I need to upload data on a periodic interval to the server which gets stored in the SQL(After some processing in BL).
Lets say every 15 mins i have 20000 JSON objects of 1kb each. Whats the best way to implement this.
I thought of writing it to a text , then zip and upload to the server. But now there might be better technologies like EHcache. How should i decide? is it better to use any of these Caching opensource tools ?
There might of 10-100's of clients each sending messages as mentioned earlier to the server.
Mongodb sounds the one suitable for your task, because you are talking about caching json documents.
You can cache the documents as they come in a certain collection, then you can later on sync with a persistent store.
As compared to other persistent cache like eh, it would offer greater scalability and reliability outside your typical application container, yet would help you easily dump records in a quick and easy way.
http://www.tutorialspoint.com/mongodb/mongodb_advantages.htm
http://www.mongodb.com/blog/post/why-mongodb-popular
Related
I'm using a Spring Boot back-end to provide some restful API and need to log all of my request-response logs into ElasticSearch.
Which of the following two methods has better performance?
Using Spring Boot ResponseBodyAdvice to log every request and response that is sent to the client directly to ElasticSearch.
Log every request and response into a log file and using filebeat and/or logstash to send them to ElasticSearch.
First off, I assume, that you have a distributed application, otherwise just write your stuff in a log file and that's it
I also assume that you have quite a log of logs to manage, otherwise, if you're planning to log like a couple of messages in a hour, then it doesn't really matter which way you go - both will do the job.
Technically both ways can be implemented, although for the first path I would suggest a different approach, at least I did something similar ~ 5 years ago in one of my projects:
Create a custom log appender that throws everything into some queue (for async processing) and from that took an Apache Flume project that can write stuff to the DB of your choice in a transaction manner with batch support, "all-or-nothing" semantics, etc.
This approach solves issues that might appear in the "first" option that you've presented, while some other issues will be left unsolved.
If I compare the first and the second option that you've presented,
I think you better off with filebeat / logstash or even both to write to ES, here is why:
When you log in the advice - you will "eat" the resources of your JVM - memory, CPU to maintain ES connections pool, thread pool for doing an actual log (otherwise the business flow might slow down because of logging the requests to ES).
In addition you won't be able to write "in batch" into the elasticsearch without the custom code and instead will have to create an "insert" per log message that might be wasty.
One more "technicality" - what happens if the application gets restarted for some reason, will you be able to write all the logs prior to the restart if everything gets logged in the advice?
Yet another issue - what happens if you want to "rotate" the indexes in the ES, namely create an index with TTL and produce a new index every day.
filebeat/logstash potentially can solve all these issues, however they might require a more complicated setup.
Besides, obviously you'll have more services to deploy and maintain:
logstash is way heavier than filebeat from the resource consumption standpoint, and usually you should parse the log message (usually with grok filter) in logstash.
filebeat is much more "humble" when it comes to the resource consumption, and if you have like many instances to log (really distributed logging, that I've assumed you have anyway) consider putting a service of filebeat (deamon set if you have k8s) on each node from which you'll gather the logs, so that a single filebeat process could handle different instances, and then deploy a cluster of instances of logstash on a separate machine so that they'll do a heavy log-crunching all the time and stream the data to the ES.
How does logstash/filebeat help?
Out of my head:
It will run in its own pace, so even if process goes down, the messages produced by this process will be written to the ES after all
It even can survive short outages of the ES itself I think (should check that)
It can handle different processes written in different technologies, what if tomorrow you'll want to gather logs from the database server, for example, that doesn't have spring/not written java at all
It can handle indices rotation, batch writing internally so you'll end up with effective ES management that otherwise you had to write by yourself.
What are the drawbacks of the logstash/filebeat approach?
Again, out of my head, not a full list or something:
Well, much more data will go through the network all-in-all
If you use "LogEvent" you don't need to parse the string, so this conversion is redundant.
As for performance implications - it basically depends on what do you measure how exactly does your application look like, what hardware do you have, so I'm afraid I won't be able to give you a clear answer on that - you should measure in your concrete case and come up with a way that works for you better.
Not sure if you can expect a clear answer to that. It really depends on your infrastructure and used hardware.
And do you mean by performance the performance of your spring boot backend application or performance in terms of how long it takes for your logs to arrive at ElasticSearch?
I just assume the first one.
When sending the logs directly to ElasticSearch your bottleneck will be the used network and while logging request and responses into a log file first, your bottleneck will probably be the used harddisk and possible max I/O operations.
Normally I would say that sending the logs directly to ElasticSearch via network should be the faster option when you are operating inside your company/network because writing to a disk is always quite slow in comparison. But if you are using fast SSDs the effect should be neglectable. And if you need to send your network packages to a different location/country this can also change fast.
So in summary:
If you have a fast network connection to your ElasticSearch and HDDs/slower SSDs the performance might be better using the network.
If your ElasticSearch is not at your location and you can use fast SSD, writing the logs into a file first might be the faster option.
But in the end you maybe have to try out both approaches, implement some timers and check for yourself.
we are using both solution. first approach have less complexity.
we choose second approach when we dont want to touch the code and have too many instance of app.
about performance. with writing directly on elasticsearch you have better performance because you are not occupying disk I/O. but assume that when the connection between your app and elasticsearch server is dropped. you would have lost log after some retrying attempts.
using rsyslog and logstash is more reliable for big clusters.
This maybe not possible but I thought I might just give it a try. I have some work that process some data, it makes 3 decisions with each data it proceses: keep, discard or modify/reprocess(because its unsure to keep/discard). This generates a very large amount of data because the reprocess may break the data into many different parts.
My initial method was to send it to my executionservice that was processing the data but because the number of items to process was large I would run out of memory very quickly. Then I decided to maybe offload the queue off to a messaging server(rabbitmq) which works fine but now I'm bound by network IO. What I like about rabbitmq is it keeps messages in memory up to a certain level and then dumps old messages to the local drive so if I have 8 gigs of memory on my server I can still have a 100 gig message queue.
So my question is, is there any library that has a similar feature in Java? Something that I can use as a nonblocking queue that keeps only X items in queue(either by number of items or size) and writes the rest to the local drive.
note: Right now I'm only asking for this to be used on one server. In the future I might add more servers but because each server is self-generating data I would try to take messages from one queue and push them to another if one server's queue is empty. The library would not need to have network access but I would need to access the queue from another Java process. I know this is a long shot but thought if anyone knew it would be SO.
Not sure if it id the approach you are looking for, but why not using a lightweight database like hsqldb and a persistence layer like hibernate? You can have your messages in memory, then commit to db to save on disk, and later query them, with a convenient SQL query.
Actually, as Cuevas wrote, HSQLDB could be a solution. If you use the "cached table" provided, you can specify the maximum amount of memory used, exceeding data will be sent to the hard drive.
Use the filesystem. It's old-school, yet so many engineers get bitten with libraries because they are lazy. True that HSQLDB provides lots of value-add features, but in the context of being light weight....
I am using MySQL database in which a table has 1.7 million records. Through Restlet framework in Java I want to fetch these records and return it to the client. I am using Linux Centos which is remote server. I have created WAR file and uploaded on the server. When I run the service it is taking lot of time to respond. I waited for 40 mins but not getting any output.
So Can anybody please help me to resolve this problem?
That's probably not going to work: holding that many rows of data in memory will probably cause an out of memory exception (can you look at the logs on the server and see what exactly is happening?).
To do something like this you'll either need to abandon that plan and do pagination of some sort, or you'll need a solution that lets you stream the records to the client without holding them in memory. I'm unsure that the Restlet framework lets you do that: you'll probably need to implement that using servlets yourself.
When I have a very large number of rows I have used memory mapped files. e.g. I have one database where I have to retrieve and process 1.1 billion rows in around a minute. (Its over 200 GB)
This is a very specialist approach, and I suspect there is a way to tune your SQL database or use a NoSQL database to do what you want. I would have though you can retrieve 1.7 million in under a minute depending on what you are doing (e.g. if you are selecting this many amoungst a few TB its going to take a while)
But, if there really is no other option, you could write a custom data store.
BTW: Only a summary is produced. No one should be expected to read that many rows, certainly not display them in a browser. Perhaps there is something you can do to produce a report or summary so there is less to send the client.
I have successfully done just this kind of work in my apps. If your client is ready to accept a big response, there is nothing wrong with the approach. The main point is that you'll need to stream the response, which means you can't build te entire response as a string. Get the outputstream of the HTTP response and write records into it one by one. On the db-end you need to set up a scrollable resultset (easy to do at the JDBC level, as well as at the Hibernate level).
This is a question which I have worked for several years, but now I still don't get a good solution.
My application has two part:
The first one is running in a server which is called "ROOT server". It will receive the realtime stock data from HKEx(Securities and futures exchange in Hong Kong), and broadcast them to 5 other children servers. It will append a timestamp to each data item when broadcasting.
The second ones are running in the "children" servers. They will receive the stock data from ROOT server, parse each of them, and get the important information. At last, they will send them in a new text format to the clients. The clients may be hundreds to thousands, they can register for some kind of stocks, and get the realtime information of them.
The performance is the most important thing. In the past several years, I tried all kinds of solutions I know to make it faster. The "faster" here means, the first one will receive and send the data to the children servers as fast as it can, and the children servers will receive and parse and send the data to the clients as fast as they can.
For now, when the data speed is 200K from HKEx and there are 5 children servers, the first one application will have 10ms latency for each data item in average. And the second one is not easy to test, it depends on the clients count.
What I'm using:
OpenSUSE 10
Sun Java 5.0
Mina 2.0
The server hardware:
4-core CPU (I don't know the type)
4G ram
I'm considering how to improve the performance.
Do I need to use a concurrent framework as akka
try another language, e.g. Scala? C++?
use the real-time java system?
your advices...
Need your help!
Update:
The applications have logged some important information for analysis, but I don't find any bottlenecks. The HKEx will provide more data in the next year, I don't think my application will be fast enough.
One of my customer have tested our application and another company's, but ours didn't have advantage in speed. I just want to find a way to make it faster.
How is the first application running
The first application will receive the stock data from HKEx and broadcast them to several other servers. The steps are:
It connects HKEx
logins
reads the data. The data is in binary format, each item has a head, which is 2 bytes of integer which means the length of body, then body, then next item.
put them into a hashmap in memory. Key is the sequence of the item, value is the byte array.
log the sequence of each received item into disk. Use log4j's buffer appender.
a daemon thread try to read the data from hashmap, and inserts them into postgresql in every 1 minute. (this is just used to backup the data)
when clients connect to this server, it accepts them and try to send all the data from hashmap from memory. I used thread pool in mina, the acceptor and senders are in different threads.
I think the logic is very simple. When there are 5 clients, I monitored the speed of transfer is only 1.5M/s at most. I used java to write a simplest socket program, and found it can be 10M/s.
Actually, I've spent more than 1 year trying all kinds of solutions on this application, just to make it faster. That why I feel desperate. Do I need to try another language than Java?
about 10ms latency
When the application received a data from HKEx, I will record the timestamp for it. When the root server broadcast the data to the children servers, it will append the timestamp to the data.
when children server get the data, it will send a message to root server to get the current timestamp, then compare them.
So, the 10ms latency contains:
root server got the data ---> the child server got the data
child server send a request for root server's timestamp ---> root server got it
But the 2nd one is very small that we can ignore it.
The first thing to do to find performance bottlenecks is to find out where most of the time is spent. A way to determine this is to use a profiler.
There are open source profilers available such as http://www.eclipse.org/tptp/, or commercial profilers such as Yourkit Java Profiler.
One easy thing to do could be to upgrade the JVM to Java SE6 or Java 7. General JVM performance improved a lot at version 6. See the Java SE 6 Performance White Paper for more details.
If you have checked everything, and found no obvious performance optimizations, you may need to change the architecture to get better performance. This would obviously be most fruitful if you could at least identify where your application is spending time - sounds like there are several major components:
The HK Ex server (out of your control)
The network between the Exchange and your system
The "root" server
The network between the "root" and the "child" servers
The "child" servers
The network between "child" servers and the client
The clients
To know where to spend your time, money and energy, I'd at least want to see an analysis of those components, how long each component takes (min, max, avg), and what the specification is of each resource.
Easiest thing to change is hardware - bigger servers, more memory etc., or better bandwidth. Can you see if any of those resources are constrained?
Next thing to look at is to change the communication protocol to be more efficient - how do clients receive the stocks? Can you reduce data size? 1.5M for only 5 clients sounds a lot...
Next, you might look at some kind of quality of service solution - provide dedicated hardware for "premium" customers, with reduced resource contention, more servers, more bandwidth - this will probably require changes to the architecture.
Next, you could consider changing the architecture - right now, your clients "pull" data from the client servers. You could, instead, "push" data out - that way, you shave off the polling interval on the client end.
At the very end of the list, I'd consider a different technology stack; Java is a fine programming language, but if absolute performance is a key priority, C/C++ is still faster. Clearly, that's a huge change, and a well-written Java app will be faster than a poorly written C/C++ app (and far more stable).
To trace the source of the delay I would add timing data to your end to end process. You can do this using an external log, or by adding meta data to your messages.
What you want to get is a timestamp at key stages in your application 3-5 is enough to start with. Normally I would use System.nanoTime() because I am looking for micro-second delays, but in your case System.currentTimeMillis() is likely to be enough, esp if you average over many samples (you will still get 0.1 ms accuracy on an average, with Ubuntu)
Compare time stamps for the same messages as it passes through your system and look for the highest average delay. Once you have found this try breaking this interval into more stages to zoom in on the problem.
I would analyse any stage which has a verage delay over over 1 ms for your situation.
If clients are updating every minute, there might not be a good technical reason to do this, but you don't want to be seen as being slow and your traders at a disavantage even if in reality it won't make a difference.
I am currently in need of a high performance java storage mechanism.
This means:
1) I have 10,000+ objects with 1 - Many Relationship.
2) The objects are updated every 5 seconds, with the most recent updates persistent in the case of system failure.
3) The objects need to be queryable in a reasonable time (1-5 seconds). (IE: Give me all of the objects with this timestamp or give me all of the objects within these location boundaries).
4) The objects need to be available across various Glassfish installs.
Currently:
I have been using JMS to distribute the objects, Hibernate as an ORM, and HSQLDB to provide the needed recoverablity.
I am not exactly happy with the performance. Especially the JMS part of this.
After doing some Stack Overflow research, I am wondering if this would be a better solution. Keep in mind that I have no experience with what Terracotta gives me.
I would use Terracotta to distribute objects around the system, and something else need to give the ability to "query" for attributes of those objects.
Does this sound reasonable? Would it meet these performance constraints? What other solutions should I consider?
I know it's not what you asked, but, you may want to start by switching from HSQLDB to H2. H2 is a relatively new, pure Java DB. It is written by the same guy who wrote HSQLDB and he claims the performance is much better. I'm using it for some time now and I'm very happy with it. It should be a very quick transition (add a Jar, change the connection string, create the database) so it's worth a shot.
In general, I believe in trying to get the most of what I have before rewriting the application in a different architecture. Try profiling it to identify the bottleneck first.
At first, Lucene isn't your friend here. (read only)
Terracotta is to scale around at the Logical layer! Your problem seems not to be related to the processing logic. It's more around the Storage/Communication point.
Identify your bottleneck! Benchmark the Storage/Logic/JMS processing time and overhead!
Kill JMS issues with a good JMS framework (eg. ActiveMQ) and a good/tuned configuration.
Maybe a distributed key=>value store is your friend. Try Project Voldemort!
If you like to stay at Hibernate and HSQL, check out the Hibernate 2nd level cache and connection pooling (c3po, container driven...)!
Several Terracotta users have built systems like this in the past, so I can you tell you by proof of existence that it can be done. :)
Compass does have support for clustering with Terracotta so that might help you. I suspect you might get further faster by just being careful with how you create your clustered data structures.
Regarding your requirements and Terracotta:
1) 10k objects is quite small from a Terracotta perspective
2) 5 sec update rate doesn't seem like an issue. Might depend how many nodes there are and whether there is any natural partitioning you can take advantage of. All updates will be persistent.
3) 1-5 second query time seems quite easy. Building your own well-organized data structures for lookup is the tricky part. Obviously you want to avoid scanning all the data.
4) Terracotta currently supports Glassfish v1 and v2.
If you post on the Terracotta forums, you could probably get more Terracotta eyeballs on the problem.
I am currently working on writing the client for a very (very) fast Key/Value distributed hash DB that provides set + list semantics. The DB is C99 and requires GCC and right now I'm battling with good old Java network IO to break my current 30,000 get/sets per/sec barrier. Hope to be done within the week. Drop me a line through my account and I'll get back when its show time.
With such a high update rate, Lucene is almost definitely not what you're looking for, since there is no way to update a document once it's indexed. You'd have to keep all the object versions in the index and select the one with the latest time stamp, which will kill your performance.
I'm no DB expert, but I think you should look into any one of the distributed DB solutions that's been on the news lately. (CouchDB, Cassandra)
Maybe you should take a look to: Prevayler.
Your objects are always in mem.
The "changes" to your objects are persisted.
From time to time you are able to take a snapshot: every object is persisted.
You don't say what vendor you are using for JMS, but I wouldn't surprise me if you have some bottle neck there. I couldn't get more than 100 messages a second from ActiveMq, and whatever I tried in terms of configuration of acknowledgment, queue size, etc we were unable to soak the CPU beyond a few percent.
The solution was to batch many queries into one JMS message. We had a simple class that either sent a batch of messages when it got to 200 queries or reached a timeout (we used 20ms), which gave us a dramatic increase in message throughput.
Guaranteed messaging is going to be much slower than volatile messaging. Given every object is updated every few second, you might consider batching your updates (into say 500 changes or by time say 1-10 ms' worth), sending over volatile messaging, and batching your transactions. In this case you are more likely to be limited by bandwidth. Tuning your use case you may find smaller batch sizes also work efficiently. If bandwidth is critical (say you have a 10 MB connection or slower, then you could use compression over JMS)
You can achieve much higher performance with a custom solution (which also might be simpler) e.g. Hazelcast & JGroups are free (you can add a node(s) which does the database synchronization so your main app doesn't slow down). There are commercial products which handle in the order of half a million durable messages/sec.
Terracotta + jofti = queryable persistent clustered data structures
Search google for terracotta querymap or visit tusharkhairnar.blogspot.com for querymap blog
You may want to integrate timasync as well to update your database. Database is is your system of record use terracotta as caching and database offloading mechanism you can even batch async updates to make it faster so that I'd db contains fairly recent data
Tushar
tusharkhairnar.blogspot.com