Minimum base associated with a number - java

Given an input, I'm trying to write a program to find the minimum base that can be associated with that number. For example the minimum base associated with 385 is base-9 (as it needs to have a base that supports the digit 8 which is its highest value digit). Similarly, the minimum base associated with B95 is base-12, since it uses 0 -9 and A and B.
This is my code
public static int findBase(String str){
int max = 0;
char c;
for (int i = 0; i <str.length() ; i++) {
c = str.toUpperCase().charAt(i);
if (Character.isDigit(c) && c > max) {
max = c;
}else if (Character.isLetter(c)) {
max = 10 + (c - 'A');
}
}
return max + 1;
}
The problem is that the function is returning random values.For example for the value 385 it returns 56. What am I doing wrong?

The problem is that you're using the unicode value of the character when it's a digit.
Instead of:
max = c;
... you should use:
max = c - '0';
Also note that Character.isLetter returns true for all unicode letters, including Arabic letters and letters from other alphabets, that have much higher unicode codepoint values; likewise for Character.isDigit
In your case, you're only capable of handling Latin characters from the ASCII character set, so to be safe it's better to check for that specifically.
And you're not checking correctly for the maximum value (you're comparing the unicode codepoint to the max, not the converted value)
int v = 0;
if (c >= '0' && c <= '9') {
v = c - '0';
} else if (c >= 'A' && c <= 'Z') {
v = 10 + (c - 'A');
}
if (v > max) {
max = v;
}
Full program:
public static int findBase(String str) {
int max = 0;
str = str.toUpperCase();
for (int i = 0; i < str.length(); i++) {
char c = str.charAt(i);
int v = 0;
if (c >= '0' && c <= '9') {
v = c - '0';
} else if (c >= 'A' && c <= 'Z') {
v = 10 + (c - 'A');
}
if (v > max) {
max = v;
}
}
return max + 1;
}

Related

Java regex not picking up "+"

I will show you my problem. This is using leetcode and I'm trying to create an atoi method.
public int myAtoi(String s) {
System.out.println(s.matches("^[^ -0123456789].*")); //this is the regex I am debugging
if(s.matches("^[^ -0123456789].*")){
return 0;
}
int solution = 0;
s = s.replaceAll("[^-0123456789.]","");
solution = 0;
boolean negative = false;
if(s.charAt(0) == '-'){
s = s.replaceAll("-","");
negative = true;
}
if(s.matches("^[0-9]?[.][0-9]+")){
s = s.substring(0, s.indexOf('.'));
System.out.println(s);
}
for(int i = s.length(); i > 0; i--){
solution = solution + (s.charAt(s.length() - i) - 48) * (int)Math.pow(10,i - 1);
}
if(negative) solution = solution * -1;
if(negative && solution > 0) return (int) Math.pow(-2,31);
if(!negative && solution < 0) return (int) Math.pow(2,31) - 1;
return solution;
}
here is the output section screenshot provided incase I have missed something there but a text description also exists.
enter image description here
When the input is "+-12" the output is supposed to be (int) 0. This is due to the requirement being that "if the string does not start with a number, a space, or a negative sign" we return 0.
The line of code whch is supposed to handle this starts at 4 and looks like
if(s.matches("^[^ -0123456789].*")){
return 0;
}
What is wrong with my regex?
We don't really have to use regular expressions for solving this problem, because of the time complexity.
for instance, if(s.matches("^[0-9]?[.][0-9]+")){ does not run linearly, runs quadratically due to the lazy quantifier (?).
We can just loop through once (order of N) and define some statements:
class Solution {
public static final int myAtoi(
String s
) {
s = s.trim();
char[] characters = s.toCharArray();
int sign = 1;
int index = 0;
if (
index < characters.length &&
(characters[index] == '-' || characters[index] == '+')
) {
if (characters[index] == '-') {
sign = -1;
}
++index;
}
int num = 0;
int bound = Integer.MAX_VALUE / 10;
while (
index < characters.length &&
characters[index] >= '0' &&
characters[index] <= '9'
) {
final int digit = characters[index] - '0';
if (num > bound || (num == bound && digit > 7)) {
return sign == 1 ? Integer.MAX_VALUE : Integer.MIN_VALUE;
}
num *= 10;
num += digit;
++index;
}
return sign * num;
}
}
Here is a C++ version, if you might be interested:
// Most of headers are already included;
// Can be removed;
#include <iostream>
#include <cstdint>
#include <vector>
#include <string>
// The following block might trivially improve the exec time;
// Can be removed;
static const auto imporve_runtime = []() {
std::ios::sync_with_stdio(false);
std::cin.tie(NULL);
std::cout.tie(NULL);
return 0;
}();
#define MAX INT_MAX
#define MIN INT_MIN
using ValueType = std::int_fast32_t;
struct Solution {
static const int myAtoi(
const std::string str
) {
const ValueType len = std::size(str);
ValueType sign = 1;
ValueType index = 0;
while (index < len && str[index] == ' ') {
index++;
}
if (index == len) {
return 0;
}
if (str[index] == '-') {
sign = -1;
++index;
} else if (str[index] == '+') {
++index;
}
std::int_fast64_t num = 0;
while (index < len && num < MAX && std::isdigit(str[index])) {
ValueType digit = str[index] - '0';
num *= 10;
num += digit;
index++;
}
if (num > MAX) {
return sign == 1 ? MAX : MIN;
}
return sign * num;
}
};
// int main() {
// std::cout << Solution().myAtoi("words and 987") << "\n";
// std::cout << Solution().myAtoi("4193 with words") << "\n";
// std::cout << Solution().myAtoi(" -42") << "\n";
// }
Regarding your question
What is wrong with my regex?
If you'd like to see how a regular expression solution works, maybe this concise Python version would help (also runs on O(N ^ 2)):
import re
class Solution:
def myAtoi(self, s: str) -> int:
MAX, MIN = 2147483647, -2147483648
DIGIT_PATTERN = re.compile(r'^\s*[+-]?\d+')
s = re.findall(DIGIT_PATTERN, s)
try:
res = int(''.join(s))
except:
return 0
if res > MAX:
return MAX
if res < MIN:
return MIN
return res
We can workaround the expression of ^\s*[+-]?\d+ by dividing it into two subexpressions so that we would be able to get rid of the lazy quantifier and design an order of N solution, yet that would be unnecessary (and is also against the KISS principle).

How to add 0 in front of every single digit string?

How can I add 0 in front of every single digit number? I mean 1 to 01 etc.
I have tried to add ifs like
if(c >='A' && c<= 'I')
str = "0"+str;
but it just adds 0 in front of everything like abcd converts to 00001234 not 01020304.
This is my code.
String A[] = new String[size];
for (int i = 0; i < size; i++) {
A[i] = jList1.getModel().getElementAt(i);
String[] Text = A[i].split("");
String s = jList1.getModel().getElementAt(i);
String str = ("");
for (int z = 0; z < Text.length; z++) {
for (int y = 0; y < Text[z].length(); y = y + 1) {
char c = s.charAt(z);
if (c >= 'A' && c <= 'Z') {
str += c - 'A' + 1;
} else if (c >= 'a' && c <= 'z') {
str += c - 'a' + 1;
} else {
str += c;
}
}
str = str + "";
}
}
This Worked for me
public String addZero(int number)
{
return number<=9?"0"+number:String.valueOf(number);
}``
One way to do this would be to use a StringJoiner with Java 8:
String s = "abcdABCD";
s = s.chars()
.mapToObj(i -> Integer.toString((i >= 'a' && i <= 'z' ? i - 'a' : i - 'A') + 1))
.collect(Collectors.joining("0", "0", "")));
System.out.println(s);
>> 0102030401020304
String str = "abcd-zzz-AAA";
StringBuilder sb = new StringBuilder();
for (int i = 0; i < str.length(); i++) {
char ch = str.toLowerCase().charAt(i);
if (ch >= 'a' && ch <= 'z') {
sb.append('0');
sb.append(ch - 'a' + 1);
} else {
sb.append(ch);
}
}
Result: abcd-zzz-AAA -> 01020304-026026026-010101
Final fix :-)
use String#chars to get a stream of its characters, then for each one do the manipulation you want.
public class Example {
public static void main(String[] args) {
String s = "aBcd1xYz";
s.chars().forEach(c -> {
if (c >= 'a' && c <= 'z')
System.out.print("0" + (c - 'a' + 1));
else if (c >= 'A' && c <= 'Z')
System.out.print("0" + (c - 'A' + 1));
else
System.out.print(c);
});
}
}
Ouput:
0102030449024025026
You can add zero in front of single digit number using String.format.
System.out.println(String.format("%02d",1));
System.out.println(String.format("%02d",999));
The first line will print 01, second line prints 999 no zero padding on the left.
Padding zero with length of 2 and d represents integer.
I hope this helps.

encode string passed to method & add 13

(EDITED)
My problem statement: write a method that will encode the String passed to the method by adding 13 letters to each character in the String. If the letter after adding 13 exceeds 'z' then "wrap around" the alphabet. Then return the encoded String.
encodeString("hello") → "uryyb"
encodeString("pie") → "cvr"
encodeString("book") → "obbx"
this is what I have so far :
public static String encodeString (String input) {
String output;
for (int i = 0; i < input.length(); i++) {
char c = input.charAt(i);
if (c >= 'a' && c <= 'm')
c += 13;
else if (c >= 'n' && c <= 'z')
c -= 13;
output= (" " + (c));
}
return output;
}
now I know that I have to create a counter so that the method will continue to loop until it reaches the length of the string passed...and I know that if the charAt(index) is less than the character 'n' that I add 13 and if it is greater then I subtract 13. when I put it all together though I just get so confused and just get a bunch of compiling errors like Type mismatch: cannot convert from int to String.
note straightforward explanations/answers would be much appreciated...
***so now my problem is that it keeps telling me my output variable may not have been initialized
This code is not the most performatic but works good with Upper and Lower characters.
hElLo → uRyYb
pIe → cVr
bOoK → oBbX
private static String encodeString(String string) {
char[] ret = new char[string.length()];
for (int i = 0; i < string.length(); i++) {
ret[i] = rot13(string.charAt(i));
}
return String.valueOf(ret);
}
public static char rot13(char c) {
if (Character.isLetter(c)) {
if (Character.compare(Character.toLowerCase(c), 'a') >= 0
&& Character.compare(Character.toLowerCase(c), 'm') <= 0)
return c += 13;
else
return c -= 13;
}
return c;
}
You have to initialize your output variable as an empty String. Furthermore you are always replacing the contents of the output variable with the last char you've just encoded. So you have to add every char to the output with += instead of =.
So here is the fixed solution:
public static String encodeString(String input) {
String output = ""; // initialize as empty String
for (int i = 0; i < input.length(); i++) {
char c = input.charAt(i);
if (c >= 'a' && c <= 'm') {
c += 13;
} else if (c >= 'n' && c <= 'z') {
c -= 13;
}
output += " " + c; // add all chars to the String instead of replacing the whole String with "="!
}
return output;
}
I beautified your code a bit, so everybody can see what it really does.
Use an IDE!

Review an answer - Decode Ways

I'm trying to solve a question and my question here is why doesn't my solution work?. Here's the question and below's the answer.
Question taken from leetcode: http://oj.leetcode.com/problems/decode-ways/
A message containing letters from A-Z is being encoded to numbers using the following mapping:
'A' -> 1
'B' -> 2
...
'Z' -> 26
Given an encoded message containing digits, determine the total number of ways to decode it.
For example,Given encoded message "12", it could be decoded as "AB" (1 2) or "L" (12). The number of ways decoding "12" is 2.
My solution:
The point with my solution is going backwards and multiplying the number of options if a split is found. By split I mean that digits can be interpreted in two ways. For example: 11 can interpreted in two ways 'aa' or 'k'.
public class Solution {
public int numDecodings(String s) {
if (s.isEmpty() || s.charAt(0) == '0') return 0;
int decodings = 1;
boolean used = false; // Signifies that the prev was already use as a decimal
for (int index = s.length()-1 ; index > 0 ; index--) {
char curr = s.charAt(index);
char prev = s.charAt(index-1);
if (curr == '0') {
if (prev != '1' && prev != '2') {
return 0;
}
index--; // Skip prev because it is part of curr
used = false;
} else {
if (prev == '1' || (prev == '2' && curr <= '6')) {
decodings = decodings * 2;
if (used) {
decodings = decodings - 1;
}
used = true;
} else {
used = false;
}
}
}
return decodings;
}
}
The failure is on the following input:
Input:"4757562545844617494555774581341211511296816786586787755257741178599337186486723247528324612117156948"
Output: 3274568
Expected: 589824
This is a really interesting problem. First, I will show how I would solve this problem. We will see that it is not that complicated when using recursion, and that the problem can be solved using dynamic programming. We will produce a general solution that does not hardcode an upper limit of 26 for each code point.
A note on terminology: I will use the term code point (CP) not in the Unicode sense, but to refer to one of the code numbers 1 though 26. Each code point is represented as a variable number of characters. I will also use the terms encoded text (ET) and clear text (CT) in their obvious meanings. When talking about a sequence or array, the first element is called the head. The remaining elements are the tail.
Theoretical Prelude
The EC "" has one decoding: the CT "".
The EC "3" can be destructured into '3' + "", and has one decoding.
The EC "23" can be destructured as '2' + "3" or '23' + "". Each of the tails has one decoding, so the whole EC has two decodings.
The EC "123" can be destructured as '1' + "23" or '12' + "3". The tails have two and one decodings respectively. The whole EC has three decodings. The destructuring '123' + "" is not valid, because 123 > 26, our upper limit.
… and so on for ECs of any length.
So given a string like "123", we can obtain the number of decodings by finding all valid CPs at the beginning, and summing up the number of decodings of each tail.
The most difficult part of this is to find valid heads. We can get the maximal length of the head by looking at a string representation of the upper limit. In our case, the head can be up to two characters long. But not all heads of appropriate lengths are valid, because they have to be ≤ 26 as well.
Naive Recursive Implementation
Now we have done all the necessary work for a simple (but working) recursive implementation:
static final int upperLimit = 26;
static final int maxHeadSize = ("" + upperLimit).length();
static int numDecodings(String encodedText) {
// check base case for the recursion
if (encodedText.length() == 0) {
return 1;
}
// sum all tails
int sum = 0;
for (int headSize = 1; headSize <= maxHeadSize && headSize <= encodedText.length(); headSize++) {
String head = encodedText.substring(0, headSize);
String tail = encodedText.substring(headSize);
if (Integer.parseInt(head) > upperLimit) {
break;
}
sum += numDecodings(tail);
}
return sum;
}
Cached Recursive Implementation
Obviously this isn't very efficient, because (for longer ETs), the same tail will be analyzed multiple times. Also, we create a lot of temporary strings, but we'll let that be for now. One thing we can easily do is to memoize the number of decodings of a specific tail. For that, we use an array of the same length as the input string:
static final int upperLimit = 26;
static final int maxHeadSize = ("" + upperLimit).length();
static int numDecodings(String encodedText) {
return numDecodings(encodedText, new Integer[1 + encodedText.length()]);
}
static int numDecodings(String encodedText, Integer[] cache) {
// check base case for the recursion
if (encodedText.length() == 0) {
return 1;
}
// check if this tail is already known in the cache
if (cache[encodedText.length()] != null) {
return cache[encodedText.length()];
}
// cache miss -- sum all tails
int sum = 0;
for (int headSize = 1; headSize <= maxHeadSize && headSize <= encodedText.length(); headSize++) {
String head = encodedText.substring(0, headSize);
String tail = encodedText.substring(headSize);
if (Integer.parseInt(head) > upperLimit) {
break;
}
sum += numDecodings(tail, cache); // pass the cache through
}
// update the cache
cache[encodedText.length()] = sum;
return sum;
}
Note that we use an Integer[], not an int[]. This way, we can check for non-existent entries using a test for null. This solution is not only correct, it is also comfortably fast – naive recursion runs in O(number of decodings) time, while the memoized version runs in O(string length) time.
Towards a DP Solution
When you run above code in your head, you will notice that the first invocation with the whole string will have a cache miss, then calculate the number of decodings for the first tail, which also misses the cache every time. We can avoid this by evaluating the tails first, starting from the end of the input. Because all tails will have been evaluated before the whole string is, we can remove the checks for cache misses. Now we also don't have any reason for recursion, because all previous results are already in the cache.
static final int upperLimit = 26;
static final int maxHeadSize = ("" + upperLimit).length();
static int numDecodings(String encodedText) {
int[] cache = new int[encodedText.length() + 1];
// base case: the empty string at encodedText.length() is 1:
cache[encodedText.length()] = 1;
for (int position = encodedText.length() - 1; position >= 0; position--) {
// sum directly into the cache
for (int headSize = 1; headSize <= maxHeadSize && headSize + position <= encodedText.length(); headSize++) {
String head = encodedText.substring(position, position + headSize);
if (Integer.parseInt(head) > upperLimit) {
break;
}
cache[position] += cache[position + headSize];
}
}
return cache[0];
}
This algorithm could be optimized further by noticing that we only ever query the last maxHeadSize elements in the cache. So instead of an array, we could use a fixed-sized queue. At that point, we would have a dynamic programming solution that runs in *O(input length) time and O(maxHeadSize) space.
Specialization for upperLimit = 26
The above algorithms were kept as general as possible, but we can go and manually specialize it for a specific upperLimit. This can be useful because it allows us to do various optimizations. However, this introduces “magic numbers” that make the code harder to maintain. Such manual specializations should therefore be avoided in non-critical software (and the above algorithm is already as fast as it gets).
static int numDecodings(String encodedText) {
// initialize the cache
int[] cache = {1, 0, 0};
for (int position = encodedText.length() - 1; position >= 0; position--) {
// rotate the cache
cache[2] = cache[1];
cache[1] = cache[0];
cache[0] = 0;
// headSize == 1
if (position + 0 < encodedText.length()) {
char c = encodedText.charAt(position + 0);
// 1 .. 9
if ('1' <= c && c <= '9') {
cache[0] += cache[1];
}
}
// headSize == 2
if (position + 1 < encodedText.length()) {
char c1 = encodedText.charAt(position + 0);
char c2 = encodedText.charAt(position + 1);
// 10 .. 19
if ('1' == c1) {
cache[0] += cache[2];
}
// 20 .. 26
else if ('2' == c1 && '0' <= c2 && c2 <= '6') {
cache[0] += cache[2];
}
}
}
return cache[0];
}
Comparision with your code
The code is superficially similar. However, your parsing around characters is more convoluted. You have introduced a used variable that, if set, will decrement the decode count in order to account for double-character CPs. This is wrong, but I am not sure why. The main problem is that you are doubling the count at almost every step. As we have seen, the previous counts are added, and may very well be different.
This indicates that you wrote the code without proper preparation. You can write many kinds of software without having to think too much, but you can't do without careful analysis when designing an algorithm. For me, it is often helpful to design an algorithm on paper, and draw diagrams of each step (along the lines of the “Theoretical Prelude” of this answer). This is especially useful when you are thinking too much about the language you are going to implement in, and too little about possibly wrong assumptions.
I suggest that you read up on “proofs by induction” to understand how to write a correct recursive algorithm. Once you have a recursive solution, you can always translate it into an iterative version.
So here is some what simpler way out for your problem. This is pretty close to calculating Fibonacci, with the difference that there are condition checks on each smaller size subproblem.
The space complexity is O(1) and time is O(n)
The code is in C++.
int numDecodings(string s)
{
if( s.length() == 0 ) return 0;
int j = 0;
int p1 = (s[j] != '0' ? 1 : 0); // one step prev form j=1
int p2 = 1; // two step prev from j=1, empty
int p = p1;
for( int j = 1; j < s.length(); j++ )
{
p = 0;
if( s[j] != '0' )
p += p1;
if( isValidTwo(s, j-1, j) )
p += p2;
if( p==0 ) // no further decoding necessary,
break; // as the prefix 0--j is has no possible decoding.
p2 = p1; // update prev for next j+1;
p1 = p;
}
return p;
}
bool isValidTwo(string &s, int i, int j)
{
int val= 10*(s[i]-'0')+s[j]-'0';
if ( val <= 9 )
return false;
if ( val > 26 )
return false;
return true;
}
Here is my code to solve the problem. I use DP , I think it's clear to understand.
Written in Java
public class Solution {
public int numDecodings(String s) {
if(s == null || s.length() == 0){
return 0;
}
int n = s.length();
int[] dp = new int[n+1];
dp[0] = 1;
dp[1] = s.charAt(0) != '0' ? 1 : 0;
for(int i = 2; i <= n; i++){
int first = Integer.valueOf(s.substring(i-1,i));
int second = Integer.valueOf(s.substring(i-2,i));
if(first >= 1 && first <= 9){
dp[i] += dp[i-1];
}
if(second >= 10 && second <= 26){
dp[i] += dp[i-2];
}
}
return dp[n];
}
}
Since I struggled with this problem myself, here is my solution and reasoning. Probably I will mostly repeat what amon wrote, but maybe someone will find it helpful. Also it's c# not java.
Let's say that we have input "12131" and want to obtain all possible decoded strings.
Straightforward recursive solution would do iterate from left to right, obtain valid 1 and 2 digits heads, and invoke function recursively for tail.
We can visualize it using a tree:
There are 5 leaves and this is number of all possible decoded strings. There are also 3 empty leaves, because number 31 cannot be decoded into letter, so these leaves are invalid.
Algorithm might look like this:
public IList<string> Decode(string s)
{
var result = new List<string>();
if (s.Length <= 2)
{
if (s.Length == 1)
{
if (s[0] != '0')
result.Add(this.ToASCII(s));
}
else if (s.Length == 2)
{
if (s[0] != '0' && s[1] != '0')
result.Add(this.ToASCII(s.Substring(0, 1)) + this.ToASCII(s.Substring(1, 1)));
if (s[0] != '0' && int.Parse(s) > 0 && int.Parse(s) <= 26)
result.Add(this.ToASCII(s));
}
}
else
{
for (int i = 1; i <= 2; ++i)
{
string head = s.Substring(0, i);
if (head[0] != '0' && int.Parse(head) > 0 && int.Parse(head) <= 26)
{
var tails = this.Decode(s.Substring(i));
foreach (var tail in tails)
result.Add(this.ToASCII(head) + tail);
}
}
}
return result;
}
public string ToASCII(string str)
{
int number = int.Parse(str);
int asciiChar = number + 65 - 1; // A in ASCII = 65
return ((char)asciiChar).ToString();
}
We have to take care of numbers starting with 0 ("0", "03", etc.), and greater than 26.
Because in this problem we need only count decoding ways, and not actual strings, we can simplify this code:
public int DecodeCount(string s)
{
int count = 0;
if (s.Length <= 2)
{
if (s.Length == 1)
{
if (s[0] != '0')
count++;
}
else if (s.Length == 2)
{
if (s[0] != '0' && s[1] != '0')
count++;
if (s[0] != '0' && int.Parse(s) > 0 && int.Parse(s) <= 26)
count++;
}
}
else
{
for (int i = 1; i <= 2; ++i)
{
string head = s.Substring(0, i);
if (head[0] != '0' && int.Parse(head) > 0 && int.Parse(head) <= 26)
count += this.DecodeCount(s.Substring(i));
}
}
return count;
}
The problem with this algorithm is that we compute results for the same input string multiple times. For example there are 3 nodes ending with 31: ABA31, AU31, LA31. Also there are 2 nodes ending with 131: AB131, L131.
We know that if node ends with 31 it has only one child, since 31 can be decoded only in one way to CA. Likewise, we know that if string ends with 131 it has 2 children, because 131 can be decoded into ACA or LA. Thus, instead of computing it all over again we can cache it in map, where key is string (eg: "131"), and value is number of decoded ways:
public int DecodeCountCached(string s, Dictionary<string, int> cache)
{
if (cache.ContainsKey(s))
return cache[s];
int count = 0;
if (s.Length <= 2)
{
if (s.Length == 1)
{
if (s[0] != '0')
count++;
}
else if (s.Length == 2)
{
if (s[0] != '0' && s[1] != '0')
count++;
if (s[0] != '0' && int.Parse(s) > 0 && int.Parse(s) <= 26)
count++;
}
}
else
{
for (int i = 1; i <= 2; ++i)
{
string head = s.Substring(0, i);
if (head[0] != '0' && int.Parse(head) > 0 && int.Parse(head) <= 26)
count += this.DecodeCountCached(s.Substring(i), cache);
}
}
cache[s] = count;
return count;
}
We can refine this even further. Instead of using strings as a keys, we can use length, because what is cached is always tail of input string. So instead of caching strings: "1", "31", "131", "2131", "12131" we can cache lengths of tails: 1, 2, 3, 4, 5:
public int DecodeCountDPTopDown(string s, Dictionary<int, int> cache)
{
if (cache.ContainsKey(s.Length))
return cache[s.Length];
int count = 0;
if (s.Length <= 2)
{
if (s.Length == 1)
{
if (s[0] != '0')
count++;
}
else if (s.Length == 2)
{
if (s[0] != '0' && s[1] != '0')
count++;
if (s[0] != '0' && int.Parse(s) > 0 && int.Parse(s) <= 26)
count++;
}
}
else
{
for (int i = 1; i <= 2; ++i)
{
string head = s.Substring(0, i);
if (s[0] != '0' && int.Parse(head) > 0 && int.Parse(head) <= 26)
count += this.DecodeCountDPTopDown(s.Substring(i), cache);
}
}
cache[s.Length] = count;
return count;
}
This is recursive top-down dynamic programming approach. We start from the begining, and then recursively compute solutions for tails, and memoize those results for further use.
We can translate it to bottom-up iterative DP solution. We start from the end and cache results for tiles like in previous solution. Instead of map we can use array because keys are integers:
public int DecodeCountBottomUp(string s)
{
int[] chache = new int[s.Length + 1];
chache[0] = 0; // for empty string;
for (int i = 1; i <= s.Length; ++i)
{
string tail = s.Substring(s.Length - i, i);
if (tail.Length == 1)
{
if (tail[0] != '0')
chache[i]++;
}
else if (tail.Length == 2)
{
if (tail[0] != '0' && tail[1] != '0')
chache[i]++;
if (tail[0] != '0' && int.Parse(tail) > 0 && int.Parse(tail) <= 26)
chache[i]++;
}
else
{
if (tail[0] != '0')
chache[i] += chache[i - 1];
if (tail[0] != '0' && int.Parse(tail.Substring(0, 2)) > 0 && int.Parse(tail.Substring(0, 2)) <= 26)
chache[i] += chache[i - 2];
}
}
return chache.Last();
}
Some people simplify it even further, initializing cache[0] with value 1, so they can get rid of conditions for tail.Length==1 and tail.Length==2. For me it is unintuitive trick though, since clearly for empty string there is 0 decode ways not 1, so in such case additional condition must be added to handle empty input:
public int DecodeCountBottomUp2(string s)
{
if (s.Length == 0)
return 0;
int[] chache = new int[s.Length + 1];
chache[0] = 1;
chache[1] = s.Last() != '0' ? 1 : 0;
for (int i = 2; i <= s.Length; ++i)
{
string tail = s.Substring(s.Length - i, i);
if (tail[0] != '0')
chache[i] += chache[i - 1];
if (tail[0] != '0' && int.Parse(tail.Substring(0, 2)) > 0 && int.Parse(tail.Substring(0, 2)) <= 26)
chache[i] += chache[i - 2];
}
return chache.Last();
}
My solution is based on the idea that the arrangement of items(char/digit) within a particular substring is completely independent of the same within a different substring.
So we need to multiply each of those independent ways to get the total number of ways.
// nc is the number of consecutive 1's or 2's in a substring.
// Returns the number of ways these can be arranged within
// themselves to a valid expr.
int ways(int nc){
int n = pow(2, (nc/2)); //this part can be memorized using map for optimization
int m = n;
if (nc%2) {
m *= 2;
}
return n + m - 1;
}
bool validTens(string A, int i){
return (A[i] == '1' || (A[i] == '2' && A[i+1] <= '6'));
}
int numDecodings(string A) {
int ans = 1;
int nc;
if ((A.length() == 0)||(A[0] == '0')) return 0;
for(int i = 1; i < A.length();i++){
if(A[i] == '0' && validTens(A, i-1) == false) return 0; //invalid string
while(i < A.length() && validTens(A, i-1)) {
if(A[i] == '0'){
//think of '110' or '1210', the last two digits must be together
if(nc > 0) nc--;
}
else nc++;
i++;
}
ans *= ways(nc);
nc = 0;
}
return ans;
}
Java solution with space and time complexity O(n)
public int numDecodings(String s) {
int n = s.length();
if (n > 0 && s.charAt(0) == '0')
return 0;
int[] d = new int[n + 1];
d[0] = 1;
d[1] = s.charAt(0) != '0' ? 1 : 0;
for (int i = 2; i <= n; i++) {
if (s.charAt(i - 1) > '0')
d[i] = d[i] + d[i - 1];
if (s.charAt(i - 2) == '2' && s.charAt(i - 1) < '7')
d[i] = d[i - 2] + d[i];
if (s.charAt(i - 2) == '1' && s.charAt(i - 1) <= '9')
d[i] = d[i - 2] + d[i];
}
return d[n];
}
Here is an O(N) C++ DP implementation.
int numDecodings(string s) {
if(s[0] == '0') return 0; // Invalid Input
int n = s.length();
// dp[i] denotes the number of ways to decode the string of length 0 to i
vector<int> dp(n+1, 0);
// base case : string of 0 or 1 characters will have only 1 way to decode
dp[0] = dp[1] = 1;
for(int i = 2; i <= n; i++) {
// considering the previous number
if(s[i-1] > '0') dp[i] += dp[i-1];
// considering the previous two numbers
if(s[i-2] == '1' || (s[i-2] == '2' && s[i-1] < '7')) dp[i] += dp[i-2];
}
return dp[n];
}

Repeating Java Array

I'm new to java and still learning, so keep that in mind. I'm trying to write a program where a user can type in a keyword and it'll convert it to numbers and put it in an array. My problem is the array needs to keep repeating the int's.
My code is:
String keyword=inputdata.nextLine();
int[] key = new int[keyword.length()];
for (int k = 0; k < keyword.length(); ++k)
{
if (keyword.charAt(k) >= 'a' && keyword.charAt(k) <= 'z')
{
key[k]= (int)keyword.charAt(k) - (int)'a';
}
}
Right now if I try to get any key[i] higher than the keyword.length it throws an outofbounds error. I need it to to be infinte.
So basically, if keyword.length() were 3 I need to be able to see if key[2] is the same as key[5] and key[8] and so on.
Thanks for your help!
Well, it's easiest to fix your code with a bit of refactoring first. Extract all uses of keyword.charAt(k) to a local variable:
for (int k = 0; k < keyword.length(); ++k)
{
char c = keyword.charAt(k);
if (c >= 'a' && c <= 'z')
{
key[k] = c'a';
}
}
Then we can fix the issue with the % operator:
// I assume you actually want a different upper bound?
for (int k = 0; k < keyword.length(); ++k)
{
char c = keyword.charAt(k % keyword.length());
if (c >= 'a' && c <= 'z')
{
key[k] = c - 'a';
}
}
That's assuming you actually make key longer than keyword - and you probably want to change the upper bound of the loop too. For example:
int[] key = new int[1000]; // Or whatever
for (int k = 0; k < key.length; ++k)
{
char c = keyword.charAt(k % keyword.length());
if (c >= 'a' && c <= 'z')
{
key[k] = c - 'a';
}
}

Categories

Resources