Issue with relinquishing Java threads in UNIX using ExecutorService.awaitTermination() - java

There seems some issue running the Java ExecutorService (java.util.concurrent) in a UNIX environment. This issue doesnt replicate in Windows...
Issue: The pool takes unduly long time to terminate:
The program typically creates a new pool:
ExecutorService executorService = Executors.newFixedThreadPool(noOfThreads);
Submits tasks to it:
executorService.execute(thread);
Marks it closed for new tasks, so no more tasks can be submitted:
executorService.shutdown();
Makes a blocking call to terminate the threads:
executorService.awaitTermination(10, TimeUnit.HOURS);
Now, as I can make out from the logs, I can see that the threads are finished with their jobs in very little time. Even though the thread pool takes 2 hours to finish all the tasks, the awaitTermination() call suggests the pool having taken entire timeout period of 10 hours, implying that the pool didn’t relinquish the threads once it is done with them.
Did not get any forums which deal with this issue/ aspects of multithreading specific to the unix environment. Have anyone come across this situation before & know how to overcome that?

Related

Will thread in thread pool (ThreadPoolTaskExecutor) be used for other tasks when in sleep?

I have a thread pool created from ThreadPoolTaskExecutor:
threadPoolTaskExecutor.setCorePoolSize(10);
this ThreadPoolTaskExecutor will execute runnables, each runnable has a Thread.sleep(6000); call during the task execution.
So when I execute the 1st task and when the 1st task calls Thread.sleep(6000) to sleep, at that time, execute the 2nd task, will it be possible the 2nd task will use the thread of the 1st task or interrupt the thread used by the 1st task? since it is in sleep.
No, not automatically. If a normal Java Thread is sleeping, then it's sleeping.
Also, Threads are really cheap nowadays, I would not bother with details like that.
Working around the sleep and let that 'sleeping' Thread do some other work is really really hard to manage properly and easily will lead to loads and loads of unforeseen problems.
In your situation, what you COULD improve is that the pool size is not fixed but dynamic, releasing (destroying) threads when they haven't been used for some time (say: a minute).
If more threads are needed, the pool will create new Threads, up to the given limit. (Executors.newCachedThreadPool())
That's especially helpful on a server, because 99% of threads on there are just idle (not even 'actively' sleeping).
Here are some details that might interest you: https://www.baeldung.com/thread-pool-java-and-guava
Especially check out ForkJoinPool: https://www.baeldung.com/java-fork-join, because this comes very close to a very similar problem.

Single ScheduledExecutorService instance vs Multiple ScheduledExecutorService instances

I have a service which schedules async tasks using ScheduledExecutorService for the user. Each user will trigger the service to schedule two tasks. (The 1st Task schedule the 2nd task with a fixed delay, such as 10 seconds interval)
pseudocode code illustration:
task1Future = threadPoolTaskScheduler.schedule(task1);
for(int i = 0; i< 10000; ++i) {
task2Future = threadPoolTaskScheduler.schedule(task2);
task2Future.get(); // Takes long time
Thread.sleep(10);
}
task1.Future.get();
Suppose I have a potential of 10000 users using the service at the same time, we can have two kinds of ScheduledExecutorService configuration for my service:
A single ScheduledExecutorService for all the users.
Create a ScheduledExecutorService for each user.
What I can think about the first method:
Pros:
Easy to control the number of threads in the thread pool.
Avoid creating new threads for scheduled tasks.
Cons:
Always keeping multiple number of threads available could waste computer resources.
May cause the hang of the service because of lacking available threads. (For example, set the thread pool size to 10, and then there is a 100 person using the service the same time, then after entering the 1st task and it tries to schedule the 2nd task, then finding out there is no thread available for scheduling the 2nd task)
What I can think about the second method
Pros:
Avoiding always keep many threads available when the number of user is small.
Can always provide threads for a large number of simultaneously usage.
Cons:
Creating new threads creates overheads.
Don't know how to control the number of maximum threads for the service. May cause the RAM out of space.
Any ideas about which way is better?
Single ScheduledExecutorService drives many tasks
The entire point of a ScheduledExecutorService is to maintain a collection of tasks to be executed after a certain amount of time elapses.
So given the scenario you describe, you need only a single ScheduledExecutorService object. Submit your 10,000 tasks to that one object. Each task will be executed approximately when its designated delay elapses. Simple, and easy.
Thread pool size
The real issue is deciding how many threads to assign to the ScheduledExecutorService.
Threads, as currently implemented in the OpenJDK project, are mapped directly to host OS threads. This makes them relatively heavyweight in terms of CPU and memory usage. In other words, currently Java threads are “expensive”.
There is no simple easy answer to calculating thread pool size. The optimal number is the least amount of threads that can keep up with the workload without over-burdening the host machine’s limited number of cores and limited memory. If you search Stack Overflow, you’ll find many discussions on the topic of deciding how many threads to use in a pool.
Project Loom
And keep tabs with the progress of Project Loom and its promise to bring virtual threads to Java. That technology has the potential to radically alter the calculus of deciding thread pool size. Virtual threads will be more efficient with CPU and with memory. In other words, virtual threads will be quite “cheap”, “inexpensive”.
How executor service works
You said:
entering the 1st task and it tries to schedule the 2nd task, then finding out there is no thread available for scheduling the 2nd task
That is not how the scheduled executor service (SES) works.
If a task being currently executed by a SES needs to schedule itself or some other task to later execution, that submitted task is added to the queue maintained internally by the SES. There is no need to have a thread immediately available. Nothing happens immediately except that queue addition. Later, when the added task’s specified delay has elapsed, the SES looks for an available thread in its thread-pool to execute that task that was queued a while back in time.
You seem to feel a need to manage the time of each task’s execution on certain threads. But that is the job of the scheduled executor service. The SES tracks the tasks submitted for execution, notices when their specified delay elapses, and schedules their execution on a thread from its managed pool of threads. You don’t need to manage any of that. Your only challenge is to assign an appropriate number of threads to the pool.
Multiple executor services
You commented:
why don't use multiple ScheduledExecutorService instances
Because in your scenario, there is no benefit. Your Question implies that you have many tasks all similar with none being prioritized. In such a case, just use one executor service. One scheduled executor service with 12 threads will get the same amount of work accomplished as 3 services with 4 threads each.
As for excess threads, they are not a burden. Any thread without a task to execute uses virtually no CPU time. A pool may or may not choose to close some unused threads after a while. But such a policy is up to the implementation of the thread pool of the executor service, and is transparent to us as calling programmers.
If the scenario were different, where some of the tasks block for long periods of time, or where you need to prioritize certain tasks, then you may want to segregate those into a separate executor service.
In today's Java (before Project Loom with virtual threads), when code in a thread blocks, that thread sits there doing nothing but waiting to unblock. Blocking means your code is performing an operation that awaits a response. For example, making network calls to a socket or web service blocks, writing to storage blocks, and accessing an external database blocks. Ideally, you would not write code that blocks for long periods of time. But sometimes you must.
In such a case where some tasks run long, or conversely you have some tasks that must be prioritized for fast execution, then yes, use multiple executor services.
For example, say you have a 16-core machine with not much else running except your Java app. You might have one executor service with a thread pool size of 4 maximum for long-running tasks, one executor service with a thread pool with a size of 7 maximum for many run-of-the-mill tasks, and a third executor service with a thread pool maximum size of 2 for very few tasks that run short but must run quickly. (The numbers here are arbitrary examples, not a recommendation.)
Other approaches
As commented, there are other frameworks for managing concurrency. The ScheduledExecutorService discussed here is general purpose.
For example, Swing, JavaFX, Spring, and Jakarta EE each have their own concurrency management. Consider using those where approriate to your particular project.

Short but frequent jobs: HandlerThread or ThreadPoolExecutor?

First of all, I could not determine what the title should be, so if it's not specific enough, the question itself will be.
We have an application that uses a foreground service and stays alive forever, and in this service, there are frequent database access jobs, network access jobs and some more, that needs to run on background threads. One job itself consumes a small amount of time, but the jobs themselves are frequent. Obviously, they need to run on worker threads, so I'm here to ask which design we should follow.
HandlerThread is a structure that creates a singular thread and uses a queue to execute tasks but always loops and waits for messages which consumes power, while ThreadPoolExecutor creates multiple threads for each job and deletes threads when the jobs are done, but because of too many threads there could be leaks, or out-of-memory even. The job count may be 5, or it may be 20, depending on how the user acts in a certain way. And, between 2 jobs, there can be a 5 second gap, or a day gap, totally depending on user. But, remember, the application stays alive forever and waits for these jobs to execute.
So, for this specific occasion, which one is better to use? A thread pool executor or a handler thread? Any advice is appreciated, thanks.
Caveat: I do not do Android work, so I am no expert there. My opinions here are based a quick reading of Android documentation.
tl;dr
➥ Use Executors rather than HandlerThread.
The Executors framework is more modern, flexible, and powerful than the legacy Thread facility used by HandlerThread. Everything you can do in HandlerThread you can do better with executors.
Differences
One big difference between HandlerThread and ThreadPoolExecutor is that the first comes from Android while the second comes from Java. So if you'll be doing other work with Java, you might not want to get in the habit of using HandlerThread.
Another big difference is age. The android.os.HandlerThread class inherits from java.lang.Thread, and dates back to the original Android API level 1. While nice for its time, the Thread facility in Java is limited in its design. That facility was supplanted by the more modern, flexible, and powerful Executors framework in later Java.
Executors
Your Question is not clear about whether these are recurring jobs or sporadically scheduled. Either can be handled with Executors.
For jobs that run once at a specific time, and for recurring scheduled jobs, use a ScheduledExecutorService. You can schedule a job to run once at a certain time by specifying a delay, a span of time to wait until execution. For repeated jobs, you can specify an amount to wait, then run, then wait, then run, and so on. I'll not address this further, as you seem to be talking about sporadic immediate jobs rather than scheduled or repeating jobs. If interested, search Stack Overflow as ScheduledExecutorService has been covered many times already on Stack Overflow.
Single thread pool
HandlerThread is a structure that creates a singular thread
If you want to recreate that single thread behavior, use a thread pool consisting of only a single thread.
ExecutorService es = Executors.newSingleThreadExecutor() ;
Make your tasks. Implement either Runnable or Callable using (a) a class implementing either interface, (b) without defining a class, via lambda syntax or conventional syntax.
Conventional syntax.
Runnable sayHelloJob = new Runnable()
{
#Override
public void run ( )
{
System.out.println( "Hello. " + Instant.now() );
}
};
Lambda syntax.
Runnable sayBonjourJob = ( ) -> System.out.println( "Bonjour. " + Instant.now() );
Submit as many of these jobs to the executor service as you wish.
es.submit( sayHelloJob ) ;
es.submit( sayBonjourJob ) ;
Notice that the submit method returns a Future. With that Future object, you can check if the computation is complete, wait for its completion, or retrieve the result of the computation. Or you may choose to ignore the Future object as seen in the code above.
Fixed thread pool
If you want multiple thread behavior, just create your executor with a different kind of thread pool.
A fixed thread pool has a maximum number of threads servicing a single queue of submitted jobs (Runnable or Callable objects). The threads continue to live, and are replaced as needed in case of failure.
ExecutorService es = Executors.newFixedThreadPool​( 3 ) ; // Specify number of threads.
The rest of the code remains the same. That is the beauty of using the ExecutorService interface: You can change the implementation of the executor service to get difference behavior while not breaking your code that calls upon that executor service.
Cached thread pool
Your needs may be better service by a cached thread pool. Rather than immediately creating and maintaining a certain number of threads as the fixed thread pool does, this pool creates threads only as needed, up to a maximum. When a thread is done, and resting for over a minute, the thread is terminated. As the Javadoc notes, this is ideal for “many short-lived asynchronous tasks” such as yours. But notice that there is no upper limit of threads that may be running simultaneously. If the nature of your app is such that you may see often spikes of many jobs arriving simultaneously, you may want to use a different implementation other than cached thread pool.
ExecutorService es = Executors.newCachedThreadPool() ;
Managing executors and threads
but because of too many threads there could be leaks, or out-of-memory even
It is the job of you the programmer and your sysadmin to not overburden the production server. You need to monitor performance in production. The managagement is easy enough to perform, as you control the number of threads available in the thread pool backing your executor service.
We have an application that uses a foreground service and stays alive forever
Of course your app does eventually come to end, being shutdown. When that happens, be sure to shutdown your executor and its backing thread pool. Otherwise the threads may survive, and continue indefinitely. Be sure to use the life cycle hooks of your app’s execution environment to detect and react to the app shutting down.
The job count may be 5, or it may be 20, depending on how the user acts in a certain way.
Jobs submitted to an executor service are buffered up until they can be scheduled on a thread for execution. So you may have a thread pool of, for example, 3 threads and 20 waiting jobs. No problem. The waiting jobs will be eventually executed when their time comes.
You may want to prioritize certain jobs, to be done ahead of lower priority jobs. One easy way to do this is to have two executor services. Each executor has its own backing thread pool. One executor is for the fewer but higher-priority jobs, while the other executor is for the many lower-priority jobs.
Remember that threads in a thread pool doing no work, on stand-by, have virtually no overhead in Java for either CPU or memory. So there is no downside to having a special higher-priority executor service sitting around and waiting for eventual jobs to arrive. The only concern is that your total number of all background threads and their workload not overwhelm your machine. Also, the implementation of the thread pool may well shut down unused threads after a period of disuse.
Don't really think its a question of the number of threads you are running, more how you want them run. If you want them run one at at time (i.e. you only want to execute on database query at a time) then use a HandlerThread. If you want multi-threading / a pool of threads, then use and Executor.
In my experience, leaks are really more down to how you have coded your threads, not really the chosen implementation.
Personally, I'd use a HandlerThread, here's a nice article on implementing them and how to avoid memory leaks ... Using HandlerThread in Android

A couple of questions regarding Java ExecutorService newFixedThreadPool

Please note that I usually ask a question after googling for more than 20 times about the issue. But I can't still understand it. So I need your help.
Basically, I don't understand the exact usage of newFixedThreadPool
Does newFixedThreadPool(10) mean having ten different threads? Or does it mean it can have 10 of the same threads? or the both?
I executed with submit() methods more than 20 times and it's working.
Does submit() print a value? Or are you putting threads in the ExecutorService?
Briefly, tasks are small units of code that could be executed in parallel (code sections). The threads (in a thread pool) are what execute them. You can think of the threads like workers and the tasks like jobs. Jobs can be done in parallel, and workers can work in parallel. Workers work on jobs.
So, to answer your questions:
newFixedThreadPool(int nThreads) creates a thread pool of nThread threads that operate on the same input queue. nThreads is the maximum number of threads that can be running at any given time. Each thread can run a different task. With your example, you can be running up to 10 tasks at the same time. (The documentation can be found here with credit to #hovercraft-full-of-eels)
submit() pushes the given task into an event queue that is shared by the threads in the thread pool. Once a thread is available, it will take a task from the front of the queue and execute it. It shouldn't print anything, unless the Runnable you pass it has a print statement in it. However, the print statement may not be printed right when you submit the task! It will print once a thread is executing that particular task. (The documentation can be found here)
Just refer java docs or JAVA API's description rather than googling it.
For your questions I have below comments .
Question 1 ->
ExecutorService executorService = Executors.newFixedThreadPool(10);
First an ExecutorService is created using the Executors newFixedThreadPool() factory method. This creates a thread pool with 10 threads executing tasks.
Executors.newFixedThreadPool API creates, a thread pool that reuses a fixed number of threads and these threads work on a s***hared unbounded queue***.
At any point, at most nThreads threads will be active processing tasks.
If additional tasks are submitted when all threads are active, they will wait in the queue until a thread is available.
If any thread terminates due to a failure during execution prior to shutdown, a new one will take its place if needed to execute subsequent tasks. The threads in the pool will exist until it is explicitly SHUTDOWN.
After submitting even 20 tasks ,it worked with this thread pool.
Internally it calls below line of codes .
public static ExecutorService newFixedThreadPool(int nThreads) {
return new ThreadPoolExecutor(nThreads, nThreads,
0L, TimeUnit.MILLISECONDS,
new LinkedBlockingQueue());
}
Question 2- > Submits a Runnable task for execution in Queue and it can also return an Object of type Future Object representing task. we can use Future's get method to check whether submitted task has successfully completed or not because it will return null upon successful completion.

How to stop executor service threads even when their task is not completed?

I started some threads using Executor Service for getting some files from network.I want the Threads to stop execution after some time duration even if their run method is not completed.
How to do that? Even executors' shutdown() and awaitTermination(...) methods did not work.
The simple answer is that you can't. Thread.stop() was deprecated a long (long long) time ago because it was unreliable and was prone to leaving dirty resources behind.
The only other thing you can do, is have your thread pause during its workload and check for exit conditions (like being interrupted, or exceeding some predefined time limit).

Categories

Resources