How to use the alphabeta pruning for connect four like game - java

Could someone be so kind to help me understand how to use the alpha-beta pruning algorithm? I'm making a game similar to connect four. The only differences is there is no diagonal win, and a player can mark an square at any given time (unless it is already occupied, of course). I think I understand how to code the algorithm, I just think I am using it wrong. What I have been doing is having a for loop that looks something like this
for(i=0; i<size; i++)
for(j=0; j<size; j++)
val = alphabeta();
if(val > max)
max = val;
move = set(i,j);
setBoard(move); //sets the to the returned value from alphabeta()
the problem I am having is that the first run of alphabeta returns the max val, so therefore none of the next values are greater, and the board will just be set at board[0][0]. Does anyone know what I am doing wrong?
public int alphabeta(Placement place, int depth, int alpha, int beta, boolean maxPlayer)
{
Placement p = null;
if(depth==0 || board.isWinner())
{
return evaluate(place, maxPlayer);
}
if(maxPlayer)
{
int i=0, j=0;
for(i=0; i<board.size; i++)
{
for(j=0; j<board.size; j++)
{
if(board.validMove(i,j)&&(board.canGetFour(i,j, opponent)&&board.canGetFour(i,j,player)))
{
board.board[i][j] = opponent;
p = new Placement(i, j);
alpha = Math.max(alpha, alphabeta(p, depth-1, alpha, beta, false));
board.board[i][j] = 0;
}
if(beta<=alpha)
break;
}
if(beta<=alpha)
break;
}
return alpha;
}
else
{
int i=0, j=0;
for(i=0; i<board.size; i++)
{
for(j=0; j<board.size; j++)
{
if(board.validMove(i,j)&&(board.canGetFour(i,j,opponent)&&board.canGetFour(i,j,player)))
{
board.board[i][j] = player;
p = new Placement(i, j);
beta = Math.min(beta, alphabeta(p, depth-1, alpha, beta, true));
System.out.println(board);
board.board[i][j] = 0;
}
if(beta<=alpha)
break;
}
if(beta<=alpha)
break;
}
return beta;
}
}
This is the function that makes the move
public void makeMove()
{
int max = -1;
Placement p = null;
int val = -1;
for(int i=0; i<size; i++)
for(int j=0; j<size; j++)
{
if(board.validMove(i, j))
{
if(board.canGetFour(i, j, opponent)||(board.canGetFour(i,j,player)&&board.canGetFour(i,j,opponent)))
{
board.board[i][j] = player;
val = alphabeta(new Placement(i,j), 5, -5000, 5000, true);
board.board[i][j] = 0;
if(val > max)
{
max = val;
p = new Placement(i, j);
}
}
}
}
board.board[p.row][p.col] = player;
board.moves++;
}
So here's my updated code, still not working
public Placement alphabeta(Placement p)
{
int v = max(p,6,-500000, 500000);
return successors(v);
}
public int max(Placement p, int depth, int alpha, int beta)
{
if(depth == 0 || board.isWinner())
{
return evaluateMax(p,player);
}
int v = -500000;
for(int i=0; i<successors.size(); i++)
{
Placement place = new Placement(successors.get(i));
board.board[place.row][place.col] = player;
v = Math.max(v, min(place, depth-1, alpha,beta));
board.board[place.row][place.col] = 0;
if(v>= beta)
return v;
alpha = Math.max(alpha, v);
}
return v;
}
public int min(Placement p, int depth, int alpha, int beta)
{
if(depth == 0||board.isWinner())
{
return evaluateMax(p,opponent);
}
int v = 500000;
for(int i=0; i<successors.size(); i++)
{
Placement place = new Placement(successors.get(i));
board.board[place.row][place.col] = opponent;
v = Math.min(v, max(place,depth-1, alpha,beta));
board.board[place.row][place.col] = 0;
if(v<= alpha)
return v;
beta = Math.min(alpha, v);
}
return v;
}
public void makeMove()
{
Placement p = null;
for(int i=0; i<successors.size(); i++)
{
Placement temp = successors.get(i);
//board.board[temp.row][temp.col] = player;
p = alphabeta(temp);
//board.board[temp.row][temp.col] = 0;
}
System.out.println("My move is "+p.row + p.col);
board.board[p.row][p.col] = player;
successors.remove(p);
}
I changed the algorithm slightly just so I can clearly see what going on with min and max, however, it still does not play correctly

Ok, took some time but I think I have it.
In your evaluate function, you should be returning how good the state is for the actual player. If placement is a canGetFour for the "otherPlayer", that is a bad state (the worst state). So you return a small number. However, if placement is a canGetFour for the "actualPlayer" you return a large number (its a good state).
Then in your makeMove, you are just checking whether the state is the best state possible. Note, that using a 2d array for this is just about the least efficient way of storing the "child nodes". It would make a lot more sense to have a placement.getPossibleMoves() which returns an array of all the empty squares (both real and temporary), and iterate over that. Otherwise your algorithm is going to be exponential time in the order of the board size.
private Placement bestNext;
private List<Placement> tempMoves = new ArrayList<>();
private int alpha;
private int beta;
public int alphabeta(Placement place, int depth, boolean maxPlayer)
{
Placement p = null;
if(depth == maxDepth){/* (unnasigned squares in actual board) */
return evaluate(place, maxPlayer)
}
int i=0, j=0;
for(i=0; i<board.size; i++)
{
for(j=0; j<board.size; j++)
{
if(board.validMove(i,j)){
p = new Placement(i, j);
tempMoves.add(placement);
int tmp = Math.max(alpha, alphabeta(p, depth += 1, actualPlayer.getOpponent()));
if(maxPlayer){
alpha = tmp
}
else{
beta = tmp
}
tempMoves.remove(placement);
}
if(beta<=alpha)
break;
}
if(beta<=alpha)
break;
}
return maxPlayer ? alpha : beta;
}

Related

IF Statement Checking (Not Working Properly)

randomEmpty() returns a random coordinate on the n x n grid that is empty (Method works). randomAdjacent() uses randomEmpty() to select an EMPTY coordinate on the map. Comparisons are then made to see if this coordinate has an VALID adjacent coordinate that is NON-EMPTY. The PROBLEM is that randomAdjacent does not always return the coordinates of space with an adjacent NON-EMPTY space. It will always return valid coordinates but not the latter. I can't spot the problem. Can someone help me identify the problem?
public int[] randomEmpty()
{
Random r = new Random();
int[] random = new int[2];
int row = r.nextInt(array.length);
int column = r.nextInt(array.length);
while(!(isEmpty(row,column)))
{
row = r.nextInt(array.length);
column = r.nextInt(array.length);
}
random[0] = row+1;
random[1] = column+1;
return random;
}
public int[] randomAdjacent()
{
int[] adjacentToX = new int[8];
int[] adjacentToY = new int[8];
int[] adjacentFrom = randomEmpty();
int count;
boolean isTrue = false;
boolean oneAdjacentNotEmpty = false;
while(!(oneAdjacentNotEmpty))
{
count = 0;
if(validIndex(adjacentFrom,1,-1))
{
adjacentToX[count] = adjacentFrom[0]+1;
adjacentToY[count] = adjacentFrom[1]-1;
count++;
}
if(validIndex(adjacentFrom,0,-1))
{
adjacentToX[count] = adjacentFrom[0];
adjacentToY[count] = adjacentFrom[1]-1;
count++;
}
if(validIndex(adjacentFrom,-1,-1))
{
adjacentToX[count] = adjacentFrom[0]-1;
adjacentToY[count] = adjacentFrom[1]-1;
count++;
}
if(validIndex(adjacentFrom,-1,0))
{
adjacentToX[count] = adjacentFrom[0]-1;
adjacentToY[count] = adjacentFrom[1];
count++;
}
if(validIndex(adjacentFrom,-1,1))
{
adjacentToX[count] = adjacentFrom[0]-1;
adjacentToY[count] = adjacentFrom[1]+1;
count++;
}
if(validIndex(adjacentFrom,0,1))
{
adjacentToX[count] = adjacentFrom[0];
adjacentToY[count] = adjacentFrom[1]+1;
count++;
}
if(validIndex(adjacentFrom,1,1))
{
adjacentToX[count] = adjacentFrom[0]+1;
adjacentToY[count] = adjacentFrom[1]+1;
count++;
}
if(validIndex(adjacentFrom,1,0))
{
adjacentToX[count] = adjacentFrom[0]+1;
adjacentToY[count] = adjacentFrom[1];
count++;
}
for(int i = 0; i < count; i++)
{
if(!(isEmpty(adjacentToX[i],adjacentToY[i])))
{
oneAdjacentNotEmpty = true;
isTrue = true;
}
}
if(isTrue)
break;
else
adjacentFrom = randomEmpty();
}
return adjacentFrom;
}
public boolean validIndex(int[] a,int i, int j)
{
try
{
Pebble aPebble = array[a[0]+i][a[1]+j];
return true;
}
catch(ArrayIndexOutOfBoundsException e)
{
return false;
}
}
public void setCell(int xPos, int yPos, Pebble aPebble)
{
array[xPos-1][yPos-1] = aPebble;
}
public Pebble getCell(int xPos, int yPos)
{
return array[xPos-1][yPos-1];
}
JUNIT Test Performed:
#Test
public void testRandomAdjacent() {
final int size = 5;
final Board board2 = new Board(size);
board2.setCell(1, 1, Pebble.O);
board2.setCell(5, 5, Pebble.O);
int[] idx = board2.randomAdjacent();
int x = idx[0];
int y = idx[1];
boolean empty = true;
for (int i = x - 1; i <= x + 1; i++) {
for (int j = y - 1; j <= y + 1; j++) {
if ((i == x && j == y) || i < 1 || j < 1 || i > size || j > size) {
continue;
}
if (board2.getCell(i, j) != Pebble.EMPTY)
empty = false;
}
}
assertFalse(empty);// NEVER gets SET TO FALSE
assertEquals(Pebble.EMPTY, board2.getCell(x, y));
}
As for the answer: I got carried away optimizing your code for readability. I'd think it's most likely
if (board2.getCell(i, j) != Pebble.EMPTY)
empty = false;
causing the problem as getCell operates in 1-based coordinates, but i, j are in 0-based.
You should think about your logic overall. The way I see it, your code might never terminate as randomEmpty() could keep returning the same field over and over again for an undetermined period of time.
I took the liberty to recode your if-if-if cascade into utility method easier to read:
public boolean hasNonEmptyNeighbor(int[] adjacentFrom) {
for(int i = -1; i <= 1; ++i) {
for(int j = -1; j <= 1; ++j) {
if(validIndex(adjacentFrom, i, j) //Still inside the board
&& // AND
!isEmpty(adjacentFrom[0]+i //not empty
,adjacentFrom[1]+j)) {
return true;
}
}
}
return false;
}
Given my previous comment about random() being not the best of choices if you need to cover the full board, your main check (give me an empty cell with a non-empty neighbor) could be rewritten like this:
public void find() {
List<Point> foundPoints = new ArrayList<Point>();
for(int i = 0; i < Board.height; ++i) { //Assumes you have stored your height
for(int j = 0; j < Board.width; ++j) { //and your width
if(isEmpty(i, j) && hasNonEmptyNeighbor(new int[]{i,j})) {
//Found one.
foundPoints.add(new Point(i, j));
}
}
}
//If you need to return a RANDOM empty field with non-empty neighbor
//you could randomize over length of foundPoints here and select from that list.
}

java codility Frog-River-One

I have been trying to solve a Java exercise on a Codility web page.
Below is the link to the mentioned exercise and my solution.
https://codility.com/demo/results/demoH5GMV3-PV8
Can anyone tell what can I correct in my code in order to improve the score?
Just in case here is the task description:
A small frog wants to get to the other side of a river. The frog is currently located at position 0, and wants to get to position X. Leaves fall from a tree onto the surface of the river.
You are given a non-empty zero-indexed array A consisting of N integers representing the falling leaves. A[K] represents the position where one leaf falls at time K, measured in minutes.
The goal is to find the earliest time when the frog can jump to the other side of the river. The frog can cross only when leaves appear at every position across the river from 1 to X.
For example, you are given integer X = 5 and array A such that:
A[0] = 1
A[1] = 3
A[2] = 1
A[3] = 4
A[4] = 2
A[5] = 3
A[6] = 5
A[7] = 4
In minute 6, a leaf falls into position 5. This is the earliest time when leaves appear in every position across the river.
Write a function:
class Solution { public int solution(int X, int[] A); }
that, given a non-empty zero-indexed array A consisting of N integers and integer X, returns the earliest time when the frog can jump to the other side of the river.
If the frog is never able to jump to the other side of the river, the function should return −1.
For example, given X = 5 and array A such that:
A[0] = 1
A[1] = 3
A[2] = 1
A[3] = 4
A[4] = 2
A[5] = 3
A[6] = 5
A[7] = 4
the function should return 6, as explained above. Assume that:
N and X are integers within the range [1..100,000];
each element of array A is an integer within the range [1..X].
Complexity:
expected worst-case time complexity is O(N);
expected worst-case space complexity is O(X), beyond input storage (not counting the storage required for input arguments).
Elements of input arrays can be modified.
And here is my solution:
import java.util.ArrayList;
import java.util.List;
class Solution {
public int solution(int X, int[] A) {
int list[] = A;
int sum = 0;
int searchedValue = X;
List<Integer> arrayList = new ArrayList<Integer>();
for (int iii = 0; iii < list.length; iii++) {
if (list[iii] <= searchedValue && !arrayList.contains(list[iii])) {
sum += list[iii];
arrayList.add(list[iii]);
}
if (list[iii] == searchedValue) {
if (sum == searchedValue * (searchedValue + 1) / 2) {
return iii;
}
}
}
return -1;
}
}
You are using arrayList.contains inside a loop, which will traverse the whole list unnecessarily.
Here is my solution (I wrote it some time ago, but I believe it scores 100/100):
public int frog(int X, int[] A) {
int steps = X;
boolean[] bitmap = new boolean[steps+1];
for(int i = 0; i < A.length; i++){
if(!bitmap[A[i]]){
bitmap[A[i]] = true;
steps--;
if(steps == 0) return i;
}
}
return -1;
}
Here is my solution. It got me 100/100:
public int solution(int X, int[] A)
{
int[] B = A.Distinct().ToArray();
return (B.Length != X) ? -1 : Array.IndexOf<int>(A, B[B.Length - 1]);
}
100/100
public static int solution (int X, int[] A){
int[]counter = new int[X+1];
int ans = -1;
int x = 0;
for (int i=0; i<A.length; i++){
if (counter[A[i]] == 0){
counter[A[i]] = A[i];
x += 1;
if (x == X){
return i;
}
}
}
return ans;
}
A Java solution using Sets (Collections Framework) Got a 100%
import java.util.Set;
import java.util.TreeSet;
public class Froggy {
public static int solution(int X, int[] A){
int steps=-1;
Set<Integer> values = new TreeSet<Integer>();
for(int i=0; i<A.length;i++){
if(A[i]<=X){
values.add(A[i]);
}
if(values.size()==X){
steps=i;
break;
}
}
return steps;
}
Better approach would be to use Set, because it only adds unique values to the list. Just add values to the Set and decrement X every time a new value is added, (Set#add() returns true if value is added, false otherwise);
have a look,
public static int solution(int X, int[] A) {
Set<Integer> values = new HashSet<Integer>();
for (int i = 0; i < A.length; i++) {
if (values.add(A[i])) X--;
if (X == 0) return i;
}
return -1;
}
do not forget to import,
import java.util.HashSet;
import java.util.Set;
Here's my solution, scored 100/100:
import java.util.HashSet;
class Solution {
public int solution(int X, int[] A) {
HashSet<Integer> hset = new HashSet<Integer>();
for (int i = 0 ; i < A.length; i++) {
if (A[i] <= X)
hset.add(A[i]);
if (hset.size() == X)
return i;
}
return -1;
}
}
Simple solution 100%
public int solution(final int X, final int[] A) {
Set<Integer> emptyPosition = new HashSet<Integer>();
for (int i = 1; i <= X; i++) {
emptyPosition.add(i);
}
// Once all the numbers are covered for position, that would be the
// moment when the frog will jump
for (int i = 0; i < A.length; i++) {
emptyPosition.remove(A[i]);
if (emptyPosition.size() == 0) {
return i;
}
}
return -1;
}
Here's my solution.
It isn't perfect, but it's good enough to score 100/100.
(I think that it shouldn't have passed a test with a big A and small X)
Anyway, it fills a new counter array with each leaf that falls
counter has the size of X because I don't care for leafs that fall farther than X, therefore the try-catch block.
AFTER X leafs fell (because it's the minimum amount of leafs) I begin checking whether I have a complete way - I'm checking that every int in count is greater than 0.
If so, I return i, else I break and try again.
public static int solution(int X, int[] A){
int[] count = new int[X];
for (int i = 0; i < A.length; i++){
try{
count[A[i]-1]++;
} catch (ArrayIndexOutOfBoundsException e){ }
if (i >= X - 1){
for (int j = 0; j< count.length; j++){
if (count[j] == 0){
break;
}
if (j == count.length - 1){
return i;
}
}
}
}
return -1;
}
Here's my solution with 100 / 100.
public int solution(int X, int[] A) {
int len = A.length;
if (X > len) {
return -1;
}
int[] isFilled = new int[X];
int jumped = 0;
Arrays.fill(isFilled, 0);
for (int i = 0; i < len; i++) {
int x = A[i];
if (x <= X) {
if (isFilled[x - 1] == 0) {
isFilled[x - 1] = 1;
jumped += 1;
if (jumped == X) {
return i;
}
}
}
}
return -1;
}
Here's what I have in C#. It can probably still be refactored.
We throw away numbers greater than X, which is where we want to stop, and then we add numbers to an array if they haven't already been added.
When the count of the list has reached the expected number, X, then return the result. 100%
var tempArray = new int[X+1];
var totalNumbers = 0;
for (int i = 0; i < A.Length; i++)
{
if (A[i] > X || tempArray.ElementAt(A[i]) != 0)
continue;
tempArray[A[i]] = A[i];
totalNumbers++;
if (totalNumbers == X)
return i;
}
return -1;
below is my solution. I basically created a set which allows uniques only and then go through the array and add every element to set and keep a counter to get the sum of the set and then using the sum formula of consecutive numbers then I got 100% . Note : if you add up the set using java 8 stream api the solution is becoming quadratic and you get %56 .
public static int solution2(int X, int[] A) {
long sum = X * (X + 1) / 2;
Set<Integer> set = new HashSet<Integer>();
int setSum = 0;
for (int i = 0; i < A.length; i++) {
if (set.add(A[i]))
setSum += A[i];
if (setSum == sum) {
return i;
}
}
return -1;
}
My JavaScript solution that got 100 across the board. Since the numbers are assumed to be in the range of the river width, simply storing booleans in a temporary array that can be checked against duplicates will do. Then, once you have amassed as many numbers as the quantity X, you know you have all the leaves necessary to cross.
function solution(X, A) {
covered = 0;
tempArray = [];
for (let i = 0; i < A.length; i++) {
if (!tempArray[A[i]]) {
tempArray[A[i]] = true;
covered++
if(covered === X) return i;
}
}
return -1;
}
Here is my answer in Python:
def solution(X, A):
# write your code in Python 3.6
values = set()
for i in range (len(A)):
if A[i]<=X :
values.add(A[i])
if len(values)==X:
return i
return -1
Just tried this problem as well and here is my solution. Basically, I just declared an array whose size is equal to position X. Then, I declared a counter to monitor if the necessary leaves have fallen at the particular spots. The loop exits when these leaves have been met and if not, returns -1 as instructed.
class Solution {
public int solution(int X, int[] A) {
int size = A.length;
int[] check = new int[X];
int cmp = 0;
int time = -1;
for (int x = 0; x < size; x++) {
int temp = A[x];
if (temp <= X) {
if (check[temp-1] > 0) {
continue;
}
check[temp - 1]++;
cmp++;
}
if ( cmp == X) {
time = x;
break;
}
}
return time;
}
}
It got a 100/100 on the evaluation but I'm not too sure of its performance. I am still a beginner when it comes to programming so if anybody can critique the code, I would be grateful.
Maybe it is not perfect but its straightforward. Just made a counter Array to track the needed "leaves" and verified on each iteration if the path was complete. Got me 100/100 and O(N).
public static int frogRiver(int X, int[] A)
{
int leaves = A.Length;
int[] counter = new int[X + 1];
int stepsAvailForTravel = 0;
for(int i = 0; i < leaves; i++)
{
//we won't get to that leaf anyway so we shouldnt count it,
if (A[i] > X)
{
continue;
}
else
{
//first hit!, keep a count of the available leaves to jump
if (counter[A[i]] == 0)
stepsAvailForTravel++;
counter[A[i]]++;
}
//We did it!!
if (stepsAvailForTravel == X)
{
return i;
}
}
return -1;
}
This is my solution. I think it's very simple. It gets 100/100 on codibility.
set.contains() let me eliminate duplicate position from table.
The result of first loop get us expected sum. In the second loop we get sum of input values.
class Solution {
public int solution(int X, int[] A) {
Set<Integer> set = new HashSet<Integer>();
int sum1 = 0, sum2 = 0;
for (int i = 0; i <= X; i++){
sum1 += i;
}
for (int i = 0; i < A.length; i++){
if (set.contains(A[i])) continue;
set.add(A[i]);
sum2 += A[i];
if (sum1 == sum2) return i;
}
return -1;
}
}
Your algorithm is perfect except below code
Your code returns value only if list[iii] matches with searchedValue.
The algorithm must be corrected in such a way that, it returns the value if sum == n * ( n + 1) / 2.
import java.util.ArrayList;
import java.util.List;
class Solution {
public int solution(int X, int[] A) {
int list[] = A;
int sum = 0;
int searchedValue = X;
int sumV = searchedValue * (searchedValue + 1) / 2;
List<Integer> arrayList = new ArrayList<Integer>();
for (int iii = 0; iii < list.length; iii++) {
if (list[iii] <= searchedValue && !arrayList.contains(list[iii])) {
sum += list[iii];
if (sum == sumV) {
return iii;
}
arrayList.add(list[iii]);
}
}
return -1;
}
}
I think you need to check the performance as well. I just ensured the output only
This solution I've posted today gave 100% on codility, but respectivly #rafalio 's answer it requires K times less memory
public class Solution {
private static final int ARRAY_SIZE_LOWER = 1;
private static final int ARRAY_SIZE_UPPER = 100000;
private static final int NUMBER_LOWER = ARRAY_SIZE_LOWER;
private static final int NUMBER_UPPER = ARRAY_SIZE_UPPER;
public static class Set {
final long[] buckets;
public Set(int size) {
this.buckets = new long[(size % 64 == 0 ? (size/64) : (size/64) + 1)];
}
/**
* number should be greater than zero
* #param number
*/
public void put(int number) {
buckets[getBucketindex(number)] |= getFlag(number);
}
public boolean contains(int number) {
long flag = getFlag(number);
// check if flag is stored
return (buckets[getBucketindex(number)] & flag) == flag;
}
private int getBucketindex(int number) {
if (number <= 64) {
return 0;
} else if (number <= 128) {
return 1;
} else if (number <= 192) {
return 2;
} else if (number <= 256) {
return 3;
} else if (number <= 320) {
return 4;
} else if (number <= 384) {
return 5;
} else
return (number % 64 == 0 ? (number/64) : (number/64) + 1) - 1;
}
private long getFlag(int number) {
if (number <= 64) {
return 1L << number;
} else
return 1L << (number % 64);
}
}
public static final int solution(final int X, final int[] A) {
if (A.length < ARRAY_SIZE_LOWER || A.length > ARRAY_SIZE_UPPER) {
throw new RuntimeException("Array size out of bounds");
}
Set set = new Set(X);
int ai;
int counter = X;
final int NUMBER_REAL_UPPER = min(NUMBER_UPPER, X);
for (int i = 0 ; i < A.length; i++) {
if ((ai = A[i]) < NUMBER_LOWER || ai > NUMBER_REAL_UPPER) {
throw new RuntimeException("Number out of bounds");
} else if (ai <= X && !set.contains(ai)) {
counter--;
if (counter == 0) {
return i;
}
set.put(ai);
}
}
return -1;
}
private static int min(int x, int y) {
return (x < y ? x : y);
}
}
This is my solution it got me 100/100 and O(N).
public int solution(int X, int[] A) {
Map<Integer, Integer> leaves = new HashMap<>();
for (int i = A.length - 1; i >= 0 ; i--)
{
leaves.put(A[i] - 1, i);
}
return leaves.size() != X ? -1 : Collections.max(leaves.values());
}
This is my solution
public func FrogRiverOne(_ X : Int, _ A : inout [Int]) -> Int {
var B = [Int](repeating: 0, count: X+1)
for i in 0..<A.count {
if B[A[i]] == 0 {
B[A[i]] = i+1
}
}
var time = 0
for i in 1...X {
if( B[i] == 0 ) {
return -1
} else {
time = max(time, B[i])
}
}
return time-1
}
A = [1,2,1,4,2,3,5,4]
print("FrogRiverOne: ", FrogRiverOne(5, &A))
Actually I re-wrote this exercise without seeing my last answer and came up with another solution 100/100 and O(N).
public int solution(int X, int[] A) {
Set<Integer> leaves = new HashSet<>();
for(int i=0; i < A.length; i++) {
leaves.add(A[i]);
if (leaves.contains(X) && leaves.size() == X) return i;
}
return -1;
}
I like this one better because it is even simpler.
This one works good on codality 100% out of 100%. It's very similar to the marker array above but uses a map:
public int solution(int X, int[] A) {
int index = -1;
Map<Integer, Integer> map = new HashMap();
for (int i = 0; i < A.length; i++) {
if (!map.containsKey(A[i])) {
map.put(A[i], A[i]);
X--;
if (X == 0) {index = i;break;}
}
}
return index;
}
%100 with js
function solution(X, A) {
let leafSet = new Set();
for (let i = 0; i < A.length; i += 1) {
if(A[i] <= 0)
continue;
if (A[i] <= X )
leafSet.add(A[i]);
if (leafSet.size == X)
return i;
}
return -1;
}
With JavaScript following solution got 100/100.
Detected time complexity: O(N)
function solution(X, A) {
let leaves = new Set();
for (let i = 0; i < A.length; i++) {
if (A[i] <= X) {
leaves.add(A[i])
if (leaves.size == X) {
return i;
}
}
}
return -1;
}
100% Solution using Javascript.
function solution(X, A) {
if (A.length === 0) return -1
if (A.length < X) return -1
let steps = X
const leaves = {}
for (let i = 0; i < A.length; i++) {
if (!leaves[A[i]]) {
leaves[A[i]] = true
steps--
}
if (steps === 0) {
return i
}
}
return -1
}
C# Solution with 100% score:
using System;
using System.Collections.Generic;
class Solution {
public int solution(int X, int[] A) {
// go through the array
// fill a hashset, until the size of hashset is X
var set = new HashSet<int>();
int i = 0;
foreach (var a in A)
{
if (a <= X)
{
set.Add(a);
}
if (set.Count == X)
{
return i;
}
i++;
}
return -1;
}
}
https://app.codility.com/demo/results/trainingXE7QFJ-TZ7/
I have a very simple solution (100% / 100%) using HashSet. Lots of people check unnecessarily whether the Value is less than or equal to X. This task cannot be otherwise.
public static int solution(int X, int[] A) {
Set<Integer> availableFields = new HashSet<>();
for (int i = 0; i < A.length; i++) {
availableFields.add(A[i]);
if (availableFields.size() == X){
return i;
}
}
return -1;
}
public static int solutions(int X, int[] A) {
Set<Integer> values = new HashSet<Integer>();
for (int i = 0; i < A.length; i++) {
if (values.add(A[i])) {
X--;
}
if (X == 0) {
return i;
}
}
return -1;
}
This is my solution. It uses 3 loops but is constant time and gets 100/100 on codibility.
class FrogLeap
{
internal int solution(int X, int[] A)
{
int result = -1;
long max = -1;
var B = new int[X + 1];
//initialize all entries in B array with -1
for (int i = 0; i <= X; i++)
{
B[i] = -1;
}
//Go through A and update B with the location where that value appeared
for (int i = 0; i < A.Length; i++)
{
if( B[A[i]] ==-1)//only update if still -1
B[A[i]] = i;
}
//start from 1 because 0 is not valid
for (int i = 1; i <= X; i++)
{
if (B[i] == -1)
return -1;
//The maxValue here is the earliest time we can jump over
if (max < B[i])
max = B[i];
}
result = (int)max;
return result;
}
}
Short and sweet C++ code. Gets perfect 100%... Drum roll ...
#include <set>
int solution(int X, vector<int> &A) {
set<int> final;
for(unsigned int i =0; i< A.size(); i++){
final.insert(A[i]);
if(final.size() == X) return i;
}
return -1;
}

Optimizing N queens puzzle

I'm trying to solve the problem of positioning N queens on NxN board without row, column and diagonal conflicts. I use an algorithm with minimizing the conflicts. Firstly, on each column randomly a queen is positioned. After that, of all conflict queens randomly one is chosen and for her column are calculated the conflicts of each possible position. Then, the queen moves to the best position with min number of conflicts. It works, but it runs extremely slow. My goal is to make it run fast for 10000 queens. Would you, please, suggest me some improvements or maybe notice some mistakes in my logic?
Here is my code:
public class Queen {
int column;
int row;
int d1;
int d2;
public Queen(int column, int row, int d1, int d2) {
super();
this.column = column;
this.row = row;
this.d1 = d1;
this.d2 = d2;
}
#Override
public String toString() {
return "Queen [column=" + column + ", row=" + row + ", d1=" + d1
+ ", d2=" + d2 + "]";
}
#Override
public boolean equals(Object obj) {
return ((Queen)obj).column == this.column && ((Queen)obj).row == this.row;
}
}
And:
import java.util.HashSet;
import java.util.Random;
public class SolveQueens {
public static boolean printBoard = false;
public static int N = 100;
public static int maxSteps = 2000000;
public static int[] queens = new int[N];
public static Random random = new Random();
public static HashSet<Queen> q = new HashSet<Queen>();
public static HashSet rowConfl[] = new HashSet[N];
public static HashSet d1Confl[] = new HashSet[2*N - 1];
public static HashSet d2Confl[] = new HashSet[2*N - 1];
public static void init () {
int r;
rowConfl = new HashSet[N];
d1Confl = new HashSet[2*N - 1];
d2Confl = new HashSet[2*N - 1];
for (int i = 0; i < N; i++) {
r = random.nextInt(N);
queens[i] = r;
Queen k = new Queen(i, r, i + r, N - 1 + i - r);
q.add(k);
if (rowConfl[k.row] == null) {
rowConfl[k.row] = new HashSet<Queen>();
}
if (d1Confl[k.d1] == null) {
d1Confl[k.d1] = new HashSet<Queen>();
}
if (d2Confl[k.d2] == null) {
d2Confl[k.d2] = new HashSet<Queen>();
}
((HashSet<Queen>)rowConfl[k.row]).add(k);
((HashSet<Queen>)d1Confl[k.d1]).add(k);
((HashSet<Queen>)d2Confl[k.d2]).add(k);
}
}
public static void print () {
for (int i = 0; i < N; i++) {
for (int j = 0; j < N; j++) {
System.out.print(queens[i] == j ? "♕ " : "◻◻◻ ");
}
System.out.println();
}
System.out.println();
}
public static boolean checkItLinear() {
Queen r = choseConflictQueen();
if (r == null) {
return true;
}
Queen newQ = findNewBestPosition(r);
q.remove(r);
q.add(newQ);
rowConfl[r.row].remove(r);
d1Confl[r.d1].remove(r);
d2Confl[r.d2].remove(r);
if (rowConfl[newQ.row] == null) {
rowConfl[newQ.row] = new HashSet<Queen>();
}
if (d1Confl[newQ.d1] == null) {
d1Confl[newQ.d1] = new HashSet<Queen>();
}
if (d2Confl[newQ.d2] == null) {
d2Confl[newQ.d2] = new HashSet<Queen>();
}
((HashSet<Queen>)rowConfl[newQ.row]).add(newQ);
((HashSet<Queen>)d1Confl[newQ.d1]).add(newQ);
((HashSet<Queen>)d2Confl[newQ.d2]).add(newQ);
queens[r.column] = newQ.row;
return false;
}
public static Queen choseConflictQueen () {
HashSet<Queen> conflictSet = new HashSet<Queen>();
boolean hasConflicts = false;
for (int i = 0; i < 2*N - 1; i++) {
if (i < N && rowConfl[i] != null) {
hasConflicts = hasConflicts || rowConfl[i].size() > 1;
conflictSet.addAll(rowConfl[i]);
}
if (d1Confl[i] != null) {
hasConflicts = hasConflicts || d1Confl[i].size() > 1;
conflictSet.addAll(d1Confl[i]);
}
if (d2Confl[i] != null) {
hasConflicts = hasConflicts || d2Confl[i].size() > 1;
conflictSet.addAll(d2Confl[i]);
}
}
if (hasConflicts) {
int c = random.nextInt(conflictSet.size());
return (Queen) conflictSet.toArray()[c];
}
return null;
}
public static Queen findNewBestPosition(Queen old) {
int[] row = new int[N];
int min = Integer.MAX_VALUE;
int minInd = old.row;
for (int i = 0; i < N; i++) {
if (rowConfl[i] != null) {
row[i] = rowConfl[i].size();
}
if (d1Confl[old.column + i] != null) {
row[i] += d1Confl[old.column + i].size();
}
if (d2Confl[N - 1 + old.column - i] != null) {
row[i] += d2Confl[N - 1 + old.column - i].size();
}
if (i == old.row) {
row[i] = row[i] - 3;
}
if (row[i] <= min && i != minInd) {
min = row[i];
minInd = i;
}
}
return new Queen(old.column, minInd, old.column + minInd, N - 1 + old.column - minInd);
}
public static void main(String[] args) {
long startTime = System.currentTimeMillis();
init();
int steps = 0;
while(!checkItLinear()) {
if (++steps > maxSteps) {
init();
steps = 0;
}
}
long endTime = System.currentTimeMillis();
System.out.println("Done for " + (endTime - startTime) + "ms\n");
if(printBoard){
print();
}
}
}
Edit:
Here is my a-little-bit-optimized solution with removing some unused objects and putting the queens on diagonal positions when initializing.
import java.util.Random;
import java.util.Vector;
public class SolveQueens {
public static boolean PRINT_BOARD = true;
public static int N = 10;
public static int MAX_STEPS = 5000;
public static int[] queens = new int[N];
public static Random random = new Random();
public static int[] rowConfl = new int[N];
public static int[] d1Confl = new int[2*N - 1];
public static int[] d2Confl = new int[2*N - 1];
public static Vector<Integer> conflicts = new Vector<Integer>();
public static void init () {
random = new Random();
for (int i = 0; i < N; i++) {
queens[i] = i;
}
}
public static int getD1Pos (int col, int row) {
return col + row;
}
public static int getD2Pos (int col, int row) {
return N - 1 + col - row;
}
public static void print () {
for (int i = 0; i < N; i++) {
for (int j = 0; j < N; j++) {
System.out.print(queens[i] == j ? "Q " : "* ");
}
System.out.println();
}
System.out.println();
}
public static boolean hasConflicts() {
generateConflicts();
if (conflicts.isEmpty()) {
return false;
}
int r = random.nextInt(conflicts.size());
int conflQueenCol = conflicts.get(r);
int currentRow = queens[conflQueenCol];
int bestRow = currentRow;
int minConfl = getConflicts(conflQueenCol, queens[conflQueenCol]) - 3;
int tempConflCount;
for (int i = 0; i < N ; i++) {
tempConflCount = getConflicts(conflQueenCol, i);
if (i != currentRow && tempConflCount <= minConfl) {
minConfl = tempConflCount;
bestRow = i;
}
}
queens[conflQueenCol] = bestRow;
return true;
}
public static void generateConflicts () {
conflicts = new Vector<Integer>();
rowConfl = new int[N];
d1Confl = new int[2*N - 1];
d2Confl = new int[2*N - 1];
for (int i = 0; i < N; i++) {
int r = queens[i];
rowConfl[r]++;
d1Confl[getD1Pos(i, r)]++;
d2Confl[getD2Pos(i, r)]++;
}
for (int i = 0; i < N; i++) {
int conflictsCount = getConflicts(i, queens[i]) - 3;
if (conflictsCount > 0) {
conflicts.add(i);
}
}
}
public static int getConflicts(int col, int row) {
return rowConfl[row] + d1Confl[getD1Pos(col, row)] + d2Confl[getD2Pos(col, row)];
}
public static void main(String[] args) {
long startTime = System.currentTimeMillis();
init();
int steps = 0;
while(hasConflicts()) {
if (++steps > MAX_STEPS) {
init();
steps = 0;
}
}
long endTime = System.currentTimeMillis();
System.out.println("Done for " + (endTime - startTime) + "ms\n");
if(PRINT_BOARD){
print();
}
}
}
Comments would have been helpful :)
Rather than recreating your conflict set and your "worst conflict" queen everything, could you create it once, and then just update the changed rows/columns?
EDIT 0:
I tried playing around with your code a bit. Since the code is randomized, it's hard to find out if a change is good or not, since you might start with a good initial state or a crappy one. I tried making 10 runs with 10 queens, and got wildly different answers, but results are below.
I psuedo-profiled to see which statements were being executed the most, and it turns out the inner loop statements in chooseConflictQueen are executed the most. I tried inserting a break to pull the first conflict queen if found, but it didn't seem to help much.
Grouping only runs that took more than a second:
I realize I only have 10 runs, which is not really enough to be statistically valid, but hey.
So adding breaks didn't seem to help. I think a constructive solution will likely be faster, but randomness will again make it harder to check.
Your approach is good : Local search algorithm with minimum-conflicts constraint. I would suggest try improving your initial state. Instead of randomly placing all queens, 1 per column, try to place them so that you minimize the number of conflicts. An example would be to try placing you next queen based on the position of the previous one ... or maybe position of previous two ... Then you local search will have less problematic columns to deal with.
If you randomly select, you could be selecting the same state as a previous state. Theoretically, you might never find a solution even if there is one.
I think you woud be better to iterate normally through the states.
Also, are you sure boards other than 8x8 are solvable?
By inspection, 2x2 is not, 3x3 is not, 4x4 is not.

Quadratic in Java

Could any help me start?
Using a class that I created before, I need to make a new class that specifically deals with QuadPoly. I think I have the constructors made correctly but i'm not a hundred percent sure.
public class Poly {
private float[] coefficients;
public static void main (String[] args){
float[] fa = {3, 2, 4};
Poly test = new Poly(fa);
}
public Poly() {
coefficients = new float[1];
coefficients[0] = 0;
}
public Poly(int degree) {
coefficients = new float[degree+1];
for (int i = 0; i <= degree; i++)
coefficients[i] = 0;
}
public Poly(float[] a) {
coefficients = new float[a.length];
for (int i = 0; i < a.length; i++)
coefficients[i] = a[i];
}
public int getDegree() {
return coefficients.length-1;
}
public float getCoefficient(int i) {
return coefficients[i];
}
public void setCoefficient(int i, float value) {
coefficients[i] = value;
}
public Poly add(Poly p) {
int n = getDegree();
int m = p.getDegree();
Poly result = new Poly(Poly.max(n, m));
int i;
for (i = 0; i <= Poly.min(n, m); i++)
result.setCoefficient(i, coefficients[i] + p.getCoefficient(i));
if (i <= n) {
//we have to copy the remaining coefficients from this object
for ( ; i <= n; i++)
result.setCoefficient(i, coefficients[i]);
} else {
// we have to copy the remaining coefficients from p
for ( ; i <= m; i++)
result.setCoefficient(i, p.getCoefficient(i));
}
return result;
}
public void displayPoly () {
for (int i=0; i < coefficients.length; i++)
System.out.print(" "+coefficients[i]);
System.out.println();
}
private static int max (int n, int m) {
if (n > m)
return n;
return m;
}
private static int min (int n, int m) {
if (n > m)
return m;
return n;
}
public Poly multiplyCon (double c){
int n = getDegree();
Poly results = new Poly(n);
for (int i =0; i <= n; i++){ // can work when multiplying only 1 coefficient
results.setCoefficient(i, (float)(coefficients[i] * c)); // errors ArrayIndexOutOfBounds for setCoefficient
}
return results;
}
public Poly multiplyPoly (Poly p){
int n = getDegree();
int m = p.getDegree();
Poly result = null;
for (int i = 0; i <= n; i++){
Poly tmpResult = p.multiByConstantWithDegree(coefficients[i], i); //Calls new method
if (result == null){
result = tmpResult;
} else {
result = result.add(tmpResult);
}
}
return result;
}
public void leadingZero() {
int degree = getDegree();
if ( degree == 0 ) return;
if ( coefficients[degree] != 0 ) return;
// find the last highest degree with non-zero cofficient
int highestDegree = degree;
for ( int i = degree; i <= 0; i--) {
if ( coefficients[i] == 0 ) {
highestDegree = i -1;
} else {
// if the value is non-zero
break;
}
}
float[] newCoefficients = new float[highestDegree + 1];
for ( int i=0; i<= highestDegree; i++ ) {
newCoefficients[i] = coefficients[i];
}
coefficients = newCoefficients;
}
public Poly differentiate(){
int n = getDegree();
Poly newResult = new Poly(n);
if (n>0){ //checking if it has a degree
for (int i = 1; i<= n; i++){
newResult.coefficients[i-1]= coefficients[i] * (i); // shift degree by 1 and multiplies
}
return newResult;
} else {
return new Poly(); //empty
}
}
public Poly multiByConstantWithDegree(double c, int degree){ //used specifically for multiply poly
int oldPolyDegree = this.getDegree();
int newPolyDegree = oldPolyDegree + degree;
Poly newResult = new Poly(newPolyDegree);
//set all coeff to zero
for (int i = 0; i<= newPolyDegree; i++){
newResult.coefficients[i] = 0;
}
//shift by n degree
for (int j = 0; j <= oldPolyDegree; j++){
newResult.coefficients[j+degree] = coefficients[j] * (float)c;
}
return newResult;
}
}
Out of this, I need to create a method that factors a Quadratic in two factors (if it has real roots), or in a constant ”1” polynomial factor and itself, if there are no real roots. The method should return an array of two QuadPoly objects, containing each factor.
public class QuadPoly extends Poly
{
private float [] quadcoefficients;
public QuadPoly() {
super(2);
}
public QuadPoly(float [] a) {
quadcoefficients = new float[a.length];
for (int i = 0; i <a.length; i ++){
quadcoefficients[i] = a[i];
if (quadcoefficients.length > 2){
throw new IllegalArgumentException ("Must be Quadratic");
}
}
}
public QuadPoly(Poly p){
if (quadcoefficients.length > 2){
throw new IllegalArgumentException ("Must be Quadratic");
}
}
public QuadPoly addQuad (QuadPoly p){
return new QuadPoly(super.add(p));
}
public Poly multiplyQuadPoly (Poly p){
if (quadcoefficients.length > 2){
throw new IllegalArgumentException ("Must be Quadratic");
}
Poly newResult = null;
new Result = multiplyPoly(p);
}
}
}
Edit:
Sorry. This is what I have going on for the factoring so far. The big problem with it is that I'm not too sure how to get the inheritance to work properly.
This is my New Factoring. It doesn't work. Can anyone give me some hints to get on the right path? I understand that I need to return Poly so i'm replacing the arrays there as you can tell by the first if statement but it won't let me progress as its says it requires (int, float). I've casted it but it still won't allow me. Thanks
public QuadPoly factor(){
double a = (double) getCoefficient(0);
double b = (double) getCoefficient(1);
double c = (double) getCoefficient(2);
QuadPoly newCoefficients = new QuadPoly(4);
double equa = Math.sqrt((b*b) - (4*a*c));
if (equa > 0){
newCoefficients.setCoefficient(0, (float) (-b + equa)/(2*a));
newCoefficients.setCoefficient(1, (float) (-b - equa)/(2*a));
}
if (equa ==0){
newCoefficients[0] = 1;
newCoefficients[1] = (-b + equa)/(2*a);
}
if (equa < 0){
newCoefficients[0] = 0;
newCoefficients[1] = 1;
}
return (QuadPoly) newCoefficients;
}
OK you have made a reasonable attempt. Inheritance is simple here, all you need is the constructors:
class QuadPoly extends Poly{
public QuadPoly(){ super(2); }
public QuadPoly(float[] f){
super(f);
if(coefficients.length!=2) throw new IllegalArgumentException("not quad");
}
}
and that's pretty much all! I hope you can see, that the same code as Poly is used for everything else, and the same field coefficients does all the same work as it did before.
Now, in the factorisation
you have dimmed your double[] newCoefficients as size 1. too small!
you have tried to square-root your discriminant without knowing that it is positive!
you are returning an array of 2 doubles as your answer. you need two Polys. You haven't provided a method return type for factor
I suggest you use
public QuadPoly[] factor(){
}
as the signature. The rest is just maths!
The idea of subclassing Poly into QuadPoly is so that you can reuse as many of the old Poly methods as possible. Now, all your old methods use the array float[] coefficients, and your new QuadPoly inherits this field.
Why have you created a new field quadcoefficients[] ? It suffices to check in any constructor that there are only 3 members in the array, but to still harness the existing field coefficients[].
If you do this, all your old methods will still work! Only, they will return generic Poly. Since the QuadPoly must conform to the contract of a Poly, this is probably OK. The method multiplyCon is the only one that could be guaranteed to return another QuadPoly anyway.
You don't seem to have attempted a factorisation yet. Do you have any ideas? Well, here's a clue: you'll need to use something like
if (DISCRIMINANT >= 0) {
} else{
}

How to find all connected numbers in an array?

Hey all, back again. Working on a dungeon generator and I'm actually surprising myself with the progress. Yet I still have a straggling room every now and then. I was wondering if there was a way to loop through an array and see if all the '1s' (the floor tiles) are connected, and if not, how to connect them.
Thanks!
EDIT: The array is randomly filled with rooms and corridors; here's the code:
import java.util.Random;
public class Level
{
Random random = new Random();
int[][] A = new int[100][100];
int minimum = 3;
int maximum = 7;
int xFeature = 0;
int yFeature = 0;
private void feature()
{
int i = 0;
while(i>=0)
{
xFeature = random.nextInt(100-1) + 1;
yFeature = random.nextInt(100-1) + 1;
if(A[xFeature][yFeature]==1)//||A[xFeature++][yFeature]==1||A[xFeature][yFeature--]==1||A[xFeature][yFeature++]==1)
break;
i++;
}
}
private void room()
{
int safeFall = 0;
int xCoPLUS = minimum + (int)(Math.random()*minimum);
int yCoPLUS = minimum + (int)(Math.random()*minimum);
if(yCoPLUS >= xCoPLUS)
{
for(int across = xFeature; across < xFeature+xCoPLUS+2; across++)
{
for(int vert = yFeature; vert < yFeature+yCoPLUS+1; vert++)
{
if(A[vert][across] == 0)
safeFall++;
else
break;
}
}
}
if(yCoPLUS < xCoPLUS)
{
for(int across = xFeature; across < xFeature+xCoPLUS+1; across++)
{
for(int vert = yFeature; vert < yFeature+yCoPLUS+2; vert++)
{
if(A[vert][across] == 0)
safeFall++;
else
break;
}
}
}
if((safeFall== (xCoPLUS+1) * (yCoPLUS+2)) || ((safeFall== (xCoPLUS+2) * (yCoPLUS+1))))
{
for(int across = xFeature; across < xFeature+xCoPLUS; across++)
{
for(int vert = yFeature; vert < yFeature+yCoPLUS; vert++)
{
A[vert][across] = 1;
}
}
}
}
private void corridor()
{
int xCoONE = xFeature;
int yCoONE = yFeature;
int xCoTWO = random.nextInt(10)+10;
int yCoTWO = random.nextInt(10)+10;
while(xCoONE > xCoTWO)
{
A[xCoONE][yCoONE] = 1;
xCoONE--;
}
while(xCoONE < xCoTWO)
{
A[xCoONE][yCoONE] = 1;
xCoONE++;
}
while(yCoONE > yCoTWO)
{
A[xCoONE][yCoONE] = 1;
yCoONE--;
}
while(yCoONE < yCoTWO)
{
A[xCoONE][yCoONE] = 1;
yCoONE++;
}
}
public Level()
{
firstroom();
for(int i = 0; i < 500; i++)
{
int x = random.nextInt(50);
feature();
if(x > 1)
room();
else
corridor();
}
troubleShoot();
}
So basically what happens when I create an object of this class is that a 100x100 array is filled with corridors and rooms determined by a random number. (well, a couple of them) But with how I have my room non-overlapping failsafe (safeFall in room()), I get stuck with a room that is one title out of reach every now and then.
The article Maze Generation Algorithm discusses several approaches to generating a maze. It includes links to Java examples.

Categories

Resources