
for (int i = 2; i <=n; i = pow(i, c)) {
// some O(1) expressions
}
//Here fun is sqrt or cuberoot or any other constant root
for (int i = n; i > 0; i = fun(i)) {
// some O(1) expressions
}
One example of time complexity analysis
int fun(int n)
{
for (int i = 1; i <= n; i++)
{
for (int j = 1; j < n; j += i)
{
// Some O(1) task
}
}
}
Analysis:
For i = 1, the inner loop is executed n times.
For i = 2, the inner loop is executed approximately n/2 times.
For i = 3, the inner loop is executed approximately n/3 times.
For i = 4, the inner loop is executed approximately n/4 times.
…………………………………………………….
For i = n, the inner loop is executed approximately n/n times.
So the total time complexity of the above algorithm is (n + n/2 + n/3 + … + n/n), which becomes n * (1/1 + 1/2 + 1/3 + … + 1/n)
The important thing about series (1/1 + 1/2 + 1/3 + … + 1/n) is around to O(log n). So the time complexity of the above code is O(n·log n).
References:
1
2
3
Time complexity with examples
1 - Basic operations (arithmetic, comparisons, accessing array’s elements, assignment): The running time is always constant O(1)
Example:
read(x) // O(1)
a = 10; // O(1)
a = 1,000,000,000,000,000,000 // O(1)
2 - If then else statement: Only taking the maximum running time from two or more possible statements.
Example:
age = read(x) // (1+1) = 2
if age < 17 then begin // 1
status = "Not allowed!"; // 1
end else begin
status = "Welcome! Please come in"; // 1
visitors = visitors + 1; // 1+1 = 2
end;
So, the complexity of the above pseudo code is T(n) = 2 + 1 + max(1, 1+2) = 6. Thus, its big oh is still constant T(n) = O(1).
3 - Looping (for, while, repeat): Running time for this statement is the number of loops multiplied by the number of operations inside that looping.
Example:
total = 0; // 1
for i = 1 to n do begin // (1+1)*n = 2n
total = total + i; // (1+1)*n = 2n
end;
writeln(total); // 1
So, its complexity is T(n) = 1+4n+1 = 4n + 2. Thus, T(n) = O(n).
4 - Nested loop (looping inside looping): Since there is at least one looping inside the main looping, running time of this statement used O(n^2) or O(n^3).
Example:
for i = 1 to n do begin // (1+1)*n = 2n
for j = 1 to n do begin // (1+1)n*n = 2n^2
x = x + 1; // (1+1)n*n = 2n^2
print(x); // (n*n) = n^2
end;
end;
Common running time
There are some common running times when analyzing an algorithm:
O(1) – Constant time
Constant time means the running time is constant, it’s not affected by the input size.
O(n) – Linear time
When an algorithm accepts n input size, it would perform n operations as well.
O(log n) – Logarithmic time
Algorithm that has running time O(log n) is slight faster than O(n). Commonly, algorithm divides the problem into sub problems with the same size. Example: binary search algorithm, binary conversion algorithm.
O(n log n) – Linearithmic time
This running time is often found in "divide & conquer algorithms" which divide the problem into sub problems recursively and then merge them in n time. Example: Merge Sort algorithm.
O(n2) – Quadratic time
Look Bubble Sort algorithm!
O(n3) – Cubic time
It has the same principle with O(n2).
O(2n) – Exponential time
It is very slow as input get larger, if n = 1,000,000, T(n) would be 21,000,000. Brute Force algorithm has this running time.
O(n!) – Factorial time
The slowest!!! Example: Travelling salesman problem (TSP)
It is taken from this article. It is very well explained and you should give it a read.
When you're analyzing code, you have to analyse it line by line, counting every operation/recognizing time complexity. In the end, you have to sum it to get whole picture.
For example, you can have one simple loop with linear complexity, but later in that same program you can have a triple loop that has cubic complexity, so your program will have cubic complexity. Function order of growth comes into play right here.
Let's look at what are possibilities for time complexity of an algorithm, you can see order of growth I mentioned above:
Constant time has an order of growth 1, for example: a = b + c.
Logarithmic time has an order of growth log N. It usually occurs when you're dividing something in half (binary search, trees, and even loops), or multiplying something in same way.
Linear. The order of growth is N, for example
int p = 0;
for (int i = 1; i < N; i++)
p = p + 2;
Linearithmic. The order of growth is n·log N. It usually occurs in divide-and-conquer algorithms.
Cubic. The order of growth is N3. A classic example is a triple loop where you check all triplets:
int x = 0;
for (int i = 0; i < N; i++)
for (int j = 0; j < N; j++)
for (int k = 0; k < N; k++)
x = x + 2
Exponential. The order of growth is 2N. It usually occurs when you do exhaustive search, for example, check subsets of some set.
Loosely speaking, time complexity is a way of summarising how the number of operations or run-time of an algorithm grows as the input size increases.
Like most things in life, a cocktail party can help us understand.
O(N)
When you arrive at the party, you have to shake everyone's hand (do an operation on every item). As the number of attendees N increases, the time/work it will take you to shake everyone's hand increases as O(N).
Why O(N) and not cN?
There's variation in the amount of time it takes to shake hands with people. You could average this out and capture it in a constant c. But the fundamental operation here --- shaking hands with everyone --- would always be proportional to O(N), no matter what c was. When debating whether we should go to a cocktail party, we're often more interested in the fact that we'll have to meet everyone than in the minute details of what those meetings look like.
O(N^2)
The host of the cocktail party wants you to play a silly game where everyone meets everyone else. Therefore, you must meet N-1 other people and, because the next person has already met you, they must meet N-2 people, and so on. The sum of this series is x^2/2+x/2. As the number of attendees grows, the x^2 term gets big fast, so we just drop everything else.
O(N^3)
You have to meet everyone else and, during each meeting, you must talk about everyone else in the room.
O(1)
The host wants to announce something. They ding a wineglass and speak loudly. Everyone hears them. It turns out it doesn't matter how many attendees there are, this operation always takes the same amount of time.
O(log N)
The host has laid everyone out at the table in alphabetical order. Where is Dan? You reason that he must be somewhere between Adam and Mandy (certainly not between Mandy and Zach!). Given that, is he between George and Mandy? No. He must be between Adam and Fred, and between Cindy and Fred. And so on... we can efficiently locate Dan by looking at half the set and then half of that set. Ultimately, we look at O(log_2 N) individuals.
O(N log N)
You could find where to sit down at the table using the algorithm above. If a large number of people came to the table, one at a time, and all did this, that would take O(N log N) time. This turns out to be how long it takes to sort any collection of items when they must be compared.
Best/Worst Case
You arrive at the party and need to find Inigo - how long will it take? It depends on when you arrive. If everyone is milling around you've hit the worst-case: it will take O(N) time. However, if everyone is sitting down at the table, it will take only O(log N) time. Or maybe you can leverage the host's wineglass-shouting power and it will take only O(1) time.
Assuming the host is unavailable, we can say that the Inigo-finding algorithm has a lower-bound of O(log N) and an upper-bound of O(N), depending on the state of the party when you arrive.
Space & Communication
The same ideas can be applied to understanding how algorithms use space or communication.
Knuth has written a nice paper about the former entitled "The Complexity of Songs".
Theorem 2: There exist arbitrarily long songs of complexity O(1).
PROOF: (due to Casey and the Sunshine Band). Consider the songs Sk defined by (15), but with
V_k = 'That's the way,' U 'I like it, ' U
U = 'uh huh,' 'uh huh'
for all k.
For the mathematically-minded people: The master theorem is another useful thing to know when studying complexity.
O(n) is big O notation used for writing time complexity of an algorithm. When you add up the number of executions in an algorithm, you'll get an expression in result like 2N+2. In this expression, N is the dominating term (the term having largest effect on expression if its value increases or decreases). Now O(N) is the time complexity while N is dominating term.
Example
For i = 1 to n;
j = 0;
while(j <= n);
j = j + 1;
Here the total number of executions for the inner loop are n+1 and the total number of executions for the outer loop are n(n+1)/2, so the total number of executions for the whole algorithm are n + 1 + n(n+1/2) = (n2 + 3n)/2.
Here n^2 is the dominating term so the time complexity for this algorithm is O(n2).
Other answers concentrate on the big-O-notation and practical examples. I want to answer the question by emphasizing the theoretical view. The explanation below is necessarily lacking in details; an excellent source to learn computational complexity theory is Introduction to the Theory of Computation by Michael Sipser.
Turing Machines
The most widespread model to investigate any question about computation is a Turing machine. A Turing machine has a one dimensional tape consisting of symbols which is used as a memory device. It has a tapehead which is used to write and read from the tape. It has a transition table determining the machine's behaviour, which is a fixed hardware component that is decided when the machine is created. A Turing machine works at discrete time steps doing the following:
It reads the symbol under the tapehead.
Depending on the symbol and its internal state, which can only take finitely many values, it reads three values s, σ, and X from its transition table, where s is an internal state, σ is a symbol, and X is either Right or Left.
It changes its internal state to s.
It changes the symbol it has read to σ.
It moves the tapehead one step according to the direction in X.
Turing machines are powerful models of computation. They can do everything that your digital computer can do. They were introduced before the advent of digital modern computers by the father of theoretical computer science and mathematician: Alan Turing.
Time Complexity
It is hard to define the time complexity of a single problem like "Does white have a winning strategy in chess?" because there is a machine which runs for a single step giving the correct answer: Either the machine which says directly 'No' or directly 'Yes'. To make it work we instead define the time complexity of a family of problems L each of which has a size, usually the length of the problem description. Then we take a Turing machine M which correctly solves every problem in that family. When M is given a problem of this family of size n, it solves it in finitely many steps. Let us call f(n) the longest possible time it takes M to solve problems of size n. Then we say that the time complexity of L is O(f(n)), which means that there is a Turing machine which will solve an instance of it of size n in at most C.f(n) time where C is a constant independent of n.
Isn't it dependent on the machines? Can digital computers do it faster?
Yes! Some problems can be solved faster by other models of computation, for example two tape Turing machines solve some problems faster than those with a single tape. This is why theoreticians prefer to use robust complexity classes such as NL, P, NP, PSPACE, EXPTIME, etc. For example, P is the class of decision problems whose time complexity is O(p(n)) where p is a polynomial. The class P do not change even if you add ten thousand tapes to your Turing machine, or use other types of theoretical models such as random access machines.
A Difference in Theory and Practice
It is usually assumed that the time complexity of integer addition is O(1). This assumption makes sense in practice because computers use a fixed number of bits to store numbers for many applications. There is no reason to assume such a thing in theory, so time complexity of addition is O(k) where k is the number of bits needed to express the integer.
Finding The Time Complexity of a Class of Problems
The straightforward way to show the time complexity of a problem is O(f(n)) is to construct a Turing machine which solves it in O(f(n)) time. Creating Turing machines for complex problems is not trivial; one needs some familiarity with them. A transition table for a Turing machine is rarely given, and it is described in high level. It becomes easier to see how long it will take a machine to halt as one gets themselves familiar with them.
Showing that a problem is not O(f(n)) time complexity is another story... Even though there are some results like the time hierarchy theorem, there are many open problems here. For example whether problems in NP are in P, i.e. solvable in polynomial time, is one of the seven millennium prize problems in mathematics, whose solver will be awarded 1 million dollars.
I have this example algorithm:
int sum = 0;
int j = 1;
while (j <= n) {
sum++;
j = j * 2;
}
The book I am reading, "Building Java Programs - a Back to the Basics Approach" tells me that I need to find this:
Approximate the runtime of the following code fragment, in terms of n: Write your answer in a format such as O(N^2) or O(N log N).
I don't seem to understand how to get from point a to point b here. I figured two statements = O(2), and a loop with two statements = O(2N) so it should be O(2N + 2). Where am I going wrong?
When determining complexities, we don't include constants or coefficients. Instead of O(2N + 2), it should be O(n). We only care about numbers if they're exponential, i.e. 2^n or n^2, log2(n), etc.
Putting that aside, are you sure this is O(n)? O(n) would mean that it runs n times, but it looks like j is going to catch up to n before n times. See what I'm saying?
EDIT: Ok, here's what's going on.
Look what happens with j. j = j * 2. j is doubling every time. In other words, the difference between j and n is being halved. When the number of iterations remaining is halved on every iteration, that's called a log(n) algorithm. log(n) algorithms are pretty awesome because even if n is extremely large, log(n) is surprisingly small. Plug some numbers in to see what I mean.
In order to determine the complexity, you are on the right track with trying to find the number of operations! What I usually do if I can't pull up the formula immediately: I find examples first. Try it out for n = 5, n = 8, n=64, n=65 and come up with the number of steps taken, and you'll see soon the pattern!
The formula for number of operations you'll come up with can be very precise, but you can leave the constants out to determine the order of complexity (multipliers and additional constants), as in the end O(2n) is roughly the same as O(3n)compared to O(n^2).
The loop does not iterate through every value from 1 to N, which is where your O(2N) is going wrong.
It might help to visualize the runtime if you substitute the program with the following, which will have the same complexity - this is similar to algorithms that halve the input size on each iteration
int j = n;
while(j > 1) {
j = j / 2;
}
I'd say break it down; this sort of problem looks deceptively straightforward at once, but proving it out would be valuable.
Let's assume n = 100.
First iteration: sum = 1, j = 2
Second iteration: sum = 2, j = 4
Third iteration: sum = 3, j = 8
Fourth iteration: sum = 4, j = 16
Fifth iteration: sum = 5, j = 32
Sixth iteration: sum = 6, j = 64
Seventh iteration: sum = 7, j = 128 # end of iterations.
If this ran in O(N) time, then you would expect about a hundred iterations. We instead increase j by a factor of 2 every time instead, reaching the terminal iteration after about seven times.
That said, we iterate at least once (for n > 1), plus the floor of log(100)/log(2) = 6, for a total of 7 times.
I am inclined to believe that, based on running this little test, that the runtime of this is O(log(n)), and not O(n).
Recall from this graph; logarithms grow much slower over time given large values of N. Even with n = 1000, you would only see 10 iterations.
Your question asks to approximate the time, an exact time or formula is not required.
Also, Big O Notation, e.g. O(N), tends to be simplified to the most dominant term only (i.e. the term of N whereby if N is very large, that term alone would provide an exact or nearly exact answer).
So, if your exact formula were, say, 4N^2 + 9N + 7, your answer would be O(N^2). Because if N was very large, the N^2 term alone would be enough to approximate the answer.
Also, yts has a point about the j variable, as it's changing exponentially, so from your code the time, t will be:
t = 2(sum) + 2 = 2(log2(n)+1) + 2
Therefore your solution is maybe, of the form O(log N), or perhaps O(log2 N)?
I am taking up algorithm course on coursera,and I am stuck on this particular problem. I am supposed to find the time complexity of this code.
int sum = 0
for (int i = 1; i <= N*N; i = i*2)
{
for (int j = 0; j < i; j++)
sum++;
}
I checked it in eclipse itself, for any value of N the number of times sum statement is executed is less than N
final value of sum:
for N=8 sum=3
for N=16 sum=7
for N=100000 sum=511
so the time complexity should be less than N
but the answer that is given is N raised to the power 2, How is it possible?
What I have done so far:
the first loop will run log(N^ 2) times, and consequently second loop will be execute 1,2,3.. 2 logN
The first inner loop will be 1 + 2 + 4 + 8 .. 2^M where 2^M is <= N * N.
The sum of powers of 2 up to N * N is approximately 2 * N * N or O(N ^ 2)
Note: When N=100000 , N*N will overflow so its result is misleading. If you consider overflow to be part of the problem, the sum is pretty random for large numbers so you could argue its O(1), i.e. if N=2^15, N^2 = 2^30 and the sum will be Integer.MAX_VALUE. No higher value of N will give a higher sum.
There is a lot of confusion here, but the important thing is that Big-O notation is all about growth rate, or limiting behavior as mathematicians will say. That a function will execute in O(n*n) means that the time to execute will increase faster than, for example n, but slower than, for example 2^n.
When reasoning with big-O notation, remember that constants "do not count". There is a few querks in this particular question.
The N*N expression it-self would lead to a O(log n*n) complexity if the loop was a regular for-loop...
...however, the for-loop increment is i = i*2 causing the outer loop to be executed approximately log n and the function would be in O(log n) if the contents of the inner loop run in a time independent of n.
But again, the inner-loop run-time depends on n, but it doesn't do n*n runs, rather it does roughly log (n*n)/2 loops. Remembering that "constants don't count" and that we end up in O(n*n).
Hope this cleared things up.
So sum ++ will be executed 1 + 2 + 4 + 8 + ... + N*N, total log2(N*N) times. Sum of geometrical progression 1 * (1 - 2 ^ log2(N*N)/(1 - 2) = O(N*N).
Your outer loop is log(N^2)->2*log(N)->log(N), your inner loop is N^2/2->N^2. So, the time complexity is N^2*log(N).
About the benchmark, values with N=8 or N=16 are ridiculous, the time in the loop is marginal in relation with setting JVM, cache fails, and so on. You must:
Begin with biggest N, and check how it evaluate.
Make multiple runs with each value of N.
Think that the time complexity is a measure of how the algorithm works when N becomes really big.