go through an array of linked lists - java

I want to create an array of pointers to linked lists and then go through each list. To create it can I simply create however many lists I need and then just do something like
LinkedList array[] = new LinkedList[length];
and then just set a loop to set each value in the array to point to one of the lists?
How would I go through each list after I set it all up? I thought it was something like
while(array[x].hasNext()){
//do stuff
x++;
}

your while loop is incorrect:
Just do something like this!
for (LinkedList list : array) {
for (Item object : list) {
// Do something here with the item
}
}
btw you should not use LinkedList without a type, use one of the following
LinkedList<String> or
LinkedList<WhateverObjectYouLike> or
LinkedList<? extends whatEverObjectYouLike>
so lets say you want to create an array of 10 lists and every list should contain strings.
LinkedList<String> array[] = new LinkedList<String>[10];
for (int i=0; i<10; i++) {
array[i] = new LinkedList<String>();
}
// Add some strings to each list, as you like
...
// Print all added Strings:
for (LinkedList<String> list : array) {
for (String item : list) {
System.out.println(item);
}
}

You have mixed up Java array objects and the collection framework's List api. You can do what you want in a couple of ways:
Using arrays (highly discouraged—see this thread):
LinkedList array[] = new LinkedList[length];
...
for (int i = 0; i < array.length; ++i) {
LinkedList list = array[i];
// do stuff with list
}
Using a List:
List<LinkedList> array = new ArrayList<LinkedList>();
...
for (Iterator<LinkedList> iter = array.iterator();
iter.hasNext();
)
{
LinkedList list = iter.next();
// do stuff with list
}
In both cases, you might benefit from using an enhanced for loop:
for (LinkedList list : array) {
// do stuff with list
}
This works for either the array-based or List-based versions.
P.S. You should not be using raw LinkedList types. Instead, you should bind the generic type parameter of LinkedList to a specific element type (even if it's Object). For example:
List<LinkedList<String>> array = new ArrayList<LinkedList<String>>();
The language allows raw types for the sake of old code, but new code should never use them. However, the first option above will not work—you will have to use the second approach.

Related

best way to Iterate over a collection and array consecutively

Its a very trivial question and related to coding Style and I am just asking to make my coding style more readable
Suppose I have a Collection like linkedList and an Array and I need to iterate over both simultaneously.
currently the best way I know is to get a iterator over list and define a index variable outside the iterator loop and increment the index variable simultaneously to access both next elements {list and array}. Please refer the example below
LinkedList<Integer> list = new LinkedList<Integer>();
Integer[] arr = new Array[25];
// lets suppose both have 25 elements.
// My Iteration method will be
int index =0;
for (Integer val : list) {
System.out.println(val);
System.out.println(arr[index++]);
}
so is it the only way or is there any other way I can perform this iteration in more readable and more relatable manner, where I don't have to take index variable separately.
I know it can be possible that array might have less or more elements than collection but I am only talking about the cases where they have equal and we need to iterate over Both of them.
PS : anybody can write a code that a computer can understand, actual challenge is to write code which humans can understand easily.
What you have is essentially fine: it's simple, and simple can be sufficient to make code readable.
The only thing I would caution about is the side effect of index++ inside arr[index++]: if, say, you want to use the same value multiple times in the loop body, you couldn't simply copy+paste.
Consider pulling out a variable as the first thing in the loop to store the "current" array element (which is essentially what the enhanced for loop does for the list element).
for (Integer val : list) {
Integer fromArr = arr[index++];
// ...
}
Just to point out an alternative without having a separate variable for the index, you can use ListIterator, which provides you with the index of the element.
// Assuming list and are have same number of elements.
for (ListIterator<Integer> it = list.listIterator();
it.hasNext();) {
// The ordering of these statements is important, because next() changes nextIndex().
Integer fromArr = arr[it.nextIndex()];
Integer val = it.next();
// ...
}
ListIterator is not an especially widely-used class, though; its use may in and of itself be confusing.
One of the downsides of the ListIterator approach is that you have to use the it correctly: you shouldn't touch it inside the loop (after getting the values), you have to put the statements in the right order, etc.
Another approach would be to create a library method analogous to Python's enumerate:
static <T> Iterable<Map.Entry<Integer, T>> enumerate(Iterable<? extends T> iterable) {
return () -> new Iterator<T>() {
int index = 0;
Iterator<? extends T> delegate = iterable.iterator();
#Override public boolean hasNext() { return delegate.hasNext(); }
#Override public Map.Entry<Integer, T> next() {
return new AbstractMap.SimpleEntry<>(index++, delegate.next());
}
};
}
This returns an iterable of map entries, where the key is the index and the value is the corresponding value.
You could then use this in an enhanced for loop:
for (Map.Entry<Integer, Integer> entry : enumerate(list)) {
Integer fromList = entry.getValue();
Integer fromArr = arr[entry.getKey()];
}
One option is to have 2 iterators, but I don't think it is any clearer:
for (Iterator<Integer> i1 = list.iterator(), i2 = Arrays.asList(arr).iterator();
i1.hasNext() && i2.hasNext();) {
System.out.println(i1.next());
System.out.println(i2.next());
}
But it is more robust in that it finishes at the shorter of the 2 collections.
I tried to simplify and handle size wise collections where both need not be of the same size. I believe this would work even if the sizes are not same and just one loop would suffice. Code snippet below:
LinkedList<Integer> list = new LinkedList<Integer>();
Integer[] arr = new Array[25];
int maxLength= Math.max(list.size(),arr.size());
//Looping over the lengthy collection( could be Linkedlist or arraylist)
for(int i=0;i<maxLength;i++){
if(list.size()>i)
System.out.println(list[i]);
if(arr.size()>i)
System.out.println(arr[i]);
}
Hope this helps! Thanks

Reverse order of the Arrays stored in ArrayList

I'm working with Processing and IGeo library and I have an ArrayList of IVec[] arrays:
ArrayList<IVec []> v = new ArrayList<IVec[]>();
For every I of the ArrayList I have a collection of IVec [] arrays that represent the coordinates of the control points of a curve. I need to reverse the order of the IVec [] control points keeping the same order of the ArrayList (I'm trying to invert curve seam reversing control points order and keeping the original order of the curves) but I can't understand how to do this.
Can anyone help me?
I won't provide you a full solution, but will guide you through it:
Iterate on the array list v
for each item in it (IVec[]),
Convert the array to a collection (for example using Arrays.asList)
Use Collections.reverse to reverse the items in the list
Conver it back to an array
You can use Collections.reverse
You can also use a stack data structure. You can iterate over collection you wish to reverse by pushing the elements into the stack. Then, when you actually want to use the elements, you pop each element from the stack, which will allow you to iterate over the collection in reverse order.
This solution is working:
for (int i=0; i<v.size (); i++) {
IVec [] vert=v.get(i);
for (int j=0; j<vert.length/2; j++) {
IVec temp = vert[j];
vert[j]=vert[vert.length -1 - j];
vert[vert.length - 1 - j] = temp;
}
}
Try this;
Create a Helper method/function that takes and returns array.
Inside the Helper method, use Collections.reverse
return the reversed array.
call this helper method inside a loop as below:
for(int i = 0; i < OutArray.length; I++)
{ // Here get the inner Array and pass it to Helper method.
// Add the return array to newArray List
}
return newArrayList.
This should work (not the most efficient way, but easily understood):
public static <T> void reverseElements(ArrayList<T[]> list) {
ArrayList<T> tempList = new ArrayList<T>();
for(T[] arr : list) {
tempList.clear();
for(T t : arr)
tempList.add(t);
Collections.reverse(tempList);
tempList.toArray(arr);
arr = tempList.toArray(arr);
}
}

How to make ArrayList that work as two dimentional array in java?

I want to make arrayList object in java that work as two dimentional array. My question is how can we access value from specific dimention from arrayList.
in two dimentional array, if i want to access value then it can be as m[i][j].
But in arraylist how can i do that ?
You mean something like a List in a List??
May be something like...
List<List<...>> twoDList = new ArrayList<>();
i want to make a List, in which each List key contains another List inside it
It should more like you want some kind of Map, which is basically a key/value pair.
Map<String, List<String>> mapValues = new HashMap<>(25);
List<String> listOfValues = ...;
//...
mapValues.put("A unique key for this list", listOfValues);
//...
List<String> thatListOfValues = mapValues.get("A unique key for this list");
List<List<Integer>> list = new ArrayList<List<Integer>>();
list.add(new ArrayList<Integer>());
list.add(new ArrayList<Integer>());
list.get(0).add(5);
list.get(1).add(6);
for(List<Integer> listiter : list)
{
for(Integer integer : listiter)
{
System.out.println("" + integer);
}
}
This way you can get the items like
list.get(1).get(0); //second dimension list -> integer
EDIT:
Although it is true that you can use a Map if you are trying to use numeric indices for example for each list, like so:
Map<Integer, List<YourObject>> map = new HashMap<Integer, List<YourObject>>();
map.put(0, new ArrayList<YourObject>());
map.put(5, new ArrayList<YourObject>());
map.get(0).add(new YourObject("Hello"));
map.get(5).add(new YourObject("World"));
for(Integer integer : map.keySet())
{
for(YourObject yourObject : map.get(integer))
{
yourObject.print(); //example method
System.out.println(" ");
}
}
Although even then the accessing of Lists would be the same as before,
map.get(0).get(1); //List -> value at index
Obviously you don't need to use Integers as the generic type parameter, that's just a placeholder type.
The solution like List<List<..>> is slow then you should use one dimention array like
// Two dimentions: m and n
List<String> arr = new ArrayList<String>(m*n);
for (int i=0; i< m; ++i) {
for (int j=0; j<n; ++j) {
String str=arr.get(i*n + j);
//You code here
}
}
Memory is an important consideration here.
It can be acceptable to model a 2D (or higher dimension) array using a 1D container. (This is how the VARIANT SAFEARRAY of Microsoft's COM works.) But, consider this carefully if the number of elements is large; especially if the container allocates a contiguous memory block. Using something like List<List<... will model a jagged-edged matrix and can fragment your memory.
With the 1D approach, you can use the get(index) method on the ArrayList appropriately transformed:
Given the (i)th row and (j)th column, transform using index = i * rows + j where rows is the number of rows in your matrix.
An arraylist is not an object to make a 2 dimentional arrays. However you can use it anyway :
You can use :
new ArrayList<ArrayList<Object>>; //or
new ArrayList<Object[]>;
But you should implement your own matrix class because you will probably have some check to do and a function get(int row, int column) would be cool
Also consider Table collection provided by Google Guava library. ArrayTable is an implementation based on 2D array.
You cane define like this
1>
List<Object[]> list = new ArrayList<Object[]>();
Fetching
list.get(i)[j];
2>
List<Map<Integer,Object>> list = new ArrayList<Map<Integer,Object>>();
Fetching
list.get(i).get(j);

How can I dynamically add items to a Java array?

In PHP, you can dynamically add elements to arrays by the following:
$x = new Array();
$x[] = 1;
$x[] = 2;
After this, $x would be an array like this: {1,2}.
Is there a way to do something similar in Java?
Look at java.util.LinkedList or java.util.ArrayList
List<Integer> x = new ArrayList<Integer>();
x.add(1);
x.add(2);
Arrays in Java have a fixed size, so you can't "add something at the end" as you could do in PHP.
A bit similar to the PHP behaviour is this:
int[] addElement(int[] org, int added) {
int[] result = Arrays.copyOf(org, org.length +1);
result[org.length] = added;
return result;
}
Then you can write:
x = new int[0];
x = addElement(x, 1);
x = addElement(x, 2);
System.out.println(Arrays.toString(x));
But this scheme is horribly inefficient for larger arrays, as it makes a copy of the whole array each time. (And it is in fact not completely equivalent to PHP, since your old arrays stays the same).
The PHP arrays are in fact quite the same as a Java HashMap with an added "max key", so it would know which key to use next, and a strange iteration order (and a strange equivalence relation between Integer keys and some Strings). But for simple indexed collections, better use a List in Java, like the other answerers proposed.
If you want to avoid using List because of the overhead of wrapping every int in an Integer, consider using reimplementations of collections for primitive types, which use arrays internally, but will not do a copy on every change, only when the internal array is full (just like ArrayList). (One quickly googled example is this IntList class.)
Guava contains methods creating such wrappers in Ints.asList, Longs.asList, etc.
Apache Commons has an ArrayUtils implementation to add an element at the end of the new array:
/** Copies the given array and adds the given element at the end of the new array. */
public static <T> T[] add(T[] array, T element)
I have seen this question very often in the web and in my opinion, many people with high reputation did not answer these questions properly. So I would like to express my own answer here.
First we should consider there is a difference between array and arraylist.
The question asks for adding an element to an array, and not ArrayList
The answer is quite simple. It can be done in 3 steps.
Convert array to an arraylist
Add element to the arrayList
Convert back the new arrayList to the array
Here is the simple picture of it
And finally here is the code:
Step 1:
public List<String> convertArrayToList(String[] array){
List<String> stringList = new ArrayList<String>(Arrays.asList(array));
return stringList;
}
Step 2:
public List<String> addToList(String element,List<String> list){
list.add(element);
return list;
}
Step 3:
public String[] convertListToArray(List<String> list){
String[] ins = (String[])list.toArray(new String[list.size()]);
return ins;
}
Step 4
public String[] addNewItemToArray(String element,String [] array){
List<String> list = convertArrayToList(array);
list= addToList(element,list);
return convertListToArray(list);
}
You can use an ArrayList and then use the toArray() method. But depending on what you are doing, you might not even need an array at all. Look into seeing if Lists are more what you want.
See: Java List Tutorial
You probably want to use an ArrayList for this -- for a dynamically sized array like structure.
You can dynamically add elements to an array using Collection Frameworks in JAVA. collection Framework doesn't work on primitive data types.
This Collection framework will be available in "java.util.*" package
For example if you use ArrayList,
Create an object to it and then add number of elements (any type like String, Integer ...etc)
ArrayList a = new ArrayList();
a.add("suman");
a.add(new Integer(3));
a.add("gurram");
Now you were added 3 elements to an array.
if you want to remove any of added elements
a.remove("suman");
again if you want to add any element
a.add("Gurram");
So the array size is incresing / decreasing dynamically..
Use an ArrayList or juggle to arrays to auto increment the array size.
keep a count of where you are in the primitive array
class recordStuff extends Thread
{
double[] aListOfDoubles;
int i = 0;
void run()
{
double newData;
newData = getNewData(); // gets data from somewhere
aListofDoubles[i] = newData; // adds it to the primitive array of doubles
i++ // increments the counter for the next pass
System.out.println("mode: " + doStuff());
}
void doStuff()
{
// Calculate the mode of the double[] array
for (int i = 0; i < aListOfDoubles.length; i++)
{
int count = 0;
for (int j = 0; j < aListOfDoubles.length; j++)
{
if (a[j] == a[i]) count++;
}
if (count > maxCount)
{
maxCount = count;
maxValue = aListOfDoubles[i];
}
}
return maxValue;
}
}
This is a simple way to add to an array in java. I used a second array to store my original array, and then added one more element to it. After that I passed that array back to the original one.
int [] test = {12,22,33};
int [] test2= new int[test.length+1];
int m=5;int mz=0;
for ( int test3: test)
{
test2[mz]=test3; mz++;
}
test2[mz++]=m;
test=test2;
for ( int test3: test)
{
System.out.println(test3);
}
In Java size of array is fixed , but you can add elements dynamically to a fixed sized array using its index and for loop. Please find example below.
package simplejava;
import java.util.Arrays;
/**
*
* #author sashant
*/
public class SimpleJava {
/**
* #param args the command line arguments
*/
public static void main(String[] args) {
// TODO code application logic here
try{
String[] transactions;
transactions = new String[10];
for(int i = 0; i < transactions.length; i++){
transactions[i] = "transaction - "+Integer.toString(i);
}
System.out.println(Arrays.toString(transactions));
}catch(Exception exc){
System.out.println(exc.getMessage());
System.out.println(Arrays.toString(exc.getStackTrace()));
}
}
}

Why do I get an UnsupportedOperationException when trying to remove an element from a List?

I have this code:
public static String SelectRandomFromTemplate(String template,int count) {
String[] split = template.split("|");
List<String> list=Arrays.asList(split);
Random r = new Random();
while( list.size() > count ) {
list.remove(r.nextInt(list.size()));
}
return StringUtils.join(list, ", ");
}
I get this:
06-03 15:05:29.614: ERROR/AndroidRuntime(7737): java.lang.UnsupportedOperationException
06-03 15:05:29.614: ERROR/AndroidRuntime(7737): at java.util.AbstractList.remove(AbstractList.java:645)
How would be this the correct way? Java.15
Quite a few problems with your code:
On Arrays.asList returning a fixed-size list
From the API:
Arrays.asList: Returns a fixed-size list backed by the specified array.
You can't add to it; you can't remove from it. You can't structurally modify the List.
Fix
Create a LinkedList, which supports faster remove.
List<String> list = new LinkedList<String>(Arrays.asList(split));
On split taking regex
From the API:
String.split(String regex): Splits this string around matches of the given regular expression.
| is a regex metacharacter; if you want to split on a literal |, you must escape it to \|, which as a Java string literal is "\\|".
Fix:
template.split("\\|")
On better algorithm
Instead of calling remove one at a time with random indices, it's better to generate enough random numbers in the range, and then traversing the List once with a listIterator(), calling remove() at appropriate indices. There are questions on stackoverflow on how to generate random but distinct numbers in a given range.
With this, your algorithm would be O(N).
This one has burned me many times. Arrays.asList creates an unmodifiable list.
From the Javadoc: Returns a fixed-size list backed by the specified array.
Create a new list with the same content:
newList.addAll(Arrays.asList(newArray));
This will create a little extra garbage, but you will be able to mutate it.
Probably because you're working with unmodifiable wrapper.
Change this line:
List<String> list = Arrays.asList(split);
to this line:
List<String> list = new LinkedList<>(Arrays.asList(split));
The list returned by Arrays.asList() might be immutable. Could you try
List<String> list = new ArrayList<>(Arrays.asList(split));
I think that replacing:
List<String> list = Arrays.asList(split);
with
List<String> list = new ArrayList<String>(Arrays.asList(split));
resolves the problem.
Just read the JavaDoc for the asList method:
Returns a {#code List} of the objects
in the specified array. The size of
the {#code List} cannot be modified,
i.e. adding and removing are
unsupported, but the elements can be
set. Setting an element modifies the
underlying array.
This is from Java 6 but it looks like it is the same for the android java.
EDIT
The type of the resulting list is Arrays.ArrayList, which is a private class inside Arrays.class. Practically speaking, it is nothing but a List-view on the array that you've passed with Arrays.asList. With a consequence: if you change the array, the list is changed too. And because an array is not resizeable, remove and add operation must be unsupported.
The issue is you're creating a List using Arrays.asList() method with fixed Length
meaning that
Since the returned List is a fixed-size List, we can’t add/remove elements.
See the below block of code that I am using
This iteration will give an Exception Since it is an iteration list Created by asList() so remove and add are not possible, it is a fixed array
List<String> words = Arrays.asList("pen", "pencil", "sky", "blue", "sky", "dog");
for (String word : words) {
if ("sky".equals(word)) {
words.remove(word);
}
}
This will work fine since we are taking a new ArrayList we can perform modifications while iterating
List<String> words1 = new ArrayList<String>(Arrays.asList("pen", "pencil", "sky", "blue", "sky", "dog"));
for (String word : words) {
if ("sky".equals(word)) {
words.remove(word);
}
}
Arrays.asList() returns a list that doesn't allow operations affecting its size (note that this is not the same as "unmodifiable").
You could do new ArrayList<String>(Arrays.asList(split)); to create a real copy, but seeing what you are trying to do, here is an additional suggestion (you have a O(n^2) algorithm right below that).
You want to remove list.size() - count (lets call this k) random elements from the list. Just pick as many random elements and swap them to the end k positions of the list, then delete that whole range (e.g. using subList() and clear() on that). That would turn it to a lean and mean O(n) algorithm (O(k) is more precise).
Update: As noted below, this algorithm only makes sense if the elements are unordered, e.g. if the List represents a Bag. If, on the other hand, the List has a meaningful order, this algorithm would not preserve it (polygenelubricants' algorithm instead would).
Update 2: So in retrospect, a better (linear, maintaining order, but with O(n) random numbers) algorithm would be something like this:
LinkedList<String> elements = ...; //to avoid the slow ArrayList.remove()
int k = elements.size() - count; //elements to select/delete
int remaining = elements.size(); //elements remaining to be iterated
for (Iterator i = elements.iterator(); k > 0 && i.hasNext(); remaining--) {
i.next();
if (random.nextInt(remaining) < k) {
//or (random.nextDouble() < (double)k/remaining)
i.remove();
k--;
}
}
This UnsupportedOperationException comes when you try to perform some operation on collection where its not allowed and in your case, When you call Arrays.asList it does not return a java.util.ArrayList. It returns a java.util.Arrays$ArrayList which is an immutable list. You cannot add to it and you cannot remove from it.
I've got another solution for that problem:
List<String> list = Arrays.asList(split);
List<String> newList = new ArrayList<>(list);
work on newList ;)
Replace
List<String> list=Arrays.asList(split);
to
List<String> list = New ArrayList<>();
list.addAll(Arrays.asList(split));
or
List<String> list = new ArrayList<>(Arrays.asList(split));
or
List<String> list = new ArrayList<String>(Arrays.asList(split));
or (Better for Remove elements)
List<String> list = new LinkedList<>(Arrays.asList(split));
Yes, on Arrays.asList, returning a fixed-size list.
Other than using a linked list, simply use addAll method list.
Example:
String idList = "123,222,333,444";
List<String> parentRecepeIdList = new ArrayList<String>();
parentRecepeIdList.addAll(Arrays.asList(idList.split(",")));
parentRecepeIdList.add("555");
You can't remove, nor can you add to a fixed-size-list of Arrays.
But you can create your sublist from that list.
list = list.subList(0, list.size() - (list.size() - count));
public static String SelectRandomFromTemplate(String template, int count) {
String[] split = template.split("\\|");
List<String> list = Arrays.asList(split);
Random r = new Random();
while( list.size() > count ) {
list = list.subList(0, list.size() - (list.size() - count));
}
return StringUtils.join(list, ", ");
}
*Other way is
ArrayList<String> al = new ArrayList<String>(Arrays.asList(template));
this will create ArrayList which is not fixed size like Arrays.asList
Arrays.asList() uses fixed size array internally.
You can't dynamically add or remove from thisArrays.asList()
Use this
Arraylist<String> narraylist=new ArrayList(Arrays.asList());
In narraylist you can easily add or remove items.
Arraylist narraylist=Arrays.asList(); // Returns immutable arraylist
To make it mutable solution would be:
Arraylist narraylist=new ArrayList(Arrays.asList());
Following is snippet of code from Arrays
public static <T> List<T> asList(T... a) {
return new ArrayList<>(a);
}
/**
* #serial include
*/
private static class ArrayList<E> extends AbstractList<E>
implements RandomAccess, java.io.Serializable
{
private static final long serialVersionUID = -2764017481108945198L;
private final E[] a;
so what happens is that when asList method is called then it returns list of its own private static class version which does not override add funcion from AbstractList to store element in array. So by default add method in abstract list throws exception.
So it is not regular array list.
Creating a new list and populating valid values in new list worked for me.
Code throwing error -
List<String> list = new ArrayList<>();
for (String s: list) {
if(s is null or blank) {
list.remove(s);
}
}
desiredObject.setValue(list);
After fix -
List<String> list = new ArrayList<>();
List<String> newList= new ArrayList<>();
for (String s: list) {
if(s is null or blank) {
continue;
}
newList.add(s);
}
desiredObject.setValue(newList);

Categories

Resources