I have implemented producer and consumer problem with semaphore.
I need a way that when there is no product for consuming , the current thread wait until
a producer produce a product.
please guide me.
Check out Java's BlockingQueue, it already supports this behavior.
Code taken from the JavaDoc linked above, as an example:
class Producer implements Runnable {
private final BlockingQueue queue;
Producer(BlockingQueue q) { queue = q; }
public void run() {
try {
while (true) { queue.put(produce()); }
} catch (InterruptedException ex) { ... handle ...}
}
Object produce() { ... }
}
class Consumer implements Runnable {
private final BlockingQueue queue;
Consumer(BlockingQueue q) { queue = q; }
public void run() {
try {
while (true) { consume(queue.take()); }
} catch (InterruptedException ex) { ... handle ...}
}
void consume(Object x) { ... }
}
class Setup {
void main() {
BlockingQueue q = new SomeQueueImplementation();
Producer p = new Producer(q);
Consumer c1 = new Consumer(q);
Consumer c2 = new Consumer(q);
new Thread(p).start();
new Thread(c1).start();
new Thread(c2).start();
}
}
Related
I use semaphore and I want when list size is zero thread waiting for other thread But Why doesn't the semaphore stop thrading? Doesn't the semaphore work like notify and wait?
result:
add
remove
add
Exception in thread "Thread-2" java.lang.IndexOutOfBoundsException: Index: 0, Size: 0
ArrayList<String> list = new ArrayList<>();
Semaphore semaphore = new Semaphore(0);
new Producer(list, semaphore).start();
new Producer(list, semaphore).start();
new Customeer(list, semaphore).start();
new Customeer(list, semaphore).start();
//////////
static class Customeer extends Thread {
private List<String> list;
private Semaphore semaphore;
public Customeer(List<String> list, Semaphore semaphore) {
this.list = list;
this.semaphore = semaphore;
}
#Override
public void run() {
synchronized (list) {
if (list.size() == 0) {
try {
semaphore.acquire();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
list.remove(0);
System.out.println("remove");
}
}
}
static class Producer extends Thread {
private Semaphore semaphore;
private List<String> list;
public Producer(List<String> list, Semaphore semaphore) {
this.list = list;
this.semaphore = semaphore;
}
#Override
public void run() {
synchronized (list) {
list.add("hello");
semaphore.release();
System.out.println("add");
}
}
}
}
you seem to be confused with semaphores and synchronization. semaphores is used when you want to allow n threads to access the same resource at a time. [n can be 1] while synchronization is used if you want to allow only 1 thread to access the resource.
solution using semaphores
// Java implementation of a producer and consumer
// that use semaphores to control synchronization.
import java.util.concurrent.Semaphore;
class Q {
// an item
int item;
// semCon initialized with 0 permits
// to ensure put() executes first
static Semaphore semCon = new Semaphore(0);
static Semaphore semProd = new Semaphore(1);
// to get an item from buffer
void get()
{
try {
// Before consumer can consume an item,
// it must acquire a permit from semCon
semCon.acquire();
}
catch (InterruptedException e) {
System.out.println("InterruptedException caught");
}
// consumer consuming an item
System.out.println("Consumer consumed item : " + item);
// After consumer consumes the item,
// it releases semProd to notify producer
semProd.release();
}
// to put an item in buffer
void put(int item)
{
try {
// Before producer can produce an item,
// it must acquire a permit from semProd
semProd.acquire();
}
catch (InterruptedException e) {
System.out.println("InterruptedException caught");
}
// producer producing an item
this.item = item;
System.out.println("Producer produced item : " + item);
// After producer produces the item,
// it releases semCon to notify consumer
semCon.release();
}
}
// Producer class
class Producer implements Runnable {
Q q;
Producer(Q q)
{
this.q = q;
new Thread(this, "Producer").start();
}
public void run()
{
for (int i = 0; i < 5; i++)
// producer put items
q.put(i);
}
}
// Consumer class
class Consumer implements Runnable {
Q q;
Consumer(Q q)
{
this.q = q;
new Thread(this, "Consumer").start();
}
public void run()
{
for (int i = 0; i < 5; i++)
// consumer get items
q.get();
}
}
// Driver class
class PC {
public static void main(String args[])
{
// creating buffer queue
Q q = new Q();
// starting consumer thread
new Consumer(q);
// starting producer thread
new Producer(q);
}
}
solution using synchronized
// Java program to implement solution of producer
// consumer problem.
import java.util.LinkedList;
public class Threadexample {
public static void main(String[] args)
throws InterruptedException
{
// Object of a class that has both produce()
// and consume() methods
final PC pc = new PC();
// Create producer thread
Thread t1 = new Thread(new Runnable() {
#Override
public void run()
{
try {
pc.produce();
}
catch (InterruptedException e) {
e.printStackTrace();
}
}
});
// Create consumer thread
Thread t2 = new Thread(new Runnable() {
#Override
public void run()
{
try {
pc.consume();
}
catch (InterruptedException e) {
e.printStackTrace();
}
}
});
// Start both threads
t1.start();
t2.start();
// t1 finishes before t2
t1.join();
t2.join();
}
// This class has a list, producer (adds items to list
// and consumber (removes items).
public static class PC {
// Create a list shared by producer and consumer
// Size of list is 2.
LinkedList<Integer> list = new LinkedList<>();
int capacity = 2;
// Function called by producer thread
public void produce() throws InterruptedException
{
int value = 0;
while (true) {
synchronized (this)
{
// producer thread waits while list
// is full
while (list.size() == capacity)
wait();
System.out.println("Producer produced-"
+ value);
// to insert the jobs in the list
list.add(value++);
// notifies the consumer thread that
// now it can start consuming
notify();
// makes the working of program easier
// to understand
Thread.sleep(1000);
}
}
}
// Function called by consumer thread
public void consume() throws InterruptedException
{
while (true) {
synchronized (this)
{
// consumer thread waits while list
// is empty
while (list.size() == 0)
wait();
// to retrive the ifrst job in the list
int val = list.removeFirst();
System.out.println("Consumer consumed-"
+ val);
// Wake up producer thread
notify();
// and sleep
Thread.sleep(1000);
}
}
}
}
}
read the resources for more clarity
semaphore: https://www.geeksforgeeks.org/producer-consumer-solution-using-semaphores-java/
synchronized: https://www.geeksforgeeks.org/producer-consumer-solution-using-threads-java/
I am trying to implement a small producer-consumer example in Java using ExecutorService.
Here is my main class
class Example {
public static void main(String args[]) {
BlockingQueue<String> queue = new ArrayBlockingQueue<>(1000);
Producer producer = new Producer(queue);
Consumer consumer = new Consumer(queue);
ExecutorService executor = Executors.newCachedThreadPool();
// executor.execute(consumer);
Future producerFuture = executor.submit(producer);
Future consumerFuture = executor.submit(consumer);
try {
producerFuture.get();
consumerFuture.get();
} catch (InterruptedException e) {
LOG.error("Failed");
}
executor.shutdown();
executor.awaitTermination(10, TimeUnit.MILLISECONDS);
}
}
Producer Class
public class Producer implements Runnable {
private BlockingQueue<String> queue;
public Producer(BlockingQueue<String> queue) {
this.queue = queue;
}
#Override
public void run() {
for (int i = 0; i < 10; i++) {
try {
queue.put(i + "HELPPPPP");
} catch (InterruptedException ex) {
Logger.getLogger(MigrationToolProducer.class.getName()).log(Level.SEVERE, null, ex);
}
}
Consumer Class
public class Consumer implements Runnable {
private final BlockingQueue<String> queue;
private volatile boolean keepRunning = true;
public Consumer(BlockingQueue<String> queue) {
this.queue = queue;
}
#Override
public void run() {
while (keepRunning) {
String value;
try {
value = queue.take();
} catch(InterruptedException e) {
throw new RuntimeException(e);
}
System.out.println(value);
}
}
}
EDIT The execution is stuck at queue.take() in Consumer Class.
Can anyone please help me fix this problem ? Why is the execution stuck in the consumer ?
One possible solution:
1) On Producer side, put a "END" signal after original 10 puts:
queue.put("END");
2) On Consumer side, once detect "END" signal, break the loop:
public void run() {
while (keepRunning) {
String value;
try {
value = queue.take();
if(value.equals("END")) {
System.out.println("Get END signal. All done!");
break;
}
} catch(InterruptedException e) {
throw new RuntimeException(e);
}
System.out.println(value);
}
}
I am naive in multi-threading and is trying to learn it's concepts. This is my implementation for Producer-Consumer problem. Please have a look and suggest me if it is incorrect/crude/any other suggestions that could improve my design.
static int data = 0;
static Object obj1 = new Object();
static class Producer implements Runnable {
public void run() {
produce();
}
void produce() {
while (true) {
if (data < 5){
synchronized(obj1){
System.out.println("Producing Data. Now Data is "+data++);
obj1.notifyAll();
}
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
}
else{
try {
System.out.println("Producer inactive");
synchronized(obj1){
obj1.wait();
}
System.out.println("Producer active");
} catch (InterruptedException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
}
}
}
}
static class Consumer implements Runnable{
public void run(){
consume();
}
void consume() {
while (true) {
if (data > 0){
synchronized(obj1){
System.out.println("Consuming Data. Now Data is "+data--);
obj1.notifyAll();
}
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
}
else{
try {
System.out.println("Consumer Inactive");
synchronized(obj1){
obj1.wait();
}
System.out.println("Consumer Active");
} catch (InterruptedException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
}
}
}
}
Ok several points. Producer and Consumer usually share a data structure. The use of the static data is very odd and quite frankly makes no sense. Typically what you'll want to share is a data structure like a queue between producer and consumer. The producer will add things on to the tail of the queue and the consumer(s) will draw things from the head of the queue (FIFO - first in first out). Right now I see none of that so what exactly is it producing vs consuming?
A good producer consumer architecture doesn't care too much about what type of data is exchanged so you can pass many different types of things over it. That's where object oriented command architecture will help you out. In this example SomeMessage represents the root of some object hierarchy so a variety of messages can be exchanged.
Here is a simple example of how you should instantiate a Producer-Consumer architecture in your program:
public class SomeClient {
public void start() {
Queue sharedQueue = new LinkedList();
producer = new Producer( sharedQueue );
consumer = new Consumer( sharedQueue );
producer.start();
consumer.start();
}
}
Here is the implementation of that:
public class Producer implements Runnable {
Thread thread;
Queue queue;
public Producer(Queue queue) {
this.queue = queue;
}
public void start() {
thread = new Thread(this);
thread.start();
}
public void shutdown() {
thread.interrupt(); // request a shutdown
thread.join(); // make sure we wait until Producer.thread exits before this thread continues
}
public void run() {
try {
while( !Thread.isInterrupted() ) {
SomeMessage message = produceAMessage();
synchronized( queue ) {
queue.add( message );
queue.notifyAll();
}
}
} catch( InterruptedException ex ) {
System.out.println("Producer shutting down per request.");
} finally {
thread = null;
}
}
}
public class Consumer implements Runnable {
Thread thread;
Queue queue;
public Consumer( Queue queue ) {
this.queue = queue;
}
public void start() {
thread = new Thread( this );
thread.start();
}
public void shutdown() {
thread.interrupt(); // request a shutdown
thread.join(); // make sure we wait until Consumer.thread exits before this thread continues
}
public void run() {
try {
while( !thread.isInterrupted() ) {
SomeMessage message = take();
doSomethingWithMessage( message );
}
} catch( InterruptedException ex ) {
System.out.println("Stop processing - consumer per request.");
} finally {
thread = null;
}
}
private SomeMessage take() throws InterruptedException {
synchronized( queue ) {
queue.wait();
return queue.remove();
}
}
}
A couple of things that differ in this implementation. Producer and Consumer share a Queue instance and they use that instance to perform synchronized calls on. That way neither write or read from that structure without owning the lock. After they have either added to the queue (producer) or removed from the queue (consumer) they are free from needing to use synchronization. They are free to process without needing to communicate with each other. They trade instances of SomeMessage between each instance by adding to the tail and drawing from the head.
The take() method is very important in this code. Without the helper method you can't process the message AND release the lock. This important so that your Consumer can receive a message and let go of the lock to allow other Producers/Consumers to add/remove messages while this particular Consumer is processing a message. This keeps throughput as fast as possible.
And yes I said Producers. This architecture allows for multiple Producers AND multiple Consumers without needing to change the internals of either Producer or Consumer.
Notice that catching InterruptedException is outside the while loop. This is very important if you want a predictable program that shuts down cleanly. An InterruptedException and interrupted concept is the heart of well behaving Java threads. If you don't know under what conditions this exception is generated you'll never understand multi-threaded apps in Java. It's not a random occurrence. Java threads can't be stopped programatically. Another thread must request it to interrupt itself. And the thread must obey the request or else it won't stop. So if we get one. Shutdown. In this program we'll only get it when we call wait or notify which means while we're processing a message we won't be interrupted. Consumers will finish processing messages before halting.
Finally, it's actually much easier to implement a Producer-Consumer relationship given the concurrency libraries in Java, but this is a good example of how you do it at the lowest level of Java to understand what those libraries are doing for you.
Encapsulating the consume and produce behaviors could be more more reusable. In the code below I decoupled the shared resource synchronization issues from consumer/producer thread which could be useful in solving similar problems like Object Pool and Connection Pool.
import java.util.LinkedList;
import java.util.Queue;
public class ProducerConsumer {
public static void main(String[] args) {
SyncQueue syncQueue = new SyncQueue(1);
Producer producer = new Producer(syncQueue , 10);
Consumer consumer = new Consumer(syncQueue,10);
producer.start();
consumer.start();
}
}
class SyncQueue {
private Queue<Integer> queue = new LinkedList<Integer>();
private Integer size;
public SyncQueue(Integer size) {
super();
this.size = size;
this.signalledBefore = false;
}
public synchronized void put(Integer data){
while(queue.size() == size){
try {
wait();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
queue.add(data);
notifyAll();
}
public synchronized Integer get(){
while(queue.isEmpty()){
try {
wait();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
Integer data = queue.remove();
notifyAll();
return data;
}
}
class Producer extends Thread{
private SyncQueue syncQueue;
private Integer size;
public Producer(SyncQueue syncQueue, Integer size) {
this.syncQueue = syncQueue;
this.size = size;
}
#Override
public void run() {
for (Integer i = 0; i < size; i++) {
syncQueue.put(i);
System.out.println("Produced:" + i);
try {
sleep((int)Math.random()*100);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
}
class Consumer extends Thread{
private SyncQueue syncQueue;
private Integer size;
public Consumer(SyncQueue syncQueue, Integer size) {
this.syncQueue = syncQueue;
this.size = size;
}
#Override
public void run() {
for (Integer i = 0; i < size; i++) {
try {
sleep((int)Math.random()*100);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println("Consumed:" + syncQueue.get());
}
}
}
I'm trying to learn more about threads and thought that coming up with a solution to the producer/consumer problem would be a good start. One of the constraints I put on the solution was that the consumer does not know ahead of time how much the producer is producing. The code runs as expected and I've run it many many times, but that doesn't mean that it is free of flaws. Are there any problems with this solution?
package Multithreading.ProducerConsumer;
import java.util.LinkedList;
import java.util.concurrent.Semaphore;
public class ProducerConsumer
{
private class Producer implements Runnable
{
#Override
public void run()
{
for(int i = 0; i < 1000; i++)
{
try
{
canProduce.acquire();
mutex.acquire();
queue.add(i);
mutex.release();
canConsume.release();
}
catch (InterruptedException ex)
{
;
}
}
try
{
canConsume.acquire();
isTryingToFinish = true;
canConsume.release();
}
catch (InterruptedException ex)
{
;
}
}
}
private class Consumer implements Runnable
{
#Override
public void run()
{
while(!isDone)
{
try
{
canConsume.acquire();
mutex.acquire();
System.out.println(queue.pop());
if(isTryingToFinish && queue.isEmpty())
{
isDone = true;
}
mutex.release();
canProduce.release();
}
catch (InterruptedException ex)
{
;
}
}
}
}
Semaphore canProduce;
Semaphore canConsume;
Semaphore mutex;
boolean isTryingToFinish = false;
boolean isDone = false;
final static int bufferSize = 100;
LinkedList<Integer> queue;
public ProducerConsumer()
{
queue = new LinkedList<>();
canProduce = new Semaphore(bufferSize);
canConsume = new Semaphore(0);
mutex = new Semaphore(1);
}
public void Go() throws InterruptedException
{
Thread p = new Thread(new Producer());
Thread c = new Thread(new Consumer());
p.start();
c.start();
p.join();
c.join();
System.out.println("Job Complete!");
}
public static void main(String[] args) throws InterruptedException
{
ProducerConsumer p = new ProducerConsumer();
p.Go();
}
}
You could look at MSDN's 'Example 2: Synchronizing two threads: a producer and a consumer'. It's c# but that should not be a problem.
I am trying an example of multi threading in java. There was an example on multithreading Synchronization in Java Complete reference 7th Edition. The example works fine. but when i slightly add a line to create another thread of the same class this does not work. Could some please let me know why this is happening. The example is given below. The below code is a classic exacple of producer and consumer. Where there is a single producer it works fine when i have 2 producers then it will fail. It just puts till 15 and stops.
class Q {
int n;
boolean valueSet = false;
synchronized int get() {
while (!valueSet) {
try {
wait();
} catch (InterruptedException e) {
System.out.println("InterruptedException caught");
}
}
System.out.println("Got: " + n);
valueSet = false;
notify();
return n;
}
synchronized void put(int n) {
while (valueSet) {
try {
wait();
} catch (InterruptedException e) {
System.out.println("InterruptedException caught");
}
}
this.n = n;
valueSet = true;
System.out.println("Put: " + n);
notify();
}
}
class Producer implements Runnable {
Q q;
Producer(Q q) {
this.q = q;
new Thread(this, "Producer").start();
//new Thread(this, "Producer2").start();
}
public void run() {
int i = 0;
while (true) {
q.put(i++);
}
}
}
class Consumer implements Runnable {
Q q;
Consumer(Q q) {
this.q = q;
new Thread(this, "Consumer").start();
}
#Override
public void run() {
while (true) {
q.get();
}
}
}
public class PCFixed {
public static void main(String[] args) {
Q q = new Q();
Producer P1 = new Producer(q);
new Consumer(q);
Producer P2 = new Producer(q);
System.out.println("Press Control-C to stop.");
}
}
Q is written to only accept one value at a time. You need to change put to be a boolean method - it returns true if valueset is true and then proceeds as normal, and returns false if valueset is false and returns without doing anything. Then the methods calling put will need to keep retrying until they get a true response. This way multiple consumers can use the same Q object without interfering with each other.
A better solution if you're using multiple producers is to use a ConcurrentLinkedQueue, which is a thread-safe queue. The producers will offer integers to the queue, and the consumers will poll the queue for integers. Multiple producers can simultaneously offer integers without interfering with each other, and multiple consumers can simultaneously poll integers without interfering with each other.
The example of concurrency you provide uses a single boolean flag to check whether there is a signal or not.
So this is more of a Semaphore arrangement than a producer consumer arrangement. It is too simplistic to deal with an arbitrary number of Threads.
If you really want to use producer consumer you are going to need a queue that holds more than one item.
static final AtomicBoolean run = new AtomicBoolean(true);
static class Producer implements Runnable {
final BlockingQueue<String> blockingQueue;
public Producer(BlockingQueue<String> blockingQueue) {
this.blockingQueue = blockingQueue;
}
#Override
public void run() {
while (run.get()) {
blockingQueue.add("Value from " + Thread.currentThread().getName());
try {
Thread.sleep(100);
} catch (InterruptedException ex) {
//doesn't matter.
}
}
}
}
static class Consumer implements Runnable {
final BlockingQueue<String> blockingQueue;
public Consumer(BlockingQueue<String> blockingQueue) {
this.blockingQueue = blockingQueue;
}
#Override
public void run() {
while (run.get()) {
final String item;
try {
item = blockingQueue.take();
} catch (InterruptedException ex) {
return;
}
System.out.println(item);
}
}
}
public static void main(String[] args) throws InterruptedException {
final LinkedBlockingQueue<String> lbq = new LinkedBlockingQueue<>();
final ExecutorService executorService = Executors.newCachedThreadPool();
executorService.submit(new Consumer(lbq));
for (int i = 0; i < 10; ++i) {
executorService.submit(new Producer(lbq));
}
Thread.sleep(10000);
run.set(false);
executorService.shutdownNow();
}
This simple example uses a LinkedBlockingQueue to post events to and read events from.
The Producer puts Strings into the queue with it's own Thread name (they do this every 100ms). The Consumer takes from the queue and prints the String.
The queue is a BlockingQueue so the take method will block if the queue is empty.
You can easily change the number of Producers and Consumers by changing the loops that add items to the ExecutorService. Experiment, see how it works.
The AtomicBoolean flag allows the program to shutdown all the child processes spawned.
Replace each occurrence of notify with notifyAll.