Re-using GAE Python code with GAE Java - java

Here's a [python code][1] that I would like to know if can also be used for GAE Java (when code is migrated). So the question is, is the python code below something that can converted to Java without any python "dependencies" that Java can't have:
# stdlib
from collections import defaultdict
from datetime import datetime, timedelta
import os
import time
# 3p
import simplejson as json
# google api
from google.appengine.api import app_identity, logservice, memcache, taskqueue
from google.appengine.ext.db import stats as db_stats
# framework
import webapp2
class DatadogStats(webapp2.RequestHandler):
def get(self):
api_key = self.request.get('api_key')
if api_key != os.environ.get('DATADOG_API_KEY'):
self.abort(403)
FLAVORS = ['requests', 'services', 'all']
flavor = self.request.get('flavor')
if flavor not in FLAVORS:
self.abort(400)
def get_task_queue_stats(queues=None):
if queues is None:
queues = ['default']
else:
queues = queues.split(',')
task_queues = [taskqueue.Queue(q).fetch_statistics() for q in queues]
q_stats = []
for q in task_queues:
stats = {
'queue_name': q.queue.name,
'tasks': q.tasks,
'oldest_eta_usec': q.oldest_eta_usec,
'executed_last_minute': q.executed_last_minute,
'in_flight': q.in_flight,
'enforced_rate': q.enforced_rate,
}
q_stats.append(stats)
return q_stats
def get_request_stats(after=None):
if after is None:
one_minute_ago = datetime.utcnow() - timedelta(minutes=1)
after = time.mktime(one_minute_ago.timetuple())
else:
# cast to float
after = float(after)
logs = logservice.fetch(start_time=after)
stats = defaultdict(list)
for req_log in logs:
stats['start_time'].append(req_log.start_time)
stats['api_mcycles'].append(req_log.api_mcycles)
stats['cost'].append(req_log.cost)
stats['finished'].append(req_log.finished)
stats['latency'].append(req_log.latency)
stats['mcycles'].append(req_log.mcycles)
stats['pending_time'].append(req_log.pending_time)
stats['replica_index'].append(req_log.replica_index)
stats['response_size'].append(req_log.response_size)
stats['version_id'].append(req_log.version_id)
return stats
stats = {
'project_name': app_identity.get_application_id()
}
if flavor == 'services' or flavor == 'all':
stats['datastore'] = db_stats.GlobalStat.all().get()
stats['memcache'] = memcache.get_stats()
stats['task_queue'] = get_task_queue_stats(self.request.get('task_queues', None))
if flavor == 'requests' or flavor == 'all':
stats['requests'] = get_request_stats(self.request.get('after', None))
self.response.headers['Content-Type'] = 'application/json'
self.response.write(json.dumps(stats))
app = webapp2.WSGIApplication([
('/datadog', DatadogStats),
])
[1]: https://github.com/DataDog/gae_datadog/blob/master/datadog.py

Yes, the code can be converted and will work in Java, but you will have to do it manually (I don't know of any tools to "translate" from Python to Java).
Looking at all the imports you have, there's nothing there that can't be used in Java.

Related

Unable to run python file in java

I have to call example.py (having another dependencies windrose, matlab, numpy ) python file from java to create wind graph but it unable to import any dependency while calling from java but its runs fine independently using python, I got
Error: no module name windrose
but this module is already in folder please let me know how to do it
windroseGraph ie = new windroseGraph();
ie.execfile("E:\\example.py");
PyInstance hello = ie.createClass("test", "None");
hello.invoke("run");
python file example.py
from windrose import WindroseAxes
from numpy.random import random
from numpy import arange
from matplotlib import pyplot as plt
import matplotlib.cm as cm
class test:
def new_axes():
fig = plt.figure(figsize=(8, 8), dpi=80, facecolor='w', edgecolor='w')
rect = [0.1, 0.1, 0.8, 0.8]
ax = WindroseAxes(fig, rect, axisbg='w')
fig.add_axes(ax)
return ax
def set_legend(ax):
l = ax.legend(borderaxespad=-0.10)
plt.setp(l.get_texts(), fontsize=8)
def run(self,wd,ws):
ax = new_axes()
ax.bar(wd, ws, normed=True, opening=0.8, edgecolor='white')
set_legend(ax)
##print ax._info
plt.show()
example.py is python file having function with parameter and generate wind graph using windrose.py module (python lib online available )

Tensorflow in Android: How do i use my linear regression model to predict a value in an android application?

I currently have a ipynb file (ipython notebook) that contains a linear regression code / model(im not entirely sure if it's a model) that I've created earlier.
How do i implement this model in an android application such that if I were to input a value of 'x' in a text box, it'll output in a textview the predicted value of 'y'. Function: Y = mx + b.
I've tried looking at different tutorials, but they were mostly not "step-by-step" guides, which made it really hard to understand, I'm a beginner at coding.
Here's my code for the model:
import tensorflow as tf
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
rng = np.random
from numpy import genfromtxt
from sklearn.datasets import load_boston
# Parameters
learning_rate = 0.0001
training_epochs = 1000
display_step = 50
n_samples = 222
X = tf.placeholder("float") # create symbolic variables
Y = tf.placeholder("float")
filename_queue = tf.train.string_input_producer(["C://Users//Shiina//battdata.csv"],shuffle=False)
reader = tf.TextLineReader() # skip_header_lines=1 if csv has headers
key, value = reader.read(filename_queue)
# Default values, in case of empty columns. Also specifies the type of the
# decoded result.
record_defaults = [[1.], [1.]]
height, soc= tf.decode_csv(
value, record_defaults=record_defaults)
features = tf.stack([height])
# Set model weights
W = tf.Variable(rng.randn(), name="weight")
b = tf.Variable(rng.randn(), name="bias")
# Construct a linear model
pred_soc = tf.add(tf.multiply(height, W), b) # XW + b <- y = mx + b where W is gradient, b is intercept
# Mean squared error
cost = tf.reduce_sum(tf.pow(pred_soc-soc, 2))/(2*n_samples)
# Gradient descent
optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost)
# Initializing the variables
init = tf.global_variables_initializer()
with tf.Session() as sess:
# Start populating the filename queue.
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(coord=coord)
sess.run(init)
# Fit all training data
for epoch in range(training_epochs):
_, cost_value = sess.run([optimizer,cost])
#Display logs per epoch step
if (epoch+1) % display_step == 0:
c = sess.run(cost)
print( "Epoch:", '%04d' % (epoch+1), "cost=", "{:.9f}".format(c), \
"W=", sess.run(W), "b=", sess.run(b))
print("Optimization Finished!")
training_cost = sess.run(cost)
print ("Training cost=", training_cost, "W=", sess.run(W), "b=", sess.run(b), '\n')
#Plot data after completing training
train_X = []
train_Y = []
for i in range(n_samples): #Your input data size to loop through once
X, Y = sess.run([height, pred_soc]) # Call pred, to get the prediction with the updated weights
train_X.append(X)
train_Y.append(Y)
#Graphic display
plt.plot(train_X, train_Y, 'ro', label='Original data')
plt.ylabel("SoC")
plt.xlabel("Height")
plt.axis([0, 1, 0, 100])
plt.plot(train_X, train_Y, linewidth=2.0)
plt.legend()
plt.show()
coord.request_stop()
coord.join(threads)

Only one SparkContext may be running in this JVM - [SPARK]

I'm trying to run the following code to get twitter information live:
import org.apache.spark._
import org.apache.spark.streaming._
import org.apache.spark.streaming.twitter._
import org.apache.spark.streaming.StreamingContext._
import twitter4j.auth.Authorization
import twitter4j.Status
import twitter4j.auth.AuthorizationFactory
import twitter4j.conf.ConfigurationBuilder
import org.apache.spark.streaming.api.java.JavaStreamingContext
import org.apache.spark.rdd.RDD
import org.apache.spark.SparkContext
import org.apache.spark.mllib.feature.HashingTF
import org.apache.spark.mllib.linalg.Vector
import org.apache.spark.SparkConf
import org.apache.spark.api.java.JavaSparkContext
import org.apache.spark.api.java.function.Function
import org.apache.spark.streaming.Duration
import org.apache.spark.streaming.api.java.JavaDStream
import org.apache.spark.streaming.api.java.JavaReceiverInputDStream
val consumerKey = "xxx"
val consumerSecret = "xxx"
val accessToken = "xxx"
val accessTokenSecret = "xxx"
val url = "https://stream.twitter.com/1.1/statuses/filter.json"
val sparkConf = new SparkConf().setAppName("Twitter Streaming")
val sc = new SparkContext(sparkConf)
val documents: RDD[Seq[String]] = sc.textFile("").map(_.split(" ").toSeq)
// Twitter Streaming
val ssc = new JavaStreamingContext(sc,Seconds(2))
val conf = new ConfigurationBuilder()
conf.setOAuthAccessToken(accessToken)
conf.setOAuthAccessTokenSecret(accessTokenSecret)
conf.setOAuthConsumerKey(consumerKey)
conf.setOAuthConsumerSecret(consumerSecret)
conf.setStreamBaseURL(url)
conf.setSiteStreamBaseURL(url)
val filter = Array("Twitter", "Hadoop", "Big Data")
val auth = AuthorizationFactory.getInstance(conf.build())
val tweets : JavaReceiverInputDStream[twitter4j.Status] = TwitterUtils.createStream(ssc, auth, filter)
val statuses = tweets.dstream.map(status => status.getText)
statuses.print()
ssc.start()
But when it arrives at this command: val sc = new SparkContext(sparkConf), the following error appears:
17/05/09 09:08:35 WARN SparkContext: Multiple running SparkContexts
detected in the same JVM! org.apache.spark.SparkException: Only one
SparkContext may be running in this JVM (see SPARK-2243). To ignore
this error, set spark.driver.allowMultipleContexts = true.
I have tried to add the following parameters to the sparkConf value, but the error still appears:
val sparkConf = new SparkConf().setAppName("Twitter Streaming").setMaster("local[4]").set("spark.driver.allowMultipleContexts", "true")
If I ignore the error and continue running commands I get this other error:
17/05/09 09:15:44 WARN ReceiverSupervisorImpl: Restarting receiver
with delay 2000 ms: Error receiving tweets 401:Authentication
credentials (https://dev.twitter.com/pages/auth) were missing or
incorrect. Ensure that you have set valid consumer key/secret, access
token/secret, and the system clock is in sync. \n\n\nError 401 Unauthorized
HTTP ERROR: 401 Problem accessing
'/1.1/statuses/filter.json'. Reason:Unauthorized
Any kind of contribution is appreciated. A greeting and have a good day.
A Spark-shell already prepares a spark-session or spark-context for you to use - so you don't have to / can't initialize a new one. Usually you will have a line telling you under what variable it is available to you a the end of the spark-shell launch process.
allowMultipleContexts exists only for testing some functionalities of Spark, and shouldn't be used in most cases.

In h2o.ai, how to load train data in java or scala?

In my project, I will use h2o's machine learning algorithm. While I don't load the train date.
I use the folloing ways.
var f = FileUtils.getFile("D:\\from_2017_2_13\\untitled2\\src\\main\\resources\\extdata\\iris_wheader.csv")
println(11111)
var frame = FrameUtils.parseFrame(Key.make("iris_weather.hex"),f)
println(22222)
The 11111 was output, then the program will being runing, and not stopping
11111
other way
var f = FileUtils.getFile("D:\\from_2017_2_13\\untitled2\\src\\main\\resources\\extdata\\iris_wheader.csv")
val parserSetup = H2OFrame.defaultParserSetup()
parserSetup.setSeparator(',').setCheckHeader(ParseSetup.HAS_HEADER).setNumberColumns(5)
val f3 = new H2OFrame(parserSetup, f)
f3
the error
Exception in thread "main" java.lang.ArrayIndexOutOfBoundsException: 65535
at water.DKV.get(DKV.java:202)
at water.DKV.get(DKV.java:175)
at water.parser.ParseSetup.createHexName(ParseSetup.java:594)
at water.fvec.H2OFrame.<init>(H2OFrame.scala:56)
at water.fvec.H2OFrame.<init>(H2OFrame.scala:84)
To load data into Scala as H2O Frame you can do the following:
import org.apache.spark.h2o._
import water.support.SparkContextSupport.addFiles
import org.apache.spark.SparkFiles
import java.io.File
val hc = H2OContext.getOrCreate(sc)
addFiles(sc, "/Users/avkashchauhan/smalldata/iris/iris.csv")
val irisData = new H2OFrame(new File(SparkFiles.get("iris.csv")))
Once data is loaded you can see the data frame as below:
scala> irisData
res1: water.fvec.H2OFrame =
Frame key: iris.hex
cols: 5
rows: 150
chunks: 1
size: 2454
Once you have ingested the data frame you can build model with it. If you are looking for a sample of using H2O library in Scala you can look for this blog for full end to end Scala based deep learning sample in H2O.

java.lang.NullPointerException in OpenNLP using RJB (Ruby Java Bridge)

I am trying to use the open-nlp Ruby gem to access the Java OpenNLP processor through RJB (Ruby Java Bridge). I am not a Java programmer, so I don't know how to solve this. Any recommendations regarding resolving it, debugging it, collecting more information, etc. would be appreciated.
The environment is Windows 8, Ruby 1.9.3p448, Rails 4.0.0, JDK 1.7.0-40 x586. Gems are rjb 1.4.8 and louismullie/open-nlp 0.1.4. For the record, this file runs in JRuby but I experience other problems in that environment and would prefer to stay native Ruby for now.
In brief, the open-nlp gem is failing with java.lang.NullPointerException and Ruby error method missing. I hesitate to say why this is happening because I don't know, but it appears to me that the dynamic loading of the Jars file opennlp.tools.postag.POSTaggerME#1b5080a cannot be accessed, perhaps because OpenNLP::Bindings::Utils.tagWithArrayList isn't being set up correctly. OpenNLP::Bindings is Ruby. Utils, and its methods, are Java. And Utils is supposedly the "default" Jars and Class files, which may be important.
What am I doing wrong, here? Thanks!
The code I am running is copied straight out of github/open-nlp. My copy of the code is:
class OpennlpTryer
$DEBUG=false
# From https://github.com/louismullie/open-nlp
# Hints: Dir.pwd; File.expand_path('../../Gemfile', __FILE__);
# Load the module
require 'open-nlp'
#require 'jruby-jars'
=begin
# Alias "write" to "print" to monkeypatch the NoMethod write error
java_import java.io.PrintStream
class PrintStream
java_alias(:write, :print, [java.lang.String])
end
=end
=begin
# Display path of jruby-jars jars...
puts JRubyJars.core_jar_path # => path to jruby-core-VERSION.jar
puts JRubyJars.stdlib_jar_path # => path to jruby-stdlib-VERSION.jar
=end
puts ENV['CLASSPATH']
# Set an alternative path to look for the JAR files.
# Default is gem's bin folder.
# OpenNLP.jar_path = '/path_to_jars/'
OpenNLP.jar_path = File.join(ENV["GEM_HOME"],"gems/open-nlp-0.1.4/bin/")
puts OpenNLP.jar_path
# Set an alternative path to look for the model files.
# Default is gem's bin folder.
# OpenNLP.model_path = '/path_to_models/'
OpenNLP.model_path = File.join(ENV["GEM_HOME"],"gems/open-nlp-0.1.4/bin/")
puts OpenNLP.model_path
# Pass some alternative arguments to the Java VM.
# Default is ['-Xms512M', '-Xmx1024M'].
# OpenNLP.jvm_args = ['-option1', '-option2']
OpenNLP.jvm_args = ['-Xms512M', '-Xmx1024M']
# Redirect VM output to log.txt
OpenNLP.log_file = 'log.txt'
# Set default models for a language.
# OpenNLP.use :language
OpenNLP.use :english # Make sure this is lower case!!!!
# Simple tokenizer
OpenNLP.load
sent = "The death of the poet was kept from his poems."
tokenizer = OpenNLP::SimpleTokenizer.new
tokens = tokenizer.tokenize(sent).to_a
# => %w[The death of the poet was kept from his poems .]
puts "Tokenize #{tokens}"
# Maximum entropy tokenizer, chunker and POS tagger
OpenNLP.load
chunker = OpenNLP::ChunkerME.new
tokenizer = OpenNLP::TokenizerME.new
tagger = OpenNLP::POSTaggerME.new
sent = "The death of the poet was kept from his poems."
tokens = tokenizer.tokenize(sent).to_a
# => %w[The death of the poet was kept from his poems .]
puts "Tokenize #{tokens}"
tags = tagger.tag(tokens).to_a
# => %w[DT NN IN DT NN VBD VBN IN PRP$ NNS .]
puts "Tags #{tags}"
chunks = chunker.chunk(tokens, tags).to_a
# => %w[B-NP I-NP B-PP B-NP I-NP B-VP I-VP B-PP B-NP I-NP O]
puts "Chunks #{chunks}"
# Abstract Bottom-Up Parser
OpenNLP.load
sent = "The death of the poet was kept from his poems."
parser = OpenNLP::Parser.new
parse = parser.parse(sent)
=begin
parse.get_text.should eql sent
parse.get_span.get_start.should eql 0
parse.get_span.get_end.should eql 46
parse.get_child_count.should eql 1
=end
child = parse.get_children[0]
child.text # => "The death of the poet was kept from his poems."
child.get_child_count # => 3
child.get_head_index #=> 5
child.get_type # => "S"
puts "Child: #{child}"
# Maximum Entropy Name Finder*
OpenNLP.load
# puts File.expand_path('.', __FILE__)
text = File.read('./spec/sample.txt').gsub!("\n", "")
tokenizer = OpenNLP::TokenizerME.new
segmenter = OpenNLP::SentenceDetectorME.new
puts "Tokenizer: #{tokenizer}"
puts "Segmenter: #{segmenter}"
ner_models = ['person', 'time', 'money']
ner_finders = ner_models.map do |model|
OpenNLP::NameFinderME.new("en-ner-#{model}.bin")
end
puts "NER Finders: #{ner_finders}"
sentences = segmenter.sent_detect(text)
puts "Sentences: #{sentences}"
named_entities = []
sentences.each do |sentence|
tokens = tokenizer.tokenize(sentence)
ner_models.each_with_index do |model, i|
finder = ner_finders[i]
name_spans = finder.find(tokens)
name_spans.each do |name_span|
start = name_span.get_start
stop = name_span.get_end-1
slice = tokens[start..stop].to_a
named_entities << [slice, model]
end
end
end
puts "Named Entities: #{named_entities}"
# Loading specific models
# Just pass the name of the model file to the constructor. The gem will search for the file in the OpenNLP.model_path folder.
OpenNLP.load
tokenizer = OpenNLP::TokenizerME.new('en-token.bin')
tagger = OpenNLP::POSTaggerME.new('en-pos-perceptron.bin')
name_finder = OpenNLP::NameFinderME.new('en-ner-person.bin')
# etc.
puts "Tokenizer: #{tokenizer}"
puts "Tagger: #{tagger}"
puts "Name Finder: #{name_finder}"
# Loading specific classes
# You may want to load specific classes from the OpenNLP library that are not loaded by default. The gem provides an API to do this:
# Default base class is opennlp.tools.
OpenNLP.load_class('SomeClassName')
# => OpenNLP::SomeClassName
# Here, we specify another base class.
OpenNLP.load_class('SomeOtherClass', 'opennlp.tools.namefind')
# => OpenNLP::SomeOtherClass
end
The line which is failing is line 73: (tokens == the sentence being processed.)
tags = tagger.tag(tokens).to_a #
# => %w[DT NN IN DT NN VBD VBN IN PRP$ NNS .]
tagger.tag calls open-nlp/classes.rb line 13, which is where the error is thrown. The code there is:
class OpenNLP::POSTaggerME < OpenNLP::Base
unless RUBY_PLATFORM =~ /java/
def tag(*args)
OpenNLP::Bindings::Utils.tagWithArrayList(#proxy_inst, args[0]) # <== Line 13
end
end
end
The Ruby error thrown at this point is: `method_missing': unknown exception (NullPointerException). Debugging this, I found the error java.lang.NullPointerException. args[0] is the sentence being processed. #proxy_inst is opennlp.tools.postag.POSTaggerME#1b5080a.
OpenNLP::Bindings sets up the Java environment. For example, it sets up the Jars to be loaded and the classes within those Jars. In line 54, it sets up defaults for RJB, which should set up OpenNLP::Bindings::Utils and its methods as follows:
# Add in Rjb workarounds.
unless RUBY_PLATFORM =~ /java/
self.default_jars << 'utils.jar'
self.default_classes << ['Utils', '']
end
utils.jar and Utils.java are in the CLASSPATH with the other Jars being loaded. They are being accessed, which is verified because the other Jars throw error messages if they are not present. The CLASSPATH is:
.;C:\Program Files (x86)Java\jdk1.7.0_40\lib;C:\Program Files (x86)Java\jre7\lib;D:\BitNami\rubystack-1.9.3-12\ruby\lib\ruby\gems\1.9.1\gems\open-nlp-0.1.4\bin
The applications Jars are in D:\BitNami\rubystack-1.9.3-12\ruby\lib\ruby\gems\1.9.1\gems\open-nlp-0.1.4\bin and, again, if they are not there I get error messages on other Jars. The Jars and Java files in ...\bin include:
jwnl-1.3.3.jar
opennlp-maxent-3.0.2-incubating.jar
opennlp-tools-1.5.2-incubating.jar
opennlp-uima-1.5.2-incubating.jar
utils.jar
Utils.java
Utils.java is as follows:
import java.util.Arrays;
import java.util.ArrayList;
import java.lang.String;
import opennlp.tools.postag.POSTagger;
import opennlp.tools.chunker.ChunkerME;
import opennlp.tools.namefind.NameFinderME; // interface instead?
import opennlp.tools.util.Span;
// javac -cp '.:opennlp.tools.jar' Utils.java
// jar cf utils.jar Utils.class
public class Utils {
public static String[] tagWithArrayList(POSTagger posTagger, ArrayList[] objectArray) {
return posTagger.tag(getStringArray(objectArray));
}
public static Object[] findWithArrayList(NameFinderME nameFinder, ArrayList[] tokens) {
return nameFinder.find(getStringArray(tokens));
}
public static Object[] chunkWithArrays(ChunkerME chunker, ArrayList[] tokens, ArrayList[] tags) {
return chunker.chunk(getStringArray(tokens), getStringArray(tags));
}
public static String[] getStringArray(ArrayList[] objectArray) {
String[] stringArray = Arrays.copyOf(objectArray, objectArray.length, String[].class);
return stringArray;
}
}
So, it should define tagWithArrayList and import opennlp.tools.postag.POSTagger. (OBTW, just to try, I changed the incidences of POSTagger to POSTaggerME in this file. It changed nothing...)
The tools Jar file, opennlp-tools-1.5.2-incubating.jar, includes postag/POSTagger and POSTaggerME class files, as expected.
Error messages are:
D:\BitNami\rubystack-1.9.3-12\ruby\bin\ruby.exe -e $stdout.sync=true;$stderr.sync=true;load($0=ARGV.shift) D:/BitNami/rubystack-1.9.3-12/projects/RjbTest/app/helpers/opennlp_tryer.rb
.;C:\Program Files (x86)\Java\jdk1.7.0_40\lib;C:\Program Files (x86)\Java\jre7\lib;D:\BitNami\rubystack-1.9.3-12\ruby\lib\ruby\gems\1.9.1\gems\open-nlp-0.1.4\bin
D:/BitNami/rubystack-1.9.3-12/ruby/lib/ruby/gems/1.9.1/gems/open-nlp-0.1.4/bin/
D:/BitNami/rubystack-1.9.3-12/ruby/lib/ruby/gems/1.9.1/gems/open-nlp-0.1.4/bin/
Tokenize ["The", "death", "of", "the", "poet", "was", "kept", "from", "his", "poems", "."]
Tokenize ["The", "death", "of", "the", "poet", "was", "kept", "from", "his", "poems", "."]
D:/BitNami/rubystack-1.9.3-12/ruby/lib/ruby/gems/1.9.1/gems/open-nlp-0.1.4/lib/open-nlp/classes.rb:13:in `method_missing': unknown exception (NullPointerException)
from D:/BitNami/rubystack-1.9.3-12/ruby/lib/ruby/gems/1.9.1/gems/open-nlp-0.1.4/lib/open-nlp/classes.rb:13:in `tag'
from D:/BitNami/rubystack-1.9.3-12/projects/RjbTest/app/helpers/opennlp_tryer.rb:73:in `<class:OpennlpTryer>'
from D:/BitNami/rubystack-1.9.3-12/projects/RjbTest/app/helpers/opennlp_tryer.rb:1:in `<top (required)>'
from -e:1:in `load'
from -e:1:in `<main>'
Modified Utils.java:
import java.util.Arrays;
import java.util.Object;
import java.lang.String;
import opennlp.tools.postag.POSTagger;
import opennlp.tools.chunker.ChunkerME;
import opennlp.tools.namefind.NameFinderME; // interface instead?
import opennlp.tools.util.Span;
// javac -cp '.:opennlp.tools.jar' Utils.java
// jar cf utils.jar Utils.class
public class Utils {
public static String[] tagWithArrayList(POSTagger posTagger, Object[] objectArray) {
return posTagger.tag(getStringArray(objectArray));
}f
public static Object[] findWithArrayList(NameFinderME nameFinder, Object[] tokens) {
return nameFinder.find(getStringArray(tokens));
}
public static Object[] chunkWithArrays(ChunkerME chunker, Object[] tokens, Object[] tags) {
return chunker.chunk(getStringArray(tokens), getStringArray(tags));
}
public static String[] getStringArray(Object[] objectArray) {
String[] stringArray = Arrays.copyOf(objectArray, objectArray.length, String[].class);
return stringArray;
}
}
Modified error messages:
Uncaught exception: uninitialized constant OpennlpTryer::ArrayStoreException
D:/BitNami/rubystack-1.9.3-12/projects/RjbTest/app/helpers/opennlp_tryer.rb:81:in `rescue in <class:OpennlpTryer>'
D:/BitNami/rubystack-1.9.3-12/projects/RjbTest/app/helpers/opennlp_tryer.rb:77:in `<class:OpennlpTryer>'
D:/BitNami/rubystack-1.9.3-12/projects/RjbTest/app/helpers/opennlp_tryer.rb:1:in `<top (required)>'
Revised error with Utils.java revised to "import java.lang.Object;":
Uncaught exception: uninitialized constant OpennlpTryer::ArrayStoreException
D:/BitNami/rubystack-1.9.3-12/projects/RjbTest/app/helpers/opennlp_tryer.rb:81:in `rescue in <class:OpennlpTryer>'
D:/BitNami/rubystack-1.9.3-12/projects/RjbTest/app/helpers/opennlp_tryer.rb:77:in `<class:OpennlpTryer>'
D:/BitNami/rubystack-1.9.3-12/projects/RjbTest/app/helpers/opennlp_tryer.rb:1:in `<top (required)>'
Rescue removed from OpennlpTryer shows error trapped in classes.rb:
Uncaught exception: uninitialized constant OpenNLP::POSTaggerME::ArrayStoreException
D:/BitNami/rubystack-1.9.3-12/ruby/lib/ruby/gems/1.9.1/gems/open-nlp-0.1.4/lib/open-nlp/classes.rb:16:in `rescue in tag'
D:/BitNami/rubystack-1.9.3-12/ruby/lib/ruby/gems/1.9.1/gems/open-nlp-0.1.4/lib/open-nlp/classes.rb:13:in `tag'
D:/BitNami/rubystack-1.9.3-12/projects/RjbTest/app/helpers/opennlp_tryer.rb:78:in `<class:OpennlpTryer>'
D:/BitNami/rubystack-1.9.3-12/projects/RjbTest/app/helpers/opennlp_tryer.rb:1:in `<top (required)>'
Same error but with all rescues removed so it's "native Ruby"
Uncaught exception: unknown exception
D:/BitNami/rubystack-1.9.3-12/ruby/lib/ruby/gems/1.9.1/gems/open-nlp-0.1.4/lib/open-nlp/classes.rb:15:in `method_missing'
D:/BitNami/rubystack-1.9.3-12/ruby/lib/ruby/gems/1.9.1/gems/open-nlp-0.1.4/lib/open-nlp/classes.rb:15:in `tag'
D:/BitNami/rubystack-1.9.3-12/projects/RjbTest/app/helpers/opennlp_tryer.rb:78:in `<class:OpennlpTryer>'
D:/BitNami/rubystack-1.9.3-12/projects/RjbTest/app/helpers/opennlp_tryer.rb:1:in `<top (required)>'
Revised Utils.java:
import java.util.Arrays;
import java.util.ArrayList;
import java.lang.String;
import opennlp.tools.postag.POSTagger;
import opennlp.tools.chunker.ChunkerME;
import opennlp.tools.namefind.NameFinderME; // interface instead?
import opennlp.tools.util.Span;
// javac -cp '.:opennlp.tools.jar' Utils.java
// jar cf utils.jar Utils.class
public class Utils {
public static String[] tagWithArrayList(
System.out.println("Tokens: ("+objectArray.getClass().getSimpleName()+"): \n"+objectArray);
POSTagger posTagger, ArrayList[] objectArray) {
return posTagger.tag(getStringArray(objectArray));
}
public static Object[] findWithArrayList(NameFinderME nameFinder, ArrayList[] tokens) {
return nameFinder.find(getStringArray(tokens));
}
public static Object[] chunkWithArrays(ChunkerME chunker, ArrayList[] tokens, ArrayList[] tags) {
return chunker.chunk(getStringArray(tokens), getStringArray(tags));
}
public static String[] getStringArray(ArrayList[] objectArray) {
String[] stringArray = Arrays.copyOf(objectArray, objectArray.length, String[].class);
return stringArray;
}
}
I ran cavaj on Utils.class that I unzipped from util.jar and this is what I found. It differs from Utils.java by quite a bit. Both come installed with the open-nlp 1.4.8 gem. I don't know if this is the root cause of the problem, but this file is the core of where it breaks and we have a major discrepancy. Which should we use?
import java.util.ArrayList;
import java.util.Arrays;
import opennlp.tools.chunker.ChunkerME;
import opennlp.tools.namefind.NameFinderME;
import opennlp.tools.postag.POSTagger;
public class Utils
{
public Utils()
{
}
public static String[] tagWithArrayList(POSTagger postagger, ArrayList aarraylist[])
{
return postagger.tag(getStringArray(aarraylist));
}
public static Object[] findWithArrayList(NameFinderME namefinderme, ArrayList aarraylist[])
{
return namefinderme.find(getStringArray(aarraylist));
}
public static Object[] chunkWithArrays(ChunkerME chunkerme, ArrayList aarraylist[], ArrayList aarraylist1[])
{
return chunkerme.chunk(getStringArray(aarraylist), getStringArray(aarraylist1));
}
public static String[] getStringArray(ArrayList aarraylist[])
{
String as[] = (String[])Arrays.copyOf(aarraylist, aarraylist.length, [Ljava/lang/String;);
return as;
}
}
Utils.java in use as of 10/07, compiled and compressed into utils.jar:
import java.util.Arrays;
import java.util.ArrayList;
import java.lang.String;
import opennlp.tools.postag.POSTagger;
import opennlp.tools.chunker.ChunkerME;
import opennlp.tools.namefind.NameFinderME; // interface instead?
import opennlp.tools.util.Span;
// javac -cp '.:opennlp.tools.jar' Utils.java
// jar cf utils.jar Utils.class
public class Utils {
public static String[] tagWithArrayList(POSTagger posTagger, ArrayList[] objectArray) {
return posTagger.tag(getStringArray(objectArray));
}
public static Object[] findWithArrayList(NameFinderME nameFinder, ArrayList[] tokens) {
return nameFinder.find(getStringArray(tokens));
}
public static Object[] chunkWithArrays(ChunkerME chunker, ArrayList[] tokens, ArrayList[] tags) {
return chunker.chunk(getStringArray(tokens), getStringArray(tags));
}
public static String[] getStringArray(ArrayList[] objectArray) {
String[] stringArray = Arrays.copyOf(objectArray, objectArray.length, String[].class);
return stringArray;
}
}
Failures are occurring in BindIt::Binding::load_klass in line 110 here:
# Private function to load classes.
# Doesn't check if initialized.
def load_klass(klass, base, name=nil)
base += '.' unless base == ''
fqcn = "#{base}#{klass}"
name ||= klass
if RUBY_PLATFORM =~ /java/
rb_class = java_import(fqcn)
if name != klass
if rb_class.is_a?(Array)
rb_class = rb_class.first
end
const_set(name.intern, rb_class)
end
else
rb_class = Rjb::import(fqcn) # <== This is line 110
const_set(name.intern, rb_class)
end
end
The messages are as follows, however they are inconsistent in terms of the particular method that is identified. Each run may display a different method, any of POSTagger, ChunkerME, or NameFinderME.
D:/BitNami/rubystack-1.9.3-12/ruby/lib/ruby/gems/1.9.1/gems/bind-it-0.2.7/lib/bind-it/binding.rb:110:in `import': opennlp/tools/namefind/NameFinderME (NoClassDefFoundError)
from D:/BitNami/rubystack-1.9.3-12/ruby/lib/ruby/gems/1.9.1/gems/bind-it-0.2.7/lib/bind-it/binding.rb:110:in `load_klass'
from D:/BitNami/rubystack-1.9.3-12/ruby/lib/ruby/gems/1.9.1/gems/bind-it-0.2.7/lib/bind-it/binding.rb:89:in `block in load_default_classes'
from D:/BitNami/rubystack-1.9.3-12/ruby/lib/ruby/gems/1.9.1/gems/bind-it-0.2.7/lib/bind-it/binding.rb:87:in `each'
from D:/BitNami/rubystack-1.9.3-12/ruby/lib/ruby/gems/1.9.1/gems/bind-it-0.2.7/lib/bind-it/binding.rb:87:in `load_default_classes'
from D:/BitNami/rubystack-1.9.3-12/ruby/lib/ruby/gems/1.9.1/gems/bind-it-0.2.7/lib/bind-it/binding.rb:56:in `bind'
from D:/BitNami/rubystack-1.9.3-12/ruby/lib/ruby/gems/1.9.1/gems/open-nlp-0.1.4/lib/open-nlp.rb:14:in `load'
from D:/BitNami/rubystack-1.9.3-12/projects/RjbTest/app/helpers/opennlp_tryer.rb:54:in `<class:OpennlpTryer>'
from D:/BitNami/rubystack-1.9.3-12/projects/RjbTest/app/helpers/opennlp_tryer.rb:1:in `<top (required)>'
from -e:1:in `load'
from -e:1:in `<main>'
The interesting point about these errors are that they are originating in OpennlpTryer line 54 which is:
OpenNLP.load
At this point, OpenNLP fires up RJB which uses BindIt to load the jars and classes. This is well before the errors that I was seeing at the beginning of this question. However, I can't help but think it is all related. I really don't understand the inconsistency of these errors at all.
I was able to add the logging function in to Utils.java, compile it after adding in an "import java.io.*" and compress it. However, I pulled it out because of these errors as I didn't know if or not it was involved. I don't think it was. However, because these errors are occurring during load, the method is never called anyway so logging there won't help...
For each of the other jars, the jar is loaded then each class is imported using RJB. Utils is handled differently and is specified as the "default". From what I can tell, Utils.class is executed to load its own classes?
Later update on 10/07:
Here is where I am, I think. First, I have some problem replacing Utils.java, as I described earlier today. That problem probably needs solved before I can install a fix.
Second, I now understand the difference between POSTagger and POSTaggerME because the ME means Maximum Entropy. The test code is trying to call POSTaggerME but it looks to me like Utils.java, as implemented, supports POSTagger. I tried changing the test code to call POSTagger, but it said it couldn't find an initializer. Looking at the source for each of these, and I am guessing here, I think that POSTagger exists for the sole purpose to support POSTaggerME which implements it.
The source is opennlp-tools file opennlp-tools-1.5.2-incubating-sources.jar.
What I don't get is the whole reason for Utils in the first place? Why aren't the jars/classes provided in bindings.rb enough? This feels like a bad monkeypatch. I mean, look what bindings.rb does in the first place:
# Default JARs to load.
self.default_jars = [
'jwnl-1.3.3.jar',
'opennlp-tools-1.5.2-incubating.jar',
'opennlp-maxent-3.0.2-incubating.jar',
'opennlp-uima-1.5.2-incubating.jar'
]
# Default namespace.
self.default_namespace = 'opennlp.tools'
# Default classes.
self.default_classes = [
# OpenNLP classes.
['AbstractBottomUpParser', 'opennlp.tools.parser'],
['DocumentCategorizerME', 'opennlp.tools.doccat'],
['ChunkerME', 'opennlp.tools.chunker'],
['DictionaryDetokenizer', 'opennlp.tools.tokenize'],
['NameFinderME', 'opennlp.tools.namefind'],
['Parser', 'opennlp.tools.parser.chunking'],
['Parse', 'opennlp.tools.parser'],
['ParserFactory', 'opennlp.tools.parser'],
['POSTaggerME', 'opennlp.tools.postag'],
['SentenceDetectorME', 'opennlp.tools.sentdetect'],
['SimpleTokenizer', 'opennlp.tools.tokenize'],
['Span', 'opennlp.tools.util'],
['TokenizerME', 'opennlp.tools.tokenize'],
# Generic Java classes.
['FileInputStream', 'java.io'],
['String', 'java.lang'],
['ArrayList', 'java.util']
]
# Add in Rjb workarounds.
unless RUBY_PLATFORM =~ /java/
self.default_jars << 'utils.jar'
self.default_classes << ['Utils', '']
end
SEE FULL CODE AT END FOR THE COMPLETE CORRECTED CLASSES.RB MODULE
I ran into the same problem today. I didn't quite understand why the Utils class were being used, so I modified the classes.rb file in the following way:
unless RUBY_PLATFORM =~ /java/
def tag(*args)
#proxy_inst.tag(args[0])
#OpenNLP::Bindings::Utils.tagWithArrayList(#proxy_inst, args[0])
end
end
In that way I can make the following test to pass:
sent = "The death of the poet was kept from his poems."
tokens = tokenizer.tokenize(sent).to_a
# => %w[The death of the poet was kept from his poems .]
tags = tagger.tag(tokens).to_a
# => ["prop", "prp", "n", "v-fin", "n", "adj", "prop", "v-fin", "n", "adj", "punc"]
R_G Edit:
I tested that change and it eliminated the error. I am going to have to do more testing to ensure the outcome is what should be expected. However, following that same pattern, I made the following changes in classes.rb as well:
def chunk(tokens, tags)
chunks = #proxy_inst.chunk(tokens, tags)
# chunks = OpenNLP::Bindings::Utils.chunkWithArrays(#proxy_inst, tokens,tags)
chunks.map { |c| c.to_s }
end
...
class OpenNLP::NameFinderME < OpenNLP::Base
unless RUBY_PLATFORM =~ /java/
def find(*args)
#proxy_inst.find(args[0])
# OpenNLP::Bindings::Utils.findWithArrayList(#proxy_inst, args[0])
end
end
end
This allowed the entire sample test to execute without failure. I will provide a later update regarding verification of the results.
FINAL EDIT AND UPDATED CLASSES.RB per Space Pope and R_G:
As it turns out, this answer was key to the desired solution. However, the results were inconsistent as it was corrected. We continued to drill down into it and implemented strong typing during the calls, as specified by RJB. This converts the call to use of the _invoke method where the parameters include the desired method, the strong type, and the additional parameters. Andre's recommendation was key to the solution, so kudos to him. Here is the complete module. It eliminates the need for the Utils.class that was attempting to make these calls but failing. We plan to issue a github pull request for the open-nlp gem to update this module:
require 'open-nlp/base'
class OpenNLP::SentenceDetectorME < OpenNLP::Base; end
class OpenNLP::SimpleTokenizer < OpenNLP::Base; end
class OpenNLP::TokenizerME < OpenNLP::Base; end
class OpenNLP::POSTaggerME < OpenNLP::Base
unless RUBY_PLATFORM =~ /java/
def tag(*args)
#proxy_inst._invoke("tag", "[Ljava.lang.String;", args[0])
end
end
end
class OpenNLP::ChunkerME < OpenNLP::Base
if RUBY_PLATFORM =~ /java/
def chunk(tokens, tags)
if !tokens.is_a?(Array)
tokens = tokens.to_a
tags = tags.to_a
end
tokens = tokens.to_java(:String)
tags = tags.to_java(:String)
#proxy_inst.chunk(tokens,tags).to_a
end
else
def chunk(tokens, tags)
chunks = #proxy_inst._invoke("chunk", "[Ljava.lang.String;[Ljava.lang.String;", tokens, tags)
chunks.map { |c| c.to_s }
end
end
end
class OpenNLP::Parser < OpenNLP::Base
def parse(text)
tokenizer = OpenNLP::TokenizerME.new
full_span = OpenNLP::Bindings::Span.new(0, text.size)
parse_obj = OpenNLP::Bindings::Parse.new(
text, full_span, "INC", 1, 0)
tokens = tokenizer.tokenize_pos(text)
tokens.each_with_index do |tok,i|
start, stop = tok.get_start, tok.get_end
token = text[start..stop-1]
span = OpenNLP::Bindings::Span.new(start, stop)
parse = OpenNLP::Bindings::Parse.new(text, span, "TK", 0, i)
parse_obj.insert(parse)
end
#proxy_inst.parse(parse_obj)
end
end
class OpenNLP::NameFinderME < OpenNLP::Base
unless RUBY_PLATFORM =~ /java/
def find(*args)
#proxy_inst._invoke("find", "[Ljava.lang.String;", args[0])
end
end
end
I don't think you're doing anything wrong at all. You're also not the only one with this problem. It looks like a bug in Utils. Creating an ArrayList[] in Java doesn't make much sense - it's technically legal, but it would be an array of ArrayLists, which a) is just plain odd and b) terrible practice with regard to Java generics, and c) won't cast properly to String[] like the author intends in getStringArray().
Given the way the utility's written and the fact that OpenNLP does, in fact, expect to receive a String[] as input for its tag() method, my best guess is that the original author meant to have Object[] where they have ArrayList[] in the Utils class.
Update
To output to a file in the root of your project directory, try adjusting the logging like this (I added another line for printing the contents of the input array):
try {
File log = new File("log.txt");
FileWriter fileWriter = new FileWriter(log);
BufferedWriter bufferedWriter = new BufferedWriter(fileWriter);
bufferedWriter.write("Tokens ("+objectArray.getClass().getSimpleName()+"): \r\n"+objectArray.toString()+"\r\n");
bufferedWriter.write(Arrays.toString(objectArray));
bufferedWriter.close();
}
catch (Exception e) {
e.printStackTrace();
}

Categories

Resources