I'm implementing the naive version of the Producer-Consumer concurrency problem. And it the threads are switched between at first very quickly but then stop around i = 50. Adding additional print statements for some reason allows the JVM to context switch the threads and complete the program.
Why doesn't the JVM context switch the threads so that the program will complete?
// Producer - Consumer problem
// Producer constantly puts items into array, while consumer takes them out
class IntBuffer {
private int[] buffer;
private int index;
public IntBuffer(int size) {
buffer = new int[size];
index = 0;
}
public void add(int item) {
while (true) {
if (index < buffer.length) {
buffer[index] = item;
index++;
return;
}
}
}
public int remove() {
while (true) {
if (index > 0) {
index--;
int tmp = buffer[index];
buffer[index] = 0;
return tmp;
}
}
}
public void printState() {
System.out.println("Index " + index);
System.out.println("State " + this);
}
public String toString() {
String res = "";
for (int i = 0; i < buffer.length; i++) {
res += buffer[i] + " ";
}
return res;
}
}
class Producer extends Thread {
private IntBuffer buffer;
public Producer(IntBuffer buffer) {
this.buffer = buffer;
}
public void run() {
for (int i = 0; i < 1000; i++) {
System.out.println("added " + i);
buffer.add(i);
}
}
}
class Consumer extends Thread {
private IntBuffer buffer;
public Consumer(IntBuffer buffer) {
this.buffer = buffer;
}
public void run() {
for (int i = 0; i < 1000; i++) {
System.out.println("removed " + i);
buffer.remove();
}
}
}
public class Main {
public static void main(String[] args) {
IntBuffer buf = new IntBuffer(10);
Thread t1 = new Thread(new Producer(buf));
Thread t2 = new Thread(new Consumer(buf));
t1.start();
t2.start();
System.out.println(buf);
}
}
Your question does not provide enough details to give an answer with a confidence(at least, it is not clear where those additional print statements go), so I'll make some(reasonable) guesses here.
Your code is not correct. IntBuffer is not thread-safe, but it is accessed from multiple threads.
Any operations on the IntBuffer do not establish a happens-before relationship, so the changes made by one thread may be not visible for another thread. That's why the Producer thread can "believe" that the buffer is full while the Consumer thread "believes" that it is empty. In this case the program never terminates.
This two statements are not guesses, they are facts based on the Java memory model. And here goes my guess why the additional print statements sorta fix it:
In many JVM implementations, the println methods uses syncronization internally. That's why a call to it creates a memory fence and makes changes made in one thread visible to the other one, eliminating the issue described in 2).
However, if you really want to solve this problem, you should make the IntBuffer thread-safe.
At the minimum you need the volatile keyword on both the buffer and index. Second, you need to access index only once under the true arm of the ifs you have there. Even after that, you will face out of bounds access at 10, you will need more fixing to work around that. Your buffer is de facto stack. So, even after all of this, your remove() can be working with stale index, thus you will be removing in the middle of the stack. You could use 0 as special value marking the slot already handled end empty.
With all of this, I do not think your code is easily salvageable. It pretty much needs complete rewrite using proper facilities. I agree with #kraskevich:
#StuartHa Naive usually means simple(and most likely inefficent) solution, not an incorrect one.
Related
Suppose I have the following code, where one thread generates squares and writes them to a buffer while another thread prints them:
import java.util.*;
public class Something {
public static Buffer buffer = new Buffer();
public static class Buffer {
private int[] buffer;
private static final int size = 10;
//Indexes for putting and taking element form buffer
private int in, out;
//Number of elements in buffer
private int k;
public Buffer() {
buffer = new int[size];
in = 0;
out = 0;
k = 0;
}
public synchronized void put(int e) {
try {
while (k == buffer.length) {
wait();
}
} catch (InterruptedException ex) {
}
buffer[in] = e;
k++;
in = ++in % size;
notifyAll();
}
public synchronized int take() {
try {
while (k == 0) {
wait();
}
} catch (InterruptedException ex) {
}
int e = buffer[out];
buffer[out] = 0;
out = ++out % size;
k--;
notifyAll();
return e;
}
public synchronized boolean notEmpty() {
return k != 0;
}
}
public static class Generator implements Runnable {
int limit;
public Generator(int lim) {
limit= lim;
}
#Override
public void run() {
for (int i = 1; i < limit; i++) {
buffer.put(i * i);
}
}
}
public static class Printer implements Runnable {
private Thread[] generators;
public Printer(Thread[] gen) {
generators = gen;
}
public synchronized boolean nobody() {
for (Thread th : generators) {
if (th.isAlive()) {
return false;
}
}
return true;
}
#Override
public void run() {
int x = 0;
while (!nobody() || buffer.notEmpty()) {
x = buffer.take();
System.out.println(x);
}
}
}
public static void main(String[] args) throws InterruptedException {
Thread generator = new Thread(new Generator(69));
Thread printer = new Thread(new Printer(new Thread[]{generator}));
generator.start();
printer.start();
generator.join();
printer.join();
}
}
Generator should generate squares of numbers until it reaches some limit (limit = 69, in this case). Printer should print all values generated by Generator. Buffer works somewhat like ring buffer. Indexes for putting (in) and taking (out) element are cycling in bounds of buffer size. Buffer has methods for putting and taking elements from buffer. Generator thread cannot put elements in buffer if it is full (that is, there are no zero elements; zero element is 0, for precision sake...). Printer works this way: first it checks if there are any alive generator threads and then checks if buffer contains only zero elements. If neither of these conditions is true, printer thread terminates.
Now, to the problem. I always get printed all squares from 1 to 68, which is expected output of this program. However, on very rare occasion after all numbers had been output I get a deadlock. How rarely? Well, maybe in 1 out of 100 executions of program. I had to keep hitting "F6" on NetBeans like crazy to get a deadlock. And yes, I know that I can test this simply putting all main code in for loop.
Conversely, if I comment out print line in Printers' run method, deadlock happens almost all the time. Here:
#Override
public void run() {
int x = 0;
while (!nobody() || buffer.notEmpty()) {
x = buffer.take();
//System.out.println(x);
}
}
I do not expect this behavior, because element still gets taken from buffer and generator should be awoken.
Why does this happen? And how do I fix it?
Sorry if question isn't clear enough, I'll try to clarify it as best I can if needed.
I think I fount the problem. Here is what I got: There is a very short moment in time, where the Generator thread is still alive (i.e. Thread.isAlive() will return true), but the Generator has left the for-loop within run(). If the Printer queries its while-condition within its run() at this point in time, it will try to take() something, that is not there (and never will be). Indeed, you can verify, that the Generator always finishes, meaning termination detection on the side of the Printer is faulty. For a hot fix, you can simply add a magic constant is Printers while condition:
#Override
public void run() {
int x = 0;
int count = 0;
while (++count < 69) {
x = buffer.take();
System.out.println(x);
}
}
For a clean termination detection, you could set some common flag-variable to false, signaling that the Generator has finished work and the Printer can stop working. But this has to be done in a synchronized manner, meaning the Printer is not allowed to query this condition, while the Generator is after its last push, but before it sets this common flag.
On compiling my code below it seems to be in a state of deadlock, and i don't know how i can fix it. I am attempting to write a pipeline as a sequence of threads linked together as a buffer, and each thread can read the preceding node in the pipeline, and consequentially write to the next one. The overall goal is to spilt a randomly generated arraylist of data over 10 threads and sort it.
class Buffer{
// x is the current node
private int x;
private boolean item;
private Lock lock = new ReentrantLock();
private Condition full = lock.newCondition();
private Condition empty = lock.newCondition();
public Buffer(){item = false;}
public int read(){
lock.lock();
try{
while(!item)
try{full.await();}
catch(InterruptedException e){}
item = false;
empty.signal();
return x;
}finally{lock.unlock();}
}
public void write(int k){
lock.lock();
try{
while(item)
try{empty.await();}
catch(InterruptedException e){}
x = k; item = true;
full.signal();
}finally{lock.unlock();}
}
}
class Pipeline extends Thread {
private Buffer b;
//private Sorted s;
private ArrayList<Integer> pipe; // array pipeline
private int ub; // upper bounds
private int lb; // lower bounds
public Pipeline(Buffer bf, ArrayList<Integer> p, int u, int l) {
pipe = p;ub = u;lb = l;b = bf;//s = ss;
}
public void run() {
while(lb < ub) {
if(b.read() > pipe.get(lb+1)) {
b.write(pipe.get(lb+1));
}
lb++;
}
if(lb == ub) {
// store sorted array segment
Collections.sort(pipe);
new Sorted(pipe, this.lb, this.ub);
}
}
}
class Sorted {
private volatile ArrayList<Integer> shared;
private int ub;
private int lb;
public Sorted(ArrayList<Integer> s, int u, int l) {
ub = u;lb = l;shared = s;
// merge data to array from given bounds
}
}
class Test1 {
public static void main(String[] args) {
int N = 1000000;
ArrayList<Integer> list = new ArrayList<Integer>();
for(int i=0;i<N;i++) {
int k = (int)(Math.random()*N);
list.add(k);
}
// write to buffer
Buffer b = new Buffer();
b.write(list.get(0));
//Sorted s = new Sorted();
int maxBuffer = 10;
int index[] = new int[maxBuffer+1];
Thread workers[] = new Pipeline[maxBuffer];
// Distribute data evenly over threads
for(int i=0;i<maxBuffer;i++)
index[i] = (i*N) / maxBuffer;
for(int i=0;i<maxBuffer;i++) {
// create instacen of pipeline
workers[i] = new Pipeline(b,list,index[i],index[i+1]);
workers[i].start();
}
// join threads
try {
for(int i=0;i<maxBuffer;i++) {
workers[i].join();
}
} catch(InterruptedException e) {}
boolean sorted = true;
System.out.println();
for(int i=0;i<list.size()-1;i++) {
if(list.get(i) > list.get(i+1)) {
sorted = false;
}
}
System.out.println(sorted);
}
}
When you start the run methods, all threads will block until the first thread hits full.await(). then one after the other, all threads will end up hitting full.await(). they will wait for this signal.
However the only place where full.signal occurs is after one of the read methods finishes.
As this code is never reached (because the signal is never fired) you end up with all threads waiting.
in short, only after 1 read finishes, will the writes trigger.
if you reverse the logic, you start empty, you write to the buffer (with signal, etc, etc) and then the threads try to read, I expect it will work.
generally speaking you want to write to a pipeline before reading from it. (or there's nothing to read).
I hope i'm not misreading your code but that's what I see on first scan.
Your Buffer class it flipping between read and write mode. Each read must be followed by a write, that by a read and so on.
You write the buffer initially in your main method.
Now one of your threads reaches if(b.read() > pipe.get(lb+1)) { in Pipeline#run. If that condition evaluates to false, then nothing gets written. And since every other thread must still be the very same if(b.read(), you end up with all reading threads that can't progress. You will either have to write in the else branch or allow multiple reads.
I am new to Java and trying to write a method that finds the maximum value in a 2D array of longs.
The method searches through each row in a separate thread, and the threads maintain a shared current maximal value. Whenever a thread finds a value larger than its own local maximum, it compares this value with the shared local maximum and updates its current local maximum and possibly the shared maximum as appropriate. I need to make sure that appropriate synchronization is implemented so that the result is correct regardless of how to computations interleave.
My code is verbose and messy, but for starters, I have this function:
static long sharedMaxOf2DArray(long[][] arr, int r){
MyRunnableShared[] myRunnables = new MyRunnableShared[r];
for(int row = 0; row < r; row++){
MyRunnableShared rr = new MyRunnableShared(arr, row, r);
Thread t = new Thread(rr);
t.start();
myRunnables[row] = rr;
}
return myRunnables[0].sharedMax; //should be the same as any other one (?)
}
For the adapted runnable, I have this:
public static class MyRunnableShared implements Runnable{
long[][] theArray;
private int row;
private long rowMax;
public long localMax;
public long sharedMax;
private static Lock sharedMaxLock = new ReentrantLock();
MyRunnableShared(long[][] a, int r, int rm){
theArray = a;
row = r;
rowMax = rm;
}
public void run(){
localMax = 0;
for(int i = 0; i < rowMax; i++){
if(theArray[row][i] > localMax){
localMax = theArray[row][i];
sharedMaxLock.lock();
try{
if(localMax > sharedMax)
sharedMax = localMax;
}
finally{
sharedMaxLock.unlock();
}
}
}
}
}
I thought this use of a lock would be a safe way to prevent multiple threads from messing with the sharedMax at a time, but upon testing/comparing with a non-concurrent maximum-finding function on the same input, I found the results to be incorrect. I'm thinking the problem might come from the fact that I just say
...
t.start();
myRunnables[row] = rr;
...
in the sharedMaxOf2DArray function. Perhaps a given thread needs to finish before I put it in the array of myRunnables; otherwise, I will have "captured" the wrong sharedMax? Or is it something else? I'm not sure on the timing of things..
I'm not sure if this is a typo or not, but your Runnable implementation declares sharedMax as an instance variable:
public long sharedMax;
rather than a shared one:
public static long sharedMax;
In the former case, each Runnable gets its own copy and will not "see" the values of others. Changing it to the latter should help. Or, change it to:
public long[] sharedMax; // array of size 1 shared across all threads
and you can now create an array of size one outside the loop and pass it in to each Runnable to use as shared storage.
As an aside: please note that there will be tremendous lock contention since every thread checks the common sharedMax value by holding a lock for every iteration of its loop. This will likely lead to poor performance. You'd have to measure, but I'd surmise that letting each thread find the row maximum and then running a final pass to find the "max of maxes" might actually be comparable or quicker.
From JavaDocs:
public interface Callable
A task that returns a result and may
throw an exception. Implementors define a single method with no
arguments called call.
The Callable interface is similar to Runnable, in that both are
designed for classes whose instances are potentially executed by
another thread. A Runnable, however, does not return a result and
cannot throw a checked exception.
Well, you can use Callable to calculate your result from one 1darray and wait with an ExecutorService for the end. You can now compare each result of the Callable to fetch the maximum. The code may look like this:
Random random = new Random(System.nanoTime());
long[][] myArray = new long[5][5];
for (int i = 0; i < 5; i++) {
myArray[i] = new long[5];
for (int j = 0; j < 5; j++) {
myArray[i][j] = random.nextLong();
}
}
ExecutorService executor = Executors.newFixedThreadPool(myArray.length);
List<Future<Long>> myResults = new ArrayList<>();
// create a callable for each 1d array in the 2d array
for (int i = 0; i < myArray.length; i++) {
Callable<Long> callable = new SearchCallable(myArray[i]);
Future<Long> callResult = executor.submit(callable);
myResults.add(callResult);
}
// This will make the executor accept no new threads
// and finish all existing threads in the queue
executor.shutdown();
// Wait until all threads are finish
while (!executor.isTerminated()) {
}
// now compare the results and fetch the biggest one
long max = 0;
for (Future<Long> future : myResults) {
try {
max = Math.max(max, future.get());
} catch (InterruptedException | ExecutionException e) {
// something bad happend...!
e.printStackTrace();
}
}
System.out.println("The result is " + max);
And your Callable:
public class SearchCallable implements Callable<Long> {
private final long[] mArray;
public SearchCallable(final long[] pArray) {
mArray = pArray;
}
#Override
public Long call() throws Exception {
long max = 0;
for (int i = 0; i < mArray.length; i++) {
max = Math.max(max, mArray[i]);
}
System.out.println("I've got the maximum " + max + ", and you guys?");
return max;
}
}
Your code has serious lock contention and thread safety issues. Even worse, it doesn't actually wait for any of the threads to finish before the return myRunnables[0].sharedMax which is a really bad race condition. Also, using explicit locking via ReentrantLock or even synchronized blocks is usually the wrong way of doing things unless you're implementing something low level (eg your own/new concurrent data structure)
Here's a version that uses the Future concurrent primitive and an ExecutorService to handle the thread creation. The general idea is:
Submit a number of concurrent jobs to your ExecutorService
Add the Future returned backed from submit(...) to a List
Loop through the list calling get() on each Future and aggregating the result
This version has the added benefit that there is no lock contention (or locking in general) between the worker threads as each just returns back the max for its slice of the array.
import java.util.concurrent.*;
import java.util.*;
public class PMax {
public static long pmax(final long[][] arr, int numThreads) {
ExecutorService pool = Executors.newFixedThreadPool(numThreads);
try {
List<Future<Long>> list = new ArrayList<Future<Long>>();
for(int i=0;i<arr.length;i++) {
// put sub-array in a final so the inner class can see it:
final long[] subArr = arr[i];
list.add(pool.submit(new Callable<Long>() {
public Long call() {
long max = Long.MIN_VALUE;
for(int j=0;j<subArr.length;j++) {
if( subArr[j] > max ) {
max = subArr[j];
}
}
return max;
}
}));
}
// find the max of each slice's max:
long max = Long.MIN_VALUE;
for(Future<Long> future : list) {
long threadMax = future.get();
System.out.println("threadMax: " + threadMax);
if( threadMax > max ) {
max = threadMax;
}
}
return max;
} catch( RuntimeException e ) {
throw e;
} catch( Exception e ) {
throw new RuntimeException(e);
} finally {
pool.shutdown();
}
}
public static void main(String args[]) {
int x = 1000;
int y = 1000;
long max = Long.MIN_VALUE;
long[][] foo = new long[x][y];
for(int i=0;i<x;i++) {
for(int j=0;j<y;j++) {
long r = (long)(Math.random() * 100000000);
if( r > max ) {
// save this to compare against pmax:
max = r;
}
foo[i][j] = r;
}
}
int numThreads = 32;
long pmax = pmax(foo, numThreads);
System.out.println("max: " + max);
System.out.println("pmax: " + pmax);
}
}
Bonus: If you're calling this method repeatedly then it would probably make sense to pull the ExecutorService creation out of the method and have it be reused across calls.
Well, that definetly is an issue - but without more code it is hard to understand if it is the only thing.
There is basically a race condition between the access of thread[0] (and this read of sharedMax) and the modification of the sharedMax in other threads.
Think what happens if the scheduler decides to let no let any thread run for now - so when you are done creating the threads, you will return the answer without modifying it even once! (of course there are other possible scenarios...)
You can overcome it by join()ing all threads before returning an answer.
I need to run a java program called ArrayHolder that will run two Threads. ArrayHolder will have an Array. ThreadSeven will overwrite every element of that Array with 7, and ThreadOne with 1.
The result after execution should be 7,1,7,1,7,1,7,1 etc. I have solved this problem, although I dont like my solution and was hoping you could suggest a better way.
p.s: Both Threads must write on all indexes.
public class ArrayHolder {
private int[] array = {1, 2, 3, 4, 5, 6, 4, 8, 9, 10};
public void writeInt(int pos, int num) {
array[pos] = num;
}
public static void main(String[] args) {
ArrayHolder holder = new ArrayHolder();
ThreadSeven seven = new ThreadSeven(holder, null);
Runnable one = new ThreadOne(holder, seven);
Thread thread1 = new Thread(seven);
Thread thread2 = new Thread(one);
seven.setThread(one);
thread1.start();
thread2.start();
holder.printArray();
}
private void printArray() {
for (int i = 0; i < 10; i++) {
System.out.println(array[i]);
}
}
public class ThreadSeven implements Runnable {
private ArrayHolder array;
private Runnable t;
private int flag=0;
#Override
public void run() {
for(int i=0;i<10;i++){
array.writeInt(i, 7);
flag=(flag+1)%2;
if (flag==0){
synchronized(t){
t.notify();
}
}else{
synchronized(this){
try {
this.wait();
} catch (InterruptedException ex) {
Logger.getLogger(ThreadSeven.class.getName()).log(Level.SEVERE, null, ex);
}
}
}
}
}
public ThreadSeven (ArrayHolder ar,Runnable t){
array=ar;
this.t=t;
}
public void setThread(Runnable t){
this.t=t;
}
}
public class ThreadOne implements Runnable {
private ArrayHolder array;
private Runnable t;
private int flag = 0;
#Override
public void run() {
for (int i = 0; i < 10; i++) {
array.writeInt(i, 1);
flag = (flag + 1) % 2;
if (flag == 1) {
synchronized (t) {
t.notify();
}
} else {
synchronized (this) {
try {
this.wait();
} catch (InterruptedException ex) {
Logger.getLogger(ThreadSeven.class.getName()).log(Level.SEVERE, null, ex);
}
}
}
}
}
public ThreadOne(ArrayHolder ar, Runnable t) {
array = ar;
this.t = t;
}
public void setThread(Runnable t) {
this.t = t;
}
}
ThreadSeven and ThreadOne don't need to be separate classes; is looks like you just copy/pasted the code, and then changed the 7 in writeInt to a 1. Instead, you can paramaterize this value and pass it in the constructor. Then you get something like:
public class ThreadWriter implements Runnable {
private final int numberToWrite;
// ...
public ThreadOne(ArrayHolder ar, Runnable t, int numberToWrite) {
array = ar;
this.t = t;
this.numberToWrite = numberToWrite;
}
// ...
}
Another point is that both of your threads have to know about each other; this doesn't scale well. Pretend that for your next assignment your teacher said that you have to handle three threads which write 1, 4, 7, 1, 4, 7, ...; you would have to change the implementation of ThreadOne and ThreadSeven. A better solution which you could make now is have the ThreadWriters themselves be dumber, and manage their interaction more in the ArrayHolder class (or with an intermediary ThreadWriterManager class).
Your solution has some problems and looks to me like it would not print the correct result.
a) You don't wait for the threads to finish before you print the resulting array
Add thread1.join() and thread2.join() before holder.printArray() in case it is not there yet.
b) both threads start with writing immediately via array.writeInt(0, /* 1 or 7 */); After that they start to wait on each other. Whether the first index is correct or not depends on luck.
c) Continuing after this.wait(); without a loop checking a condition is not safe since the interrupt could be caused by something else than the other thread. I guess it's okay to do that here since it's just an exercise.
d) I see a potential deadlock: let's assume both threads are still writing the first index. So both are not in a synchronized block.
The thread that has to notify the other one does so, writes the next index and goes into it's own wait block.
But the second thread was not waiting at the time so the notify from the first thread did nothing. Second thread goes into wait block too.
Now both threads wait on each other and nothing happens anymore.
I don't have a great simple solution for you since that problem is quite complex.
The 1-thread needs to start writing at index 0 then wait until the 7-thread has written index 0 and 1, now 1-thread writes index 1 and 2 and waits and so on. That is the only way I see possible to ensure that both thread have written to every index and that the result is 7-1-7-1-.... Synchronizing access inside ArrayHolder would be very tricky since it needs to make sure that both threads have written to each index in the correct order.
But I think your general idea is okay. You just need to make sure that it is safe
I'm writing a program in Java that deals with Semaphores for an assignment. I'm still new to the idea of Semaphores and concurrency.
The description of the problem is as follows:
A vector V[] of booleans. V[i] is "True"if Pi needs to use the critical section.
A vector of binary semaphores B[] to block processes from entering their critical section: B[i] will be the semaphore blocking process Pi.
A special scheduler process SCHED is used whenever a blocked process needs to be awakened to use the critical section.
SCHED is blocked by waiting on a special semaphore S
When a process Pi needs to enter the critical section, it sets V[i] to "True", signals the semaphore S and then waits on the semaphore B[i].
Whenever SCHED is unblocked, it selects the process Pi with the smallest index i for which V[i] is "True". Process Pi is then awakened by signaling B[i] and SCHED goes back to sleep by blocking on semaphore S.
When a process Pi leaves the critical section, it signals S.
This is my code:
import java.util.concurrent.Semaphore;
public class Process extends Thread {
static boolean V[];
int i;
static Semaphore B[]; //blocking semaphore
static Semaphore S;
private static int id;
static int N;
static int insist = 0;
public static void process (int i, int n) {
id = i;
N = n;
V = new boolean[N];
}
private void delay () {
try {
sleep (random(500));
}
catch (InterruptedException p) {
}
}
private static int random(int n) {
return (int) Math.round(n * Math.random() - 0.5);
}
private void entryprotocol(int i) {
V[Process.id] = true;
int turn = N;
while (V[Process.id] == true && turn == N) {
System.out.println("P" + Process.id + " is requesting critical section");
signal(S);
}
critical(Process.id);
wait(B[Process.id]);
V[Process.id] = false;
}
private void wait(Semaphore S) {
if (Process.id > 0) {
Process.id--;
} else {
//add Process.id to id.queue and block
wait(B[Process.id]);
}
}
private void signal(Semaphore S) {
if (B[Process.id] != null) {
Sched(Process.id);
} else {
Process.id++; //remove process from queue
critical(Process.id); //wakes up current process
}
}
private void critical(int i) {
System.out.println("P" + Process.id + " is in the critical section");
delay();
exitprotocol(i);
}
private void exitprotocol(int i) {
System.out.println("P" + Process.id + " is leaving the critical section");
V[id] = false;
signal(S);
}
public void Sched(int i) {
if (B[Process.id] == null) {
signal(B[Process.id]);
}
wait(S);
}
public void run() {
for (int i = 0; i < 5; i++) {
Sched(i);
entryprotocol(Process.id);
try {
wait(Process.id);
}
catch (InterruptedException p) {
}
signal(S);
}
}
public static void main (String[] args) {
int N = 5;
Process p[] = new Process[N];
for (int i = 0; i < N; i++) {
p[i] = new Process();
p[i].start();
}
}
}
I believe my logic here is correct but I'm getting a lot of errors (such as Exception in thread "Thread-1" java.lang.NullPointerException). Can any shed some light on what I'm doing wrong & provide me with some help. It's greatly appreciated!
Your NPE is probably due to the fact that you never initialize your Semaphore array - but its hard to say without a proper stack trace.
Two pieces of advice:
1) You might want to give your class variables more meaningful names than :
B
N
S
V.
Imagine walking away from this project and revisiting it in 4 months and had to read through that.
2) Figure out your class model on on a white board before writing any code. You have methods that take semaphores with the same name as some of your static fields. What are the relationships of the objects in your program? If you don't know, odds are your program doesn't know either.