Java - Finding all subsets of a String (powerset) recursively - java

So, I need to find all subsets of a given string recursively. What I have so far is:
static ArrayList<String> powerSet(String s){
ArrayList<String> ps = new ArrayList<String>();
ps.add(s);
for(int i=0; i<s.length(); i++){
String temp = s.replace(Character.toString(s.charAt(i)), "");
ArrayList<String> ps2 = powerSet(temp);
for(int j = 0; j < ps2.size(); j++){
ps.add(ps2.get(j));
}
}
return ps;
I think I know what the problem is now, but I dont know how to fix it. Currently, I find all the power sets of temp, which are "bcd", "acd", "abd", "abc", which will cause duplicates. Any ideas on how to fix this?
By powerset, I mean if the string is abc, it will return "", "a", "b", "c", "ab", "ac", "bc", "abc".

The number of subsets of a set with n elements is 2n. If we have, for example, the string "abc", we will have 2n = 23 = 8 subsets.
The number of states that can be represented by n bits is also 2n. We can show there is a correspondence between enumerating all possible states for n bits and all possible subsets for a set with n elements:
2 1 0 2 1 0
c b a bits
0 0 0 0
1 a 0 0 1
2 b 0 1 0
3 b a 0 1 1
4 c 1 0 0
5 c a 1 0 1
6 c b 1 1 0
7 c b a 1 1 1
If we consider line 5, for example, bits 2 and 0 are active. If we do abc.charAt(0) + abc.charAt(2) we get the subset ac.
To enumerate all possible states for n bits we start at 0, and sum one until we reach 2n - 1. In this solution we will start at 2n - 1 and decrement until 0, so we don't need another parameter just to keep the number of subsets, but the effect is the same:
static List<String> powerSet(String s) {
// the number of subsets is 2^n
long numSubsets = 1L << s.length();
return powerSet(s, numSubsets - 1);
}
static List<String> powerSet(String s, long active) {
if (active < 0) {
// Recursion base case
// All 2^n subsets were visited, stop here and return a new list
return new ArrayList<>();
}
StringBuilder subset = new StringBuilder();
for (int i = 0; i < s.length(); i++) {
// For each bit
if (isSet(active, i)) {
// If the bit is set, add the correspondent char to this subset
subset.append(s.charAt(i));
}
}
// Make the recursive call, decrementing active to the next state,
// and get the returning list
List<String> subsets = powerSet(s, active - 1);
// Add this subset to the list of subsets
subsets.add(subset.toString());
return subsets;
}
static boolean isSet(long bits, int i) {
// return true if the ith bit is set
return (bits & (1L << i)) != 0;
}
Then you just need to call it:
System.out.println(powerSet("abc"));
And get all 8 subsets:
[, a, b, ab, c, ac, bc, abc]

There is a way to do this without using recursion, it relies on a simple correspondence between bit strings and subsets.
So, assume you have a three character string "abc", then, as you noted, the subsets would be "", "c", "b", "bc", "a", "ac", "ab", "abc"
If you make a table of the characters and write a 1 for every character that is in the subset and 0 for not in the subset, you can see a pattern:
a b c bits decimal
0 0 0 0
c 0 0 1 1
b 0 1 0 2
b c 0 1 1 3
a 1 0 0 4
a c 1 0 1 5
a b 1 1 0 6
a b c 1 1 1 7
For each length-n string of unique characters, you will have 2n subsets, and you can generate them all by simply making one for loop from i=0 to i=2n-1, and includes only those characters corresponding to the bits in i that are 1.
I wrote a Java example here and a C example here.

I find it helpful to think of the simple corner cases first when designing a recursive algorithm, i.e. the empty string and the string with one character. Then you usually split the problem and make the recursive call on the rest/ tail of the string. Somewhat like this:
static List<String> nuPowerSet(String s) {
if (s.length() == 0) { // trivial, subset of empty string is empty
return emptyList();
}
String head = s.substring(0, 1);
if (s.length() ==1) // the subset of a one character string is exactly that character
return asList(head);
String tail = s.substring(1);
ArrayList<String> ps = new ArrayList<String>();
ps.add(head); // one of the subsets is the current first character
List<String> tailSubsets = nuPowerSet(tail); // all the subsets of the remainder.
List<String> tailSubsetsWithCurrentHeadPrepended = tailSubsets
.stream()
.map(element -> head + element)
.collect(Collectors.toList());
ps.addAll(tailSubsets);
ps.addAll(tailSubsetsWithCurrentHeadPrepended);
return ps;
}

to eliminate duplicate, you just need to add all of them into a Set, this can be done easily with some sort of helper:
static ArrayList<String> powerSet(String s) {
return new ArrayList<>(_powerSet(s));
}
static HashSet<String> _powerSet(String s) {
HashSet<String> set = new HashSet<>();
set.add(s);
for(int i = 0; i < s.length(); i++) {
String tmp = s.substring(0, i) + s.substring(i+1, s.length());
set.addAll(_powerSet(tmp));
}
return set;
}
btw, your code has dealt with edge cases by nature. you don't need to worry about this.

You're right, you do have duplicates because you're creating temp multiple times (each time without another character) so when you're calling recursively there will be different subsets that will share the same characters and create the dup. For example, "abc" will create a temp with: ["ab", "ac", "bc"] and each one of them will call recursively with only one character so you'll get each one of "a", "b" and "c" twice.
One way to avoid it (with minimal changes) would be to use a Set instead of a list - which will omit all the dups:
static Set<String> powerSet(String s) {
Set<String> ps = new HashSet<>();
ps.add(s);
for (int i = 0; i < s.length(); i++) {
String temp = s.replace(Character.toString(s.charAt(i)), "");
Set<String> ps2 = powerSet(temp);
for (String x : ps2) {
ps.add(x);
}
}
return ps;
}
Now the output will be:
bc
a
ab
b
ac
abc
c
A different solution:
public static List<String> powerset(String s) {
List<String> ans = new LinkedList<>();
if (null == s) {
return ans;
}
return powerset(s, ans);
}
private static List<String> powerset(String s, List<String> ans) {
if ("".equals(s)) {
return ans;
}
String first = s.substring(0, 1);
String rest = s.substring(1);
ans.add(first);
List<String> pAns = new LinkedList<>(ans);
for (String partial : ans.subList(0, ans.size()-1)) {
pAns.add(partial + first);
}
return powerset(rest, pAns);
}
OUTPUT
[a, b, ab, c, ac, bc, abc]

import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
public class MainClass {
static List<List<char[]>> list = new ArrayList<List<char[]>>();
// static List<int[]> list1 = new ArrayList<int[]>();
public static void main(String[] args) {
List<char[]> list1 = new ArrayList<char[]>();
String string = "abcd";
char[] a = string.toCharArray();
generate(a, 0, 0, list1);
for (List<char[]> l : list) {
for (char[] b : l) {
for (char c : b) {
System.out.print(c + ",");
}
System.out.println();
}
}
}
public static void generate(char[] array, int offset, int index, List<char[]> list1) {
if (offset >= array.length)
return;
char[] newArray = Arrays.copyOfRange(array, offset, index);
list1.add(newArray);
if (index >= array.length) {
list.add(list1);
offset++;
index = offset;
generate(array, offset, index, new ArrayList<char[]>());
} else {
index++;
generate(array, offset, index, list1);
}
}
}

Related

Generate all possible combinations longer than the length of an array

I need to build each combination of length L from an String Array/ArrayList, where L is greater than the Array length
I currently have a recursive method (not of my own creation) that will generate each combination of a String[], as long as the combinations are shorter than the Array.
example/psudoCode:
input (2, {A,B,C})
returns {AA, AB, AC, BA, BC, CB, CA}
As of now, if the requested combination length (2 in the example) is greater than the Array length (4,5,6... instead of 2), the recursive method shoots out that sweet sweet ArrayIndexOutOfBounds error.
What I need is a method (recursive or not) that will return every combination of the array, regardless of whether the combinations are longer than the Array itself. Would this be done better by adding more letters to the Array and crossing my fingers or is there a legitimate way to accomplish this? Thank you!
Here is the method I have been using. If u know where the credit lies please say so, this is not of my own creation.
public class bizzBam
{
// Driver method to test below methods
public static void main(String[] args) {
System.out.println("First Test");
String set1[] = {"a", "b","c"};
printAllKLength(set1, pointX);
}
// The method that prints all possible strings of length k. It is
// mainly a wrapper over recursive function printAllKLengthRec()
static void printAllKLength(String set[], int k) {
int n = set.length+2;
printAllKLengthRec(set, "", n, k);
}
// The main recursive method to print all possible strings of length k
static void printAllKLengthRec(String set[], String prefix, int n, int length) {
// Base case: k is 0, print prefix
if (length == 0) {
System.out.println(prefix);
return;
}
// One by one add all characters from set and recursively
// call for k equals to k-1
for (int i = 0; i < n; ++i) {
// Next character of input added
String newPrefix = prefix + set[i];
// k is decreased, because we have added a new character
printAllKLengthRec(set, newPrefix, n, length - 1);
}
}
}
(Edit forgot to say:)
For this algorithim at least, if "PointX" is greater than the input array's length, it will return the indexoutofbounds.
Strictly speaking these are permutations rather than combinations. You're generating all permutations of k elements selected from a set of n candidates, with replacement (or repitition). There will be n^k such permutations.
Here's a non-recursive solution.
public class Permutations
{
public static void main(String[] args)
{
permutationsKN(new String[]{"a", "b", "c"}, 4);
}
static void permutationsKN(String[] arr, int k)
{
int n = arr.length;
int[] idx = new int[k];
String[] perm = new String[k];
while (true)
{
for(int i=0; i<k; i++) perm[i] = arr[idx[i]];
System.out.println(String.join("", perm));
// generate the next permutation
int i = idx.length - 1;
for (; i >= 0; i--)
{
idx[i]++;
if (idx[i] < n) break;
idx[i] = 0;
}
// if the first index wrapped around then we're done
if (i < 0) break;
}
}
}
You have two problems here:
int n = set.length+2; -> This is giving you your "sweet sweet" IndexArrayOutOfBoundsException. Change it to set.length-1. I am not sure why you decided to randomnly put +2 there.
for (int i = 0; i < n; ++i) -> You will be looping from 0 to n. You need to loop from 0 to n-1.
Edit: Or as #SirRaffleBuffle suggested, just do set.length. Total credits to him
Assuming your example is missing "BB" and "CC" because it includes "AA", it looks like what you want is just like the odometer of a car except that instead of ten digits, you want a choice of letters. It's not hard to model an odometer:
class Odo {
private final char [] chars;
private final int [] positions;
private boolean hasNext;
Oddo(String chars, int nPositions) {
this.chars = chars.toCharArray();
this.positions = new int [nPositions];
this.hasNext = true;
}
boolean hasNext() {
return hasNext;
}
String emitNext() {
StringBuilder sb = new StringBuilder();
for (int i = 0; i < positions.length; ++i) sb.append(chars[positions[i]]);
for (int i = 0; i < positions.length; ++i) {
if (++positions[i] < chars.length) {
hasNext = true;
return sb.toString();
}
positions[i] = 0;
}
hasNext = false;
return sb.toString();
}
}
Calling like so:
Odo odo = new Odo("AB", 3);
while (odo.hasNext()) {
System.out.println(odo.emitNext());
}
Produces
AAA
BAA
ABA
BBA
AAB
BAB
ABB
BBB

How can I count if a specific set of digits are present in an array

Suppose I have a number 123. I need to see if I get all digits 1 through 9, including 0. The number 123 has three digits: 1,2, and 3. Then I multiply it by 2 and get 246 (I get digits 2, 4, 6). Then I multiply it by 3 and I get 369. I keep doing incremental multiplication until I get all digits.
My approach is the following:
public int digitProcessSystem(int N) {
String number = Integer.toString(N);
String [] arr = number.split("");
// List <Integer> arr2 = new ArrayList<>();
for (Integer i = 0; i < arr.length; i++) {
try {
arr2[i] = Integer.parseInt(arr[i]);
} catch (NumberFormatException e) {
}
}
count =0;
boolean contains = IntStream.of(arr2).anyMatch(x -> x == 1|| x==2 ||x == 3|| x==4|| x == 5|| x==6 ||x == 7|| x==8||x == 9|| x==0);
}
I really don't know how can I keep doing the boolean for digits that did not match in the first trail above because I will definitely get any one of the all digits in the above boolean search. How can I get that if some specific digits are present and some are not so that I can multiply the actual number to do the search for the digits that were not found in the first trial; just like the way I defined in the beginning.
You could wrap that into a while loop and include the numbers into a Set. Once the set has the size 10 all digits are present in the number. I´d also suggest to use a long instead of an int or you´ll be getting wrong results or run into an excpetion. Here´s some example code for this:
private static long digitProcessSystem(long N) {
long numberN = N;
String number = Long.toString(N);
// calculate 10 digits number here yet
if (number.length() < 10) {
// using the smallest possible number with each digit
// By using this number we are most likely allmost at the result
// This will increase the performance for small digits heavily.
long divider = 1023456789L / numberN;
numberN *= divider;
}
number = Long.toString(numberN);
String[] arr = number.split("");
Set<String> input = new HashSet<>(Arrays.asList(arr));
while(input.size() != 10){
// add N to number
numberN += N;
// Parse the new number
number = Long.toString(numberN);
// split
arr = number.split("");
// clear set
input.clear();
// Add the new numbers to the set. If it has the size 10 now the loop will stop and return the number.
input.addAll(Arrays.asList(arr));
};
return numberN;
}
public static void main(String[] args) {
System.out.println(digitProcessSystem(123));
}
output:
1023458769
I'm not sure what is your end goal. But you can use a HashSet and do something like this in order to achieve what you are trying to achieve:
public static void main (String[] args) throws Exception {
long number = 123L, counter = 1000000000L / number;
while(digitProcessSystem(number * counter++));
System.out.println("Number: " + number * (counter - 1));
}
public static boolean digitProcessSystem(long input) {
char[] arr = Long.toString(input).toCharArray();
Set<Character> set = new HashSet<>();
for (int i = 0; i < arr.length; i++) {
set.add(arr[i]);
}
return set.size() != 10;
}
Output:
Number: 1023458769
without using java language Facilities and hashset:
private static long digitProcessSystem(long N) {
long numberN = N;
String number = Long.toString(N);
String[] arr = number.split("");;
int arr2=new int[10];
int sum=0;
while(sum != 10){
sum=0;
// add N to number
numberN += N;
// Parse the new number
number = Long.toString(numberN);
// If it doesn´t have 10 digitis continue here yet
if(number.length() < 10) continue;
// split
arr = number.split("");
for(int i=0;i<arr.length;i++){
arr2[arr]=1;
}
for(int i=0;i<10;i++){
sum+=arr2[i];
}
};
return numberN;
}
Generally, if you want to process the characters of a String, don’t do it by splitting the string into substrings. Note that every CharSequence, including String, has the methods chars() and codepoints() allowing to process all characters as IntStream.
To check whether all digits from '0' to '9' are present, we can use chars() (don’t have to think about surrogate pairs) and do it straight-forward, map them to their actual number by subtracting '0', filter out all non-digits (just to be sure), then, map them to an int where the nth bit is set, so we can binary or them all together and check whether all of the lowest ten bits are set:
public static boolean hasAllDigits(String s) {
return s.length()>9 &&
s.chars().map(c -> c-'0').filter(c -> c>=0 && c<=9)
.map(c -> 1 << c).reduce(0, (a,b)->a|b) == 0b1111111111;
}
As a bonus, a length-check is prepended as a String must have at least ten characters to contain all ten digits, so we can short-cut if it hasn’t.
Now, I’m not sure about your actual task. If you just want to iterate until encountering a number having all digits, it’s quite simple:
long number=123;
for(long l = 1, end = Long.MAX_VALUE/number; l < end; l++) {
long candidate = number * l;
if(hasAllDigits(String.valueOf(candidate))) {
System.out.println("found: "+candidate);
return;
}
}
System.out.println("not found within the long range");
But if you want to know when you encountered all digits within the sequence of numbers, we have to adapt the test method and keep the bitset between the iterations:
public static int getDigits(String s) {
return s.chars().map(c -> c-'0').filter(c -> c>=0 && c<=9)
.map(c -> 1 << c).reduce(0, (a,b)->a|b);
}
 
long number=123;
int digits=0;
for(long l = 1, end = Long.MAX_VALUE/number; l < end; l++) {
long candidate=number * l;
int newDigits=digits | getDigits(String.valueOf(candidate));
if(newDigits != digits) {
System.out.printf("pos %10d: %10d%n", l, candidate);
digits=newDigits;
if(digits == 0b1111111111) {
System.out.println("encountered all digits");
break;
}
}
}
if(digits != 0b1111111111) {
System.out.println("did not encounter all digits within the long range");
}
This method will only print numbers of the sequence which have at least one digit not encountered before, so you can easily see which one contributed to the complete set and will see at most ten numbers of the sequence.

Mix multiple strings into all the possible combinations

I have some strings.
1
2
3
How do I combine them into all their unique combinations?
123
132
213
231
312
321
Here is the code I have, but I would like to work without the Random class because I understand that this is not the best way to do it.
import java.util.Random;
public class Solution
{
public static void main(String[] args)
{
String[] names = new String[]{"string1", "string2", "string3"};
for (int i = 0; i < 9; i++) {
Random rand = new Random();
int rand1 = rand.nextInt(3);
System.out.println(names[rand.nextInt(3)] +
names[rand1] +
names[rand.nextInt(3)]);
}
}
}
You can loop over the array by creating another nested loop for each repetition.
for (String word1 : words) {
for (String word2 : words) {
for (String word3 : words) {
System.out.println(word1 + word2 + word3);
}
}
}
Here is how to avoid having the same word in one combination.
for (String word1 : words) {
for (String word2 : words) {
if ( !word1.equals(word2)) {
for (String word3 : words) {
if ( !word3.equals(word2) && !word3.equals(word1)) {
System.out.println(word1 + word2 + word3);
}
}
}
}
}
Here is a class version that is capable of multiple lengths, using backtracking.
import java.util.ArrayList;
import java.util.List;
public class PrintAllCombinations {
public void printAllCombinations() {
for (String combination : allCombinations(new String[] { "A", "B", "C" })) {
System.out.println(combination);
}
}
private List<String> allCombinations(final String[] values) {
return allCombinationsRecursive(values, 0, values.length - 1);
}
private List<String> allCombinationsRecursive(String[] values, final int i, final int n) {
List<String> result = new ArrayList<String>();
if (i == n) {
StringBuilder combinedString = new StringBuilder();
for (String value : values) {
combinedString.append(value);
}
result.add(combinedString.toString());
}
for (int j = i; j <= n; j++) {
values = swap(values, i, j);
result.addAll(allCombinationsRecursive(values, i + 1, n));
values = swap(values, i, j); // backtrack
}
return result;
}
private String[] swap(final String[] values, final int i, final int j) {
String tmp = values[i];
values[i] = values[j];
values[j] = tmp;
return values;
}
}
Please note that using the random method, it is never guaranteed that all combinations are being get. Therefore, it should always loop over all values.
You could use the Google Guava library to get all string permutations.
Collection<List<String>> permutations = Collections2.permutations(Lists.newArrayList("string1", "string2", "string3"));
for (List<String> permutation : permutations) {
String permutationString = Joiner.on("").join(permutation);
System.out.println(permutationString);
}
Output:
string1string2string3
string1string3string2
string3string1string2
string3string2string1
string2string3string1
string2string1string3
Firstly, there is nothing random in the result you are after - and Random.nextInt() will not give you unique permutations, or necessarily all permutations.
For N elements, there are N! (N-factorial) unique sequences - which I believe is what you are after. Therefore your three elements give six unique sequences (3! = 3 * 2 * 1).
This is because you have a choice of three elements for the first position (N), then a choice of the two remaining elements for the second position (N-1), leaving one unchosen element for the last position (N-2).
So, this means that you should be able to iterate over all permutations of the sequence; and the following code should do this for a sequence of 3 elements:
// Select element for first position in sequence...
for (int i = 0 ; i < 3 ; ++i)
{
// Select element for second position in sequence...
for (int j = 0 ; j < 3 ; ++j)
{
// step over indices already used - which means we
// must test the boundary condition again...
if (j >= i) ++j;
if (j >= 3) continue;
// Select element for third position in sequence...
// (there is only one choice!)
for (int k = 0 ; k < 3 ; ++k)
{
// step over indices already used, recheck boundary
// condition...
if (k >= i) ++k;
if (k >= j) ++k;
if (k >= 3) continue;
// Finally, i,j,k should be the next unique permutation...
doSomethingWith (i, j, k);
}
}
}
Now, big caveat that I have just written this OTH, so no guarentees. However, hopefully you can see what you need to do. Of course, this could and should be generalised to support arbitary set sizes, in which case you could populate an int[] with the indices for the sequence.
However, I guess that if you look around there will be some better algorithms for generating permutations of a sequence.

Find numbers present in at least two of the three arrays

How might I approach solving the following problem:
Create an array of integers that are contained in at least two of the given arrays.
For example:
int[] a1 = new int[] { 1, 2, 3, 4, 5 };
int[] a2 = new int[] { 5, 10, 11, 8 };
int[] a3 = new int[] { 1, 7, 6, 4, 5, 3, 11 };
must give a result array
int[] result = new int[] {1, 3, 4, 5, 11}
P.S. i'm interested in suggestions on how I might approach this ("algorithm"), not what Java utils might give me the answer
put a1 numbers in a Map<Integer,Integer> count, using the value as the key, and setting the count to 1
Put a2 numbers into the same map. If an item does not exist, assign the count of 1, otherwise assign it the existing count + 1
Put a3 numbers into the same map. If an item does not exist, assign the count of 1, otherwise assign it the existing count + 1
Go through the entries in a map, and output all keys where the value is greater than one.
This algorithm is amortized linear time in the combined number of elements in the three arrays.
If the numbers in the three arrays are limited to, say, 1000 or another relatively small number, you could avoid using collections at all, but use a potentially more expensive algorithm based on the upper limit of your numbers: replace the map with an array counts[MAX_NUM+1], and then run the same algorithm, like this:
int[] counts = new int[MAX_NUM+1];
for (int a : a1) counts[a]++;
for (int a : a2) counts[a]++;
for (int a : a3) counts[a]++;
for (int i = 0 ; i != MAX_NUM+1 ; i++) {
if (counts[i] > 1) {
System.out.println(i);
}
}
You can look at the 3 arrays as sets and find each element that is in the intersection of some pair of sets.
basically, you are looking for (set1 [intersection] set2) [union] (set2 [intersection] set3) [union] (set1 [intersection] set2)
I agree that it might not be the easiest way to achieve what you are after, but being able to reduce one problem to another is a technique every programmer should master, and this solution should be very educating.
The only way to do this without collections would be to take an element from an array, iterate over the remaining two arrays to see if a duplicate is found (and then break and move to the next element). You need to do this for two out of the three arrays as by the time you move to the third one, you would already have your answer.
Mathematically this can be solved as follows:
You can construct three sets using each of the three arrays, so duplicated entries in each array will only occur once in each set. And then the entries that appear at least in two of the three sets are solutions. So they are given by
(S_1 intersect S_2) union (S_2 intersect S_3) union (S_3 intersect S_1)
Think about the question and the different strategies you might use:
Go through each entry in each array, if that entry is NOT already in the "duplicates" result, then see if that entry is in each of the remaining arrays. Add to duplicates if it is and return to next integer
Create an array of non-duplicates by adding an entry from each array (and if it is already there, putting it in the duplicates array).
Use another creative strategy of your own
I like drawing Venn diagramms. You know that diagram with three intersecting circles, e.g. see here.
You then see that the complement is easier to describe:
Those elements which only exist in one array, are not interesting.
So you could build a frequency list (i.e. key = element, value = count of in how many arrays you found it [for the first time]) in a hash map, and then in a final pass pick all elements which occured more than once.
For simplicity I used sets. If your arrays contain multiple entries of the same value, you have to ignore those extra occurences when you build the frequency list.
An approach could be like this:
1.Sort all the arrays.
2.For each combination of arrays do this
Let us consider the first two arrays A,B. Let a be A's size.
Also take a third array or vector to store our result
for i=0-->a-1 {
Search for A[i] in B using binarySearch.
if A[i] exists in B then insert A[i] into our result vector
}
Repeat the same process for (B,C) and (C,A).
Now sort & Traverse the result vector from the end, remove the elements which have the property
result[i] = result[i-1]
The final vector is the required result.
Time Complexity Analysis:
T(n) = O(nlog(n)) for Sorting where n is the highest array size among the given three
For searching each element of an array in other sorted array T(n) = n * O(log n)
T(n) = O(n (log n)) for sorting the result and O(n) for traversing
So overall time complexity is O(n log(n)); and space complexity is O(n)
Please correct me of I am wrong
In Java:
Will write one without using java.utils shortly.
Meantime a solution using java.utils:
public static void twice(int[] a, int[] b, int[] c) {
//Used Set to remove duplicates
Set<Integer> setA = new HashSet<Integer>();
for (int i = 0; i < a.length; i++) {
setA.add(a[i]);
}
Set<Integer> setB = new HashSet<Integer>();
for (int i = 0; i < b.length; i++) {
setB.add(b[i]);
}
Set<Integer> setC = new HashSet<Integer>();
for (int i = 0; i < c.length; i++) {
setC.add(c[i]);
}
//Logic to fill data into a Map
Map<Integer, Integer> map = new HashMap<Integer, Integer>();
for (Integer val : setA) {
map.put(val, 1);
}
for (Integer val : setB) {
if (map.get(val) != null) {
int count = map.get(val);
count++;
map.put(val, count);
} else {
map.put(val, 1);
}
}
for (Integer val : setC) {
if (map.get(val) != null) {
int count = map.get(val);
count++;
map.put(val, count);
} else {
map.put(val, 1);
}
}
for (Map.Entry<Integer, Integer> entry2 : map.entrySet()) {
//if (entry2.getValue() == 2) { //Return the elements that are present in two out of three arrays.
if(entry2.getValue() >= 2) { //Return elements that are present **at least** twice in the three arrays.
System.out.print(" " + entry2.getKey());
}
}
}
Change condition in last for loop in case one need to return the elements that are present in two out of three arrays. Say:
int[] a = { 2, 3, 8, 4, 1, 9, 8 };
int[] b = { 6, 5, 3, 7, 9, 2, 1 };
int[] c = { 5, 1, 8, 2, 4, 0, 5 };
Output: { 3, 8, 4, 5, 9 }
Here goes without any java.util library:
public static void twice(int[] a, int[] b, int[] c) {
int[] a1 = removeDuplicates(a);
int[] b1 = removeDuplicates(b);
int[] c1 = removeDuplicates(c);
int totalLen = a1.length + b1.length +c1.length;
int[][] keyValue = new int[totalLen][2];
int index = 0;
for(int i=0; i<a1.length; i++, index++)
{
keyValue[index][0] = a1[i]; //Key
keyValue[index][1] = 1; //Value
}
for(int i=0; i<b1.length; i++)
{
boolean found = false;
int tempIndex = -1;
for(int j=0; j<index; j++)
{
if (keyValue[j][0] == b1[i]) {
found = true;
tempIndex = j;
break;
}
}
if(found){
keyValue[tempIndex][1]++;
} else {
keyValue[index][0] = b1[i]; //Key
keyValue[index][1] = 1; //Value
index++;
}
}
for(int i=0; i<c1.length; i++)
{
boolean found = false;
int tempIndex = -1;
for(int j=0; j<index; j++)
{
if (keyValue[j][0] == c1[i]) {
found = true;
tempIndex = j;
break;
}
}
if(found){
keyValue[tempIndex][1]++;
} else {
keyValue[index][0] = c1[i]; //Key
keyValue[index][1] = 1; //Value
index++;
}
}
for(int i=0; i<index; i++)
{
//if(keyValue[i][1] == 2)
if(keyValue[i][1] >= 2)
{
System.out.print(keyValue[i][0]+" ");
}
}
}
public static int[] removeDuplicates(int[] input) {
boolean[] dupInfo = new boolean[500];//Array should not have any value greater than 499.
int totalItems = 0;
for( int i = 0; i < input.length; ++i ) {
if( dupInfo[input[i]] == false ) {
dupInfo[input[i]] = true;
totalItems++;
}
}
int[] output = new int[totalItems];
int j = 0;
for( int i = 0; i < dupInfo.length; ++i ) {
if( dupInfo[i] == true ) {
output[j++] = i;
}
}
return output;
}
It's very simple and could be done for n different arrays the same way:
public static void compute(int[] a1, int[] a2, int[] a3) {
HashMap<Integer, Integer> map = new HashMap<>();
fillMap(map, a1);
fillMap(map, a2);
fillMap(map, a3);
for (Integer key : map.keySet()) {
System.out.print(map.get(key) > 1 ? key + ", " : "");
}
}
public static void fillMap(HashMap<Integer, Integer> map, int[] a) {
for (int i : a) {
if (map.get(i) == null) {
map.put(i, 1);
continue;
}
int count = map.get(i);
map.put(i, ++count);
}
}
fun atLeastTwo(a: ArrayList<Int>, b: ArrayList<Int>, c: ArrayList<Int>): List<Int>{
val map = a.associateWith { 1 }.toMutableMap()
b.toSet().forEach { map[it] = map.getOrDefault(it, 0) + 1 }
c.toSet().forEach{ map[it] = map.getOrDefault(it, 0) + 1 }
return map.filter { it.value == 2 }.map { it.key }
}
In Javascript you can do it like this:
let sa = new Set(),
sb = new Set(),
sc = new Set();
A.forEach(a => sa.add(a));
B.forEach(b => sb.add(b));
C.forEach(c => sc.add(c));
let res = new Set();
sa.forEach((a) => {
if (sb.has(a) || sc.has(a)) res.add(a);
})
sb.forEach((b) => {
if (sa.has(b) || sc.has(b)) res.add(b);
})
sc.forEach((c) => {
if (sa.has(c) || sb.has(c)) res.add(c);
})
let arr = Array.from(res.values());
arr.sort((i, j) => i - j)
return arr

generating Variations without repetitions / Permutations in java

I have to generate all variations without repetitions made of digits 0 - 9.
Length of them could be from 1 to 10. I really don't know how to solve it, especially how to avoid repetitions.
Example:
length of variations: 4
random variations: 9856, 8753, 1243, 1234 etc. (but not 9985 - contains repetition)
Can you please help me? Or can you give me the code?
The keyword to look for is permutation. There is an abundance of source code freely available that performs them.
As for keeping it repetition free I suggest a simple recursive approach: for each digit you have a choice of taking it into your variation or not, so your recursion counts through the digits and forks into two recursive calls, one in which the digit is included, one in which it is excluded. Then, after you reached the last digit each recursion essentially gives you a (unique, sorted) list of repetition-free digits. You can then create all possible permutations of this list and combine all of those permutations to achieve your final result.
(Same as duffymo said: I won't supply code for that)
Advanced note: the recursion is based on 0/1 (exclusion, inclusion) which can directly be translated to bits, hence, integer numbers. Therefore, in order to get all possible digit combinations without actually performing the recursion itself you could simply use all 10-bit integer numbers and iterate through them. Then interpret the numbers such that a set bit corresponds to including the digit in the list that needs to be permuted.
Here is my Java code. Feel free to ask if you don't understand. The main point here is:
sort again character array. for example: a1 a2 a3 b1 b2 b3 .... (a1 = a2 = a3)
generate permutation and always keep condition: index of a1 < index of a2 < index of a3 ...
import java.util.Arrays;
public class PermutationDup {
public void permutation(String s) {
char[] original = s.toCharArray();
Arrays.sort(original);
char[] clone = new char[s.length()];
boolean[] mark = new boolean[s.length()];
Arrays.fill(mark, false);
permute(original, clone, mark, 0, s.length());
}
private void permute(char[] original, char[] clone, boolean[] mark, int length, int n) {
if (length == n) {
System.out.println(clone);
return;
}
for (int i = 0; i < n; i++) {
if (mark[i] == true) continue;
// dont use this state. to keep order of duplicate character
if (i > 0 && original[i] == original[i-1] && mark[i-1] == false) continue;
mark[i] = true;
clone[length] = original[i];
permute(original, clone, mark, length+1, n);
mark[i] = false;
}
}
public static void main(String[] args) {
PermutationDup p = new PermutationDup();
p.permutation("abcab");
}
}
I have created the following code for generating permutations where ordering is important and with no repetition. It makes use of generics for permuting any type of object:
import java.util.ArrayList;
import java.util.Collection;
import java.util.HashSet;
import java.util.List;
import java.util.Set;
public class Permutations {
public static <T> Collection<List<T>> generatePermutationsNoRepetition(Set<T> availableNumbers) {
Collection<List<T>> permutations = new HashSet<>();
for (T number : availableNumbers) {
Set<T> numbers = new HashSet<>(availableNumbers);
numbers.remove(number);
if (!numbers.isEmpty()) {
Collection<List<T>> childPermutations = generatePermutationsNoRepetition(numbers);
for (List<T> childPermutation : childPermutations) {
List<T> permutation = new ArrayList<>();
permutation.add(number);
permutation.addAll(childPermutation);
permutations.add(permutation);
}
} else {
List<T> permutation = new ArrayList<>();
permutation.add(number);
permutations.add(permutation);
}
}
return permutations;
}
}
Imagine you had a magical function - given an array of digits, it will return you the correct permutations.
How can you use that function to produce a new list of permutations with just one extra digit?
e.g.,
if i gave you a function called permute_three(char[3] digits), and i tell you that it only works for digits 0, 1, 2, how can you write a function that can permute 0, 1, 2, 3, using the given permute_three function?
...
once you solved that, what do you notice? can you generalize it?
using Dollar it is simple:
#Test
public void generatePermutations() {
// digits is the string "0123456789"
String digits = $('0', '9').join();
// then generate 10 permutations
for (int i : $(10)) {
// shuffle, the cut (0, 4) in order to get a 4-char permutation
System.out.println($(digits).shuffle().slice(4));
}
}
The code for this is similar to the one without duplicates, with the addition of an if-else statement.Check this code
In the above code,Edit the for loop as follows
for (j = i; j <= n; j++)
{
if(a[i]!=a[j] && !is_duplicate(a,i,j))
{
swap((a+i), (a+j));
permute(a, i+1, n);
swap((a+i), (a+j));
}
else if(i!=j) {} // if no duplicate is present , do nothing
else permute(a,i+1,n); // skip the ith character
}
bool is_duplicate(int *a,int i,int j)
{
if a[i] is present between a[j]...a[i]
return 1;
otherwise
return 0;
}
worked for me
Permutation without repetition is based on theorem, that amount of results is factorial of count of elements (in this case numbers). In your case 10! is 10*9*8*7*6*5*4*3*2*1 = 3628800. The proof why it is exactly right is right solution for generation also.
Well so how. On first position i.e. from left you can have 10 numbers, on the second position you can have only 9 numbers, because one number is on the position on the left and we cannot repeat the same number etc. (the proof is done by mathematical induction).
So how to generate first ten results? According my knowledges, he simplest way is to use cyclic shift. It means the order of number shift to the left on one position (or right if you want) and the number which overflow to put on the empty place.
It means for first ten results:
10 9 8 7 6 5 4 3 2 1
9 8 7 6 5 4 3 2 1 10
8 7 6 5 4 3 2 1 10 9
7 6 5 4 3 2 1 10 9 8
6 5 4 3 2 1 10 9 8 7
5 4 3 2 1 10 9 8 7 6
...
The first line is basic sample, so it is the good idea to put it into set before generation. Advantage is, that in the next step you will have to solve the same problem to avoid undesirable duplicities.
In next step recursively rotate only 10-1 numbers 10-1 times etc.
It means for first 9 results in step two:
10 9 8 7 6 5 4 3 2 1
10 8 7 6 5 4 3 2 1 9
10 7 6 5 4 3 2 1 9 8
10 6 5 4 3 2 1 9 8 7
10 5 4 3 2 1 9 8 7 6
...
etc, notice, that first line is present from previous step, so it must not be added to generated set again.
Algorithm recursively doing exactly that, what is explained above. It is possible to generate all the 3628800 combinations for 10!, because number of nesting is the same as number of elements in array (it means in your case for 10 numbers it lingers about 5min. on my computer) and you need have enough memory if you want to keep all combinations in array.
There is solution.
package permutation;
/** Class for generation amount of combinations (factorial)
* !!! this is generate proper permutations without repeating and proper amount (počet) of rows !!!
*
* #author hariprasad
*/
public class TestForPermutationII {
private static final String BUMPER = "*";
private static int counter = 0;
private static int sumsum = 0;
// definitoin of array for generation
//int[] testsimple = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
int[] testsimple = {1, 2, 3, 4, 5};
private int ELEMNUM = testsimple.length;
int[][] shuff;
private String gaps(int len) {
String addGap = "";
for(int i=0; i <len; i++)
addGap += " ";
return addGap;
}
/** Factorial computing */
private int fact(int num) {
if (num > 1) {
return num * fact(num - 1);
} else {
return 1;
}
}
/** Cyclic shift position to the left */
private int[] lShiftPos(int[] arr, int pos) {
int[] work = new int[ELEMNUM];
int offset = -1;
for (int jj = 0; jj < arr.length; jj++) {
if (jj < pos) {
work[jj] = arr[jj];
} else if (jj <= arr.length - 1) {
if (jj == pos) {
offset = arr[pos]; // last element
}
if (jj != (arr.length - 1)) {
work[jj] = arr[jj + 1];
} else {
work[jj] = offset;
}
}
}
return work;
}
private String printBuff(int[] buffer) {
String res = "";
for (int i= 0; i < buffer.length; i++) {
if (i == 0)
res += buffer[i];
else
res += ", " + buffer[i];
}
return res;
};
/** Recursive generator for arbitrary length of array */
private String permutationGenerator(int pos, int level) {
String ret = BUMPER;
int templen = counter;
int[] work = new int[ELEMNUM];
int locsumread = 0;
int locsumnew = 0;
//System.out.println("\nCalled level: " + level);
for (int i = 0; i <= templen; i++) {
work = shuff[i];
sumsum++;
locsumread++;
for (int ii = 0; ii < pos; ii++) {
counter++;
sumsum++;
locsumnew++;
work = lShiftPos(work, level); // deep copy
shuff[counter] = work;
}
}
System.out.println("locsumread, locsumnew: " + locsumread + ", " + locsumnew);
// if level == ELEMNUM-2, it means no another shift
if (level < ELEMNUM-2) {
ret = permutationGenerator(pos-1, level+1);
ret = "Level " + level + " end.";
//System.out.println(ret);
}
return ret;
}
public static void main(String[] argv) {
TestForPermutationII test = new TestForPermutationII();
counter = 0;
int len = test.testsimple.length;
int[] work = new int[len];
test.shuff = new int[test.fact(len)][];
//initial
test.shuff[counter] = test.testsimple;
work = test.testsimple; // shalow copy
test.shuff = new int[test.fact(len)][];
counter = 0;
test.shuff[counter] = test.testsimple;
test.permutationGenerator(len-1, 0);
for (int i = 0; i <= counter; i++) {
System.out.println(test.printBuff(test.shuff[i]));
}
System.out.println("Counter, cycles: " + counter + ", " + sumsum);
}
}
Intensity (number of cycles) of algorithm is sum of incomplete factorials of number of members. So there is overhang when partial set is again read to generate next subset, so intensity is:
n! + n!/2! + n!/3! + ... + n!/(n-2)! + n!(n-1)!
There is one solution which is not from mine, but it is very nice and sophisticated.
package permutations;
import java.util.HashSet;
import java.util.LinkedList;
import java.util.List;
import java.util.Set;
/**
* #author Vladimir Hajek
*
*/
public class PermutationSimple {
private static final int MAX_NUMBER = 3;
Set<String> results = new HashSet<>(0);
/**
*
*/
public PermutationSimple() {
// TODO Auto-generated constructor stub
}
/**
* #param availableNumbers
* #return
*/
public static List<String> generatePermutations(Set<Integer> availableNumbers) {
List<String> permutations = new LinkedList<>();
for (Integer number : availableNumbers) {
Set<Integer> numbers = new HashSet<>(availableNumbers);
numbers.remove(number);
if (!numbers.isEmpty()) {
List<String> childPermutations = generatePermutations(numbers);
for (String childPermutation : childPermutations) {
String permutation = number + childPermutation;
permutations.add(permutation);
}
} else {
permutations.add(number.toString());
}
}
return permutations;
}
/**
* #param args
*/
public static void main(String[] args) {
Set<Integer> availableNumbers = new HashSet<>(0);
for (int i = 1; i <= MAX_NUMBER; i++) {
availableNumbers.add(i);
}
List<String> permutations = generatePermutations(availableNumbers);
for (String permutation : permutations) {
System.out.println(permutation);
}
}
}
I think, this is the excellent solution.
Brief helpful permutation indexing Knowledge
Create a method that generates the correct permutation, given an index value between {0 and N! -1} for "zero indexed" or {1 and N!} for "one indexed".
Create a second method containing a "for loop" where the lower bound is 1 and the upper bound is N!. eg.. "for (i; i <= N!; i++)" for every instance of the loop call the first method, passing i as the argument.
def find(alphabet, alpha_current, str, str_current, max_length, acc):
if (str_current == max_length):
acc.append(''.join(str))
return
for i in range(alpha_current, len(alphabet)):
str[str_current] = alphabet[i]
alphabet[i], alphabet[alpha_current] = alphabet[alpha_current], alphabet[i]
find(alphabet, alpha_current+1, str, str_current+1, max_length, acc)
alphabet[i], alphabet[alpha_current] = alphabet[alpha_current], alphabet[i]
return
max_length = 4
str = [' ' for i in range(max_length)]
acc = list()
find(list('absdef'), 0, str, 0, max_length, acc)
for i in range(len(acc)):
print(acc[i])
print(len(acc))

Categories

Resources