Move camera in respect of finger position Opengl - java

This is my first approach to androids opengl and I have stuck in moving my rendered object with finger.
Actually, everything works but when I try to move object really fast it loses its coordinates.
My object is hexagonal grid built by calculating coordinates for 6 vertexes. First of all I handle on touch event and check if map is grabbed:
switch(action) {
case MotionEvent.ACTION_DOWN:
mapTouched = hexMapRenderer.isMapTouched(ev);
int pointerIndex = MotionEventCompat.getActionIndex(ev);
downX = MotionEventCompat.getX(ev, pointerIndex);
downY = MotionEventCompat.getY(ev, pointerIndex);
moveX = (int)downX;
moveY = (int)downY;
break;
case MotionEvent.ACTION_MOVE:
if(!hexMapRenderer.isScaling()) {
if(mapTouched) {
hexMapRenderer.setMapMoving(true);
hexMapRenderer.moveMap((int) (moveX - ev.getX()), (int) (moveY - ev.getY()));
moveX = (int) ev.getX();
moveY = (int) ev.getY();
}
}
break;
Inside my method moveMap I calculate position of my hexagons:
public void moveMap(int shiftX, int shiftY) {
for(int i = 0; i < hexMap.length; i++) {
for (int j = 0; j < hexMap[i].length; j++) {
if(hexMap[i][j] != null && hexMap[i][j].isToDraw()) {
hexMap[i][j].setCenterPoint(new Point(hexMap[i][j].getCenterPoint().x - shiftX, hexMap[i][j].getCenterPoint().y - shiftY));
}
}
}
this.shiftX = shiftX;
this.shiftY = shiftY;
}
And inside onDrawFrame method I move map like this:
if(mapMoving) {
gl.glTranslatef(-shiftX, -shiftY, 0f);
}
As I mentioned everything works great when I move map slow and gently but when things are getting too fast it looks like that position of rendered object doesn't equals calculated position from moveMap method.
Do you have any solutions how to achieve smooth moving of object in opengl? I've tried recalculate position and redraw whole object but when map starts to move it flickers.
Thanks in advance.

Related

Character Sprite in a Java Android Game with buggy movement when using two fingers

The following code I wrote does what I want, a touch on the left or right side of the screen to move the sprite left or right and stop at the edge of the phone screen. The issue I'm having is when you do a fast motion of touching the right side of the screen, letting go while using another finger to touch the left side of the screen to change direction will yield a result of the sprite still moving to the right side of the screen despite you wanting to move left. In order to fix this, you need to let go completely for at least 0.5sec then press the other direction to start moving in that direction, which I don't want to have to live with. If anyone has any tips/help for this, please let me know!
MAIN ACTIVITY CLASS METHOD:
public boolean onTouchEvent(MotionEvent event){
int x = (int)event.getX();
switch(event.getAction()) {
case (MotionEvent.ACTION_DOWN):
CharacterSprite.touchedX = x;
break;
case (MotionEvent.ACTION_UP):
CharacterSprite.touchedX = 0;
break;
}
return super.onTouchEvent(event);
}
CHARACTERSPRITE CLASS METHOD:
public void update() {
if (touchedX != 0) {
if (touchedX < screenWidth / 2) {
if (!(xVelocity < 0)) {
xVelocity = xVelocity * -1;
}
if (!(x > 0)) {
touchedX = 0;
return;
}
x += xVelocity;
}
if (touchedX > screenWidth / 2) {
if (!(xVelocity > 0)) {
xVelocity = xVelocity * -1;
}
if (!(x < screenWidth - image.getWidth())) {
touchedX = 0;
return;
}
x += xVelocity;
}
}
}
The way you handling MotionEvent will not work for multitouch events. Each finger (action pointer) data stored as an array and you need to handle each entry separately. Here is the lesson on handling multitouch events:
https://developer.android.com/training/gestures/multi

How to make the bouncing ball collide with the array of rectangles on Processing?

im trying to make the bouncing ball bounce on the arrays of rectangles. I've looked at various other codes but cant seem to find a solution. Would appreciate any help!!!
Basically, i want the bouncing ball to recognise that theres the rectangles there and for it to be able to jump onto the rectangles.
PVector location; // Location of shape
PVector velocity; // Velocity of shape
PVector gravity; // Gravity acts at the shape's acceleration
PVector upwardForce;
PImage bg;
int radius = 10, directionX = 1, directionY = 0;
float x=20, y=20, speed=0.5;
int xarray[] = new int[20];
int yarray[] = new int[20];
// =========================================================
void setup() {
size(380,750);
location = new PVector(100,50);
velocity = new PVector(0.0,2.1);
upwardForce = new PVector(0.0,-10.0);
gravity = new PVector(0,0.4);
bg = loadImage("bg.png");
bg.resize(1600,1600);
background(0);
for(int i =0; i< 20;i++){
xarray[i]= i*100;
yarray[i] = 750-int(random(10))*50;
}
}
int xd =0, yd=0;
void draw() {
background(0);
noStroke();
xd--;
yd++;
// display image twice:
image(bg, y, 0);
image(bg, y+bg.height, 0);
// pos
y--;
if (y<-bg.height)
y=0;
for (int i = 0;i< 20;i++){
if (xarray[i] <100 && xarray[i]+100 >100){
fill(255,0,0);
}
else {
fill(255);
}
rect(xarray[i],yarray[i],100,1200);
fill(255);
xarray[i]=xarray[i]-4;
//yarray[i]=yarray[i]+1;
if (xarray[i] + 100 < 0){
xarray[i]+=2000;
// yarray[i]-=850;
}
}
// changing Position
x=x+speed*directionX;
y=y+speed*directionY;
// check boundaries
if ((x>width-radius) || (x<radius))
{
directionX=-directionX;
}
if ((y>height-radius) || (y<radius))
{
directionY=-directionY;
}
// draw
// if(direction==1)
// Add velocity to the location.
location.add(velocity);
// Add gravity to velocity
velocity.add(gravity);
// Bounce off edges
if ((location.x > width) || (location.x < 0)) {
velocity.x = velocity.x * -1;
}
if ((location.y > height) || (location.y < 0)){
// We're reducing velocity ever so slightly
// when it hits the bottom of the window
velocity.y = velocity.y * -0.95;
location.y = height;
}
// Display circle at location vector
stroke(255);
strokeWeight(0);
fill(255);
ellipse(location.x,location.y,30,30);
}
void keyPressed()
{
velocity.add(upwardForce);
}
The best advice we can give you is to break your problem down into smaller steps and to take those steps on one at a time.
For example, can you create a simple sketch that just shows a single hard-coded circle and a single hard-coded rectangle? Now add some code that prints a message to the console if they're colliding. You're going to have to do some research into collision detection, but here's a hint: a common technique is to treat the ball as a rectangle, so you can do rectangle-rectangle collision detection.
Get that working perfectly by itself, and then work your way forward in small steps. Can you add a second rectangle to your sketch? How about a third?
Then if you get stuck, you can post a MCVE (not your whole project, just a small example) along with a more specific question. Good luck.
Here's a few suggestions:
You're best off using a Rectangle class. That way, you don't have to store the locations in an array, and the collide function can be a method of the class. It's easier to just call the positions of the rectangles "x" and "y", but this would obviously conflict with the x and y global variables which you declared at the top of the code. Assuming that you would want to make the ball bounce if it collided, you would need to have a "ballLastx" and a "ballLasty" in order to keep track of which direction the ball came from. You would also need to store the Rectangles in an array or arrayList. It would be something like this:
PVector lastLocation;
Rectangle[] rects;
As for the rectangle class, here's how it would probably look like this:
class Rectangle {
float x, y;
Rectangle(float x_, float y_) {
x = x_;
y = y_;
}
void show() {
//Displays rectangle
if (x < 100 && x+100 > 100) fill(255,0,0);
else fill(255);
rect(x,y,100,1200);
fill(255);
x=x-4;
if (x + 100 < 0) x+=2000;
}
private boolean insideX(PVector pos) {
return (pos.x + 15 >= x && pos.x - 15 <= x+100);
}
private boolean insideY(PVector pos) {
return (pos.y + 15 >= y && pos.y - 15 <= x + 1200);
}
boolean collidedX() {
//Detects if the ball has collided along the x-axis
return ((insideX(location) && !insideX(lastLocation)) && insideY(location))
}
boolean collidedY() {
//Detects if the ball has collided along the y-axis
return ((insideY(location) && !insideY(lastLocation)) && insideX(location))
}
}
And then, in your setup function, you could declare the Rectangle classes in a for-loop:
//declare the rects array
rects = new Rectangle[20];
//declare each item of the rects array to be a Rectangle
for(int i = 0; i < rects.length; i++) {
rects[i] = new Rectangle(i*100, 750-int(random(0,10))*50;
}
In order to detect the collision and to bounce the ball, you would need to loop through all of the Rectangles and see if the ball should bounce off any of them:
boolean bouncex = false;
boolean bouncey = false;
//see if any of the rects are colliding with the ball
for(Rectangle r : rects) {
if(r.collidedX()) bouncex = true;
if(r.collidedY()) bouncey = true;
}
//if any are colliding, bounce the ball
if(bouncex) velocity.x = -velocity.x;
if(bouncey) velocity.y = -velocity.y;
Finally, don't forget to set the lastLocation PVector to the current location, just before moving the current location:
lastLocation = location.copy();
//move the ball...
Hope this was helpful!

LibGDX - Map Boundaries

Synopsis
Well, I'm making a little top-down JRPG and today I was like 'Yeah, I'm gonna bust out this whole map collision thing!'. I failed.
Problem
So I went on the internet and looked up 'LibGDX Tiled Map Collision Detection' and found a really neat post about Map Objects so I added in a map object layer and did all that biz and came out with this little method to ensure the player can move freely around the map but at the same time can't exit it but each time I've tried it ends up with a horrible result such as the player moving off the screen. The latest error is that the player gets stuck doing a walk animation and can't move anywhere else!
Code
package com.darkbyte.games.tfa.game.entity.entities;
import com.badlogic.gdx.Gdx;
import com.badlogic.gdx.Input.Keys;
import com.badlogic.gdx.graphics.g2d.Animation;
import com.badlogic.gdx.graphics.g2d.TextureRegion;
import com.badlogic.gdx.maps.objects.RectangleMapObject;
import com.badlogic.gdx.math.Rectangle;
import com.darkbyte.games.tfa.game.entity.Entity;
import com.darkbyte.games.tfa.game.entity.SpriteSheet;
import com.darkbyte.games.tfa.game.world.map.MapManager;
import com.darkbyte.games.tfa.render.Batch;
import com.darkbyte.games.tfa.render.Camera;
public class Player extends Entity {
// The constructor for the player class
public Player(String name, SpriteSheet spriteSheet) {
super(name, spriteSheet);
direction = Direction.DOWN;
collisionBox = new Rectangle(x, y, 64, 64);
}
// A flag to see if the player is moving
private boolean isMoving;
// The variable that holds the state time
private float stateTime;
// The player's walking animations
private Animation[] walkAnimations = {
spriteSheet.getAnimation(8, 8, 1 / 16f),
spriteSheet.getAnimation(9, 8, 1 / 16f),
spriteSheet.getAnimation(10, 8, 1 / 16f),
spriteSheet.getAnimation(11, 8, 1 / 16f) };
// The player's static frames
private TextureRegion[] staticFrames = {
spriteSheet.getTexture(8, 0),
spriteSheet.getTexture(9, 0),
spriteSheet.getTexture(10, 0),
spriteSheet.getTexture(11, 0) };
// The render code for the player
#Override
public void render() {
// Makes the camera follow the player
Camera.setCameraPosition(x, y);
Batch.getGameBatch().setProjectionMatrix(Camera.getCamera().combined);
// Updates the state time
stateTime += Gdx.graphics.getDeltaTime();
// Gets the player's direction, if the player's moving, it sets the
// current frame to the frame that would be played at the current moment
// based on the state time
// If the player isn't moving, it sets the current frame to the static
// frame associated to the direction
switch (direction) {
case UP:
if(isMoving) {
currentFrame = walkAnimations[0].getKeyFrame(stateTime, true);
} else
currentFrame = staticFrames[0];
break;
case LEFT:
if(isMoving) {
currentFrame = walkAnimations[1].getKeyFrame(stateTime, true);
} else
currentFrame = staticFrames[1];
break;
case DOWN:
if(isMoving) {
currentFrame = walkAnimations[2].getKeyFrame(stateTime, true);
} else
currentFrame = staticFrames[2];
break;
case RIGHT:
if(isMoving) {
currentFrame = walkAnimations[3].getKeyFrame(stateTime, true);
} else
currentFrame = staticFrames[3];
break;
}
}
// The tick code for the player
#Override
public void tick() {
// The object to represent the bounds of the land on the map
RectangleMapObject land = (RectangleMapObject) MapManager.getCurrentMap().getMap().getLayers().get("collision").getObjects().get("land");
// Checks if the player is within the bounds of the map
if(land.getRectangle().contains(collisionBox)) {
// If the player is moving but the arrow keys aren't pressed, sets isMoving to false
isMoving = (isMoving && (Gdx.input.isKeyPressed(Keys.W) || Gdx.input.isKeyPressed(Keys.UP)
|| Gdx.input.isKeyPressed(Keys.A) || Gdx.input.isKeyPressed(Keys.LEFT)
|| Gdx.input.isKeyPressed(Keys.S) || Gdx.input.isKeyPressed(Keys.DOWN)
|| Gdx.input.isKeyPressed(Keys.D) || Gdx.input.isKeyPressed(Keys.RIGHT)));
// Checks to see if the arrow / WASD keys are pressed and moves the
// player in the correct direction at the speed of 1.5 pixels/tick
// (45/second)
// It also sets the players state to moving and corresponds it's
// direction to the key pressed
// Doesn't move if opposing keys are pressed
if(Gdx.input.isKeyPressed(Keys.W) || Gdx.input.isKeyPressed(Keys.UP)) {
if(!(Gdx.input.isKeyPressed(Keys.S) || Gdx.input.isKeyPressed(Keys.DOWN))) {
direction = Direction.UP;
y += 1.5f;
isMoving = true;
}
}
if(Gdx.input.isKeyPressed(Keys.A) || Gdx.input.isKeyPressed(Keys.LEFT)) {
if(!(Gdx.input.isKeyPressed(Keys.D) || Gdx.input.isKeyPressed(Keys.RIGHT))) {
direction = Direction.LEFT;
isMoving = true;
x -= 1.5f;
}
}
if(Gdx.input.isKeyPressed(Keys.S) || Gdx.input.isKeyPressed(Keys.DOWN)) {
if(!(Gdx.input.isKeyPressed(Keys.W) || Gdx.input.isKeyPressed(Keys.UP))) {
direction = Direction.DOWN;
y -= 1.5f;
isMoving = true;
}
}
if(Gdx.input.isKeyPressed(Keys.D) || Gdx.input.isKeyPressed(Keys.RIGHT)) {
if(!(Gdx.input.isKeyPressed(Keys.A) || Gdx.input.isKeyPressed(Keys.LEFT))) {
direction = Direction.RIGHT;
x += 1.5f;
isMoving = true;
}
}
} else {
if(!isMoving) {
// If the player's just spawned puts the player to the map's spawn point
x = MapManager.getCurrentMap().getPlayerSpawnX();
y = MapManager.getCurrentMap().getPlayerSpawnY();
} else { // If not, it just moves them back till they're no longer out of the map
if(x > (land.getRectangle().getX() + land.getRectangle().getWidth())) x -= 1.5;
if(y > (land.getRectangle().getY() + land.getRectangle().getHeight())) y -= 1.5;
}
}
// Synchronises the collision box with the player's x and y position
collisionBox.x = x;
collisionBox.y = y;
}
// Returns if the player is moving
public boolean isMoving() {
return isMoving;
}
}
Can you guys make it so that when he reaches the border that he stops but he can still keep moving in other directions instead of staying static!
Thanks for reading!
At the moment it sounds you just copy/pasted it and you need to familiarize yourself with it first. If you don't know what it does then you should learn or stop the project imho.
Anyway, from what I can tell it's just a player class that handles the animation frames based on which direction it is moving. Nothing to do with collision detection at all. It does update some kind of collisionBox but functionality for this is handled elsewhere, perhaps in the parent class Entity?
My guess is that this is a tile map and units are restricted to the grid. It's pretty easy to detect if A tile exists or not.
private boolean tileExists(int tileX, int tileY, tile[][] map)
{
return tileX >= 0 && tileY >= 0 &&
tileX < map.length && tileY < map[0].length;
}
Now whenever a entity requests a move you should check if the destination is within the map bounds.
private void moveRequest(int destinationX, int destinationY, Tile[][] map)
{
//Just return if the tile is outside of the map
if (!tileExists(destinationX, destinationY, map) return;
//Same goes for your other checks...
//Return if the tile is not walkable
if (!tileIsWalkable(destinationX, destinationY, map) return;
//Return if the tile is already occupied
if (tileIsOccupied(destinationX, destinationY, otherEntities) return;
//etc..
//Now the move is valid and you can set it's state to moving in that direction.
}
Tile maps are not very hard to understand. I will make an attempt to give you some better insight into tile maps. You have a 2D array where you store your tiles in. Tiles have a width and a height and from that you can make your own tile engine:
//Find out which tiles to draw based on the camera position and viewport size.
int startX = (int)(camera.position.x - camera.viewportWidth / 2) / tileWidth;
int startY = (int)(camera.position.y - camera.viewportHeight / 2) / tileHeight;
int endX = (int)(startX + camera.viewportWidth / tileWidth) + 1;
int endY = (int)(startY + camera.viewportHeight / tileHeight) + 1;
//Loop using this data as boundaries
for (int y = startY; y < endY; y++)
{
for (int x = startX; x < endX; x++)
{
//If out of bounds continue to next tile.
if (!tileExists(x, y, map) continue;
//Now all we need to draw the on screen tiles properly:
//x == tile position x in array
//y == tile position y in array
//World position of this tile:
//worldX = x * tileWidth;
//worldY = y * tileHeight;
//Let's draw:
batch.draw(map[x][y].getTexture, worldX, worldY,
tileWidth, tileHeight)
}
}
There really is no magic involved here at all. Drawing only what is on screen like in the above example is very important for larger maps. Other then that you should draw thing in the back first. You have several options to do this, the easiest but least versatile is just a separate the ground from the objects that can obscure things and draw this later.
Characters, creatures or other entities can just use a world position and be easily converted back to tile position.
tileX = worldX / tileWidth;
tileY = worldY / tileHeight;
So if you want to move something with the world position calculate it's tile position first using the aforementioned method. Then lookup if this tile is valid to move to. Then block that tile for other and move to it.

Update object position before rendering in Java?

The problem I'm having is with my render loop. My application is a series of 'Tile' objects each with an x and y coordinate and image. When the program starts it creates a 10x10 grid of these tiles on screen. However, not all the squares can be seen at the same time, so you can use the arrow keys to pan around them. When the key is pressed it uses a for loop to cycle through all the currently rendered tile (stored in an ArrayList) and shifts them all 16 in the appropriate direction. The problem is some of the tiles flicker. I can see when scrolling that one half of the screen doesn't move in time to be rendered in the right spot, making a black gap between that and the other half of the tiles. how do I ensure that all tiles are moved before rendering?
render function from my Core class
public static void render()
{
while(true)
{
Graphics g = buffer.getDrawGraphics();
try
{
g.setColor(Color.black);
g.fillRect(0, 0, 1280, 720);
if(renderQueue != null)
{
for(int i = 0; i<renderQueue.size(); i++)
{
Tile t = renderQueue.get(i);
g.drawImage(t.getImage(), t.getX(), t.getY(), null);
}
}
if(!buffer.contentsLost())
{
buffer.show();
}
}
finally
{
if(g != null)
{
g.dispose();
}
}
}
}
And here's the movement update function from the Input class
public void keyPressed(KeyEvent ke)
{
int e = ke.getKeyCode();
switch(e)
{
case 38://up
if(scrollY > 0)
{
scrollY -= 16;
for(int i = 0; i<Core.renderQueue.size(); i++)
{
Core.renderQueue.get(i).incrementY(16);
}
}
break;
case 40://down
if(scrollY < 560)
{
scrollY += 16;
for(int i = 0; i<Core.renderQueue.size(); i++)
{
Core.renderQueue.get(i).incrementY(-16);
}
}
break;
case 37://right
if(scrollX < 0)
{
scrollX += 16;
for(int i = 0; i<Core.renderQueue.size(); i++)
{
Core.renderQueue.get(i).incrementX(16);
}
}
break;
case 39://left
if(scrollX > 0)
{
scrollX -= 16;
for(int i = 0; i<Core.renderQueue.size(); i++)
{
Core.renderQueue.get(i).incrementX(-16);
}
}
break;
}
Thanks in advance!
It sounds like the tiles are being rendered while the coordinates for some of the tiles still have to be changed by Input.keyPressed. You could fix that by directly using scrollX and scrollY to draw the tile images in Core.render, instead of changing the coordinates for each of the tiles. If you copy the scroll values to two local variables at the begin of the while loop in render, the same values will be used for each tile.
Another option is to create a new list with tiles that have the modified coordinates (you could use the images from the current list). When the new list is complete, you could set a flag like newRenderQueue which will be picked up in render. When a new iteration of the while loop in render starts, you can replace the render queue with the new list and reset the flag.
P.S. Welcome to Stack Overflow! As Andrew Thompson already mentioned, it's very helpful to provide a complete example of your problem. This way people can quickly investigate the issue and provide (hopefully useful) advice... ;-)

How to do collision detection with many walls (maze)?

In my game, the player navigates a maze. I can't figure out how to do proper collision detection with the walls. It is easy to do collision detection for staying in a certain area:
if (x > rightWallX - playerWidth) x = rightWallX - playerWidth;
if (x < leftWallX) x = leftWallX;
//...
But how would I do collision detection for many walls?
I can do plain collision detection without correction (like if (intersecting) return true;), but I can't correct this correctly. If I just store the old x and y and reset them, then
The object never actually touches the wall
If the object can go up but is blocked to the right, it won't go up, it will just not move.
How is collision detection in a maze done?
The easiest way, once you have solved collision detection, to fix the collision is to move the actor to the closest valid position to where the actor would be were it not for the object it collides with. This assumes no inertia, but it is sufficient for maze-like games or top-down map-crawling games.
If you want to simplify your calculations further, you can limit yourself to detecting if changing the actor's x or y coordinate would be better. If your actor has an axis-aligned rectangular hit-box and all obstacles are axis-aligned rectangular as well (the simplest case), this assumption is indeed correct. However, the results might not be satisfactory in some other cases (potential artifact: speed boost from gliding diagonal walls - not the case in most maze games).
Keep in mind multiple collisions could happen concurrently (pushing against two walls). If there are no sharp angles between two walls that an actor could both intersect (say, if all your obstacles are axis aligned and sufficiently spaced), fixing each collision in turn will suffice - just don't stop after the first collision.
You can use Rectangle.intersects() method:
public Rectangle Player(){
return new Rectangle(PlayerX,PlayerY,PlayerWidth,PlayerHeight);
//we do this for getting players x and y values every tick
}
if(Player().intersects(new Rectangle(0,0,100,50)))//if(player touching wall)
new Rectangle(0,0,100,50) is just an example you can change it.
Ok so i'm currently making a 2D top down view game and I'm not sure how you created your maze. However, in my game my Level is created from a Tile[][] tiles = new Tile[levelWidth][levelHeight]; array. The way i handled collision detection was by checking the surrounding tiles to see if they were solid.
This is my getTile method.
public Tile[][] getTile(int x, int y) {
if (x < 0 || x >= getWidth() || y < 0 || y >= getHeight()) {
return new VoidTile();
} else {
return tiles[x][y];
}
}
In my Tile.java class i have a isSolid() method which returns whether the tile is solid or not. All of my tiles extend my Tile.java so they inherit this method and I override it in their constructor. As i said previously, I am not sure whether or not you use the same style of level implementation as i do. However, It is good practice to do it this way :)
Personally, I am not a big fan of using the .intersects() and .contains() methods for Sprite collision detection. I mainly use them for buttons and alike.
Ok so,
In my player.java class i have a checkBlockedDirection(int x, int y) method and it looks like this.
public void checkBlockedDirection(int x, int y) {
boolean u = map.getTile(x, y - 1).isSolid();
boolean d = map.getTile(x, y + 1).isSolid();
boolean l = map.getTile(x - 1, y).isSolid();
boolean r = map.getTile(x + 1, y).isSolid();
if (u) {
uBlocked = true;
System.out.println("up tile blocked");
} else {
uBlocked = false;
}
if (d) {
dBlocked = true;
System.out.println("down tile blocked");
} else {
dBlocked = false;
}
if (l) {
lBlocked = true;
System.out.println("left tile blocked");
} else {
lBlocked = false;
}
if (r) {
rBlocked = true;
System.out.println("right tile blocked");
} else {
rBlocked = false;
}
}
Then in my player update method i have this
public void tick() {
float dx = 0;
float dy = 0;
if (input.up.isPressed()) {
direction = 0;
} else if (input.down.isPressed()) {
direction = 2;
} else if (input.left.isPressed()) {
direction = 3;
} else if (input.right.isPressed()) {
direction = 1;
} else {
direction = 4; // standing
}
checkBlockedDirection((int)x, (int)y);
if (input.up.isPressed() && y > 0 && !uBlocked) {
dy += -speed;
} else if (input.down.isPressed() && y < map.getHeight() - 1 && !dBlocked) {
dy += speed;
} else if (input.left.isPressed() && x > 0 && !lBlocked) {
dx += -speed;
} else if (input.right.isPressed() && x < map.getWidth() - 1 && !rBlocked) {
dx += speed;
}
x += dx;
y += dy;
}
Basically it just checks whether or not the blocks up, down, left, or right are solid. If they are solid then it wont move and if they arent solid then you can move in the desired direction.
Not sure if this helps or not but it's just my take on this kind of grid collision detection :)
Hope this helps :)
Enjoy

Categories

Resources