I am new to binary search trees and deleting a node is giving me problems. I tried to draw out the problem to see what I am doing wrong and still cannot seem to see the problem and I do not want to copy the code from another website.
I understand how to delete a node with one child or no children and I think my code is correct for those methods. My problem is deleting a node with two children. I cannot get this to work properly. Any help or advice is appreciated.
public void DeleteNode(int number) {
if (Root == null)
{
JOptionPane.showMessageDialog(null," Tree Empty, can not delete ", JOptionPane.WARNING_MESSAGE);
return;
}
Node child = Root;
Node parent = Root;
while (number != child.data) {
if (number < child.data)
{
parent = child;
child = child.left;
}
else if (number > child.data)
{
parent = child;
child = child.right;
}
if(child == null){
JOptionPane.showMessageDialog(null," Number not found",JOptionPane.WARNING_MESSAGE);
return;
}
}
if(child.right == null && child.left == null)
{
hasNoChildren(child, parent);
}
else if(child.left != null && child.right != null)
{
hasTwoChildren(child, parent);
}
else if (child.right != null && child.left == null)
{
hasRightChild(child, parent);
}
else if (child.left != null && child.right == null)
{
hasLeftChild(child, parent);
}
}
This is my method to delete a node with two children
public void hasTwoChildren(Node child, Node parent)
{
Node temp = null;
if(child.data < parent.data){
Node childorg = child;
temp = child;
child = child.left;
while(child.right != null){
temp = child;
child = child.right;
}
childorg.data = child.data;
if (child.left != null && child.right == null)
{
hasLeftChild(child, temp);
}else{
temp.right = null;
}
}
else
{
Node childorg = child;
temp = child;
child = child.right;
while(child.left != null){
temp = child;
child = child.left;
}
childorg.data = child.data;
if (child.left != null && child.right == null)
{
hasRightChild(child, temp);
}else{
temp.left = null;
}
}
}
These are my methods to delete a node with no children or one child
public void hasNoChildren(Node child, Node parent)
{
if(child.data == Root.data)
{
Root = null;
}
else if(child.data < parent.data){
parent.left = null;
}else{
parent.right = null;
}
}
public void hasLeftChild(Node child, Node parent){
if(child.data < parent.data){
parent.left = child.left;
}else{
parent.right = child.left;
}
}
public void hasRightChild(Node child, Node parent){
if(child.data < parent.data){
parent.left = child.right;
}else{
parent.right = child.right;
}
}
Here is the complete binary tree deletion implementation for all possible cases :
public boolean delete(Node nodeToDelete) {
boolean succes = false;
Node nodeToRemove = findTheNodeToDelete(nodeToDelete);
if (nodeToRemove == null) {
return succes;
}
// case1; If the node has no children
if (nodeToRemove.left == null && nodeToRemove.right == null) {
if (nodeToRemove.parent.left.data == nodeToDelete.data) {
nodeToRemove.parent.left = null;
nodeToRemove = null;
succes = true;
return succes;
} else if (nodeToRemove.parent.right.data == nodeToDelete.data) {
nodeToRemove.parent.right = null;
nodeToRemove = null;
succes = true;
return succes;
}
// case 2: if it has only one children
} else if ((nodeToRemove.left == null && nodeToRemove.right != null)
|| (nodeToRemove.right == null && nodeToRemove.left != null)) {
if (nodeToRemove.left != null) {
nodeToRemove.parent.left = nodeToDelete.left;
nodeToDelete = null;
succes = true;
return succes;
} else if (nodeToRemove.parent.right != null) {
nodeToRemove.parent.right = null;
nodeToRemove = null;
succes = true;
return succes;
}
}
// case 3 :
if (nodeToRemove.left != null && nodeToRemove.right != null) {
Node minLeftNode = findTheLeftMostNodeFromtheRightSubTree(nodeToRemove.right);
System.out.println("----" + minLeftNode.data);
// Now if the parent of the node is not null that means it is the
// root
// assign the left mode min as root and say
// min.right=notetoRemove.right;
// derefrence the min node /remove from the tree
minLeftNode.parent.left = null;
minLeftNode.parent = null;
Node parentofTheNodeToDelete = nodeToRemove.parent;
minLeftNode.parent = parentofTheNodeToDelete;
Node rightOfNodeToDelete = nodeToRemove.right;
Node leftofNodeToDelete = nodeToRemove.left;
if (parentofTheNodeToDelete == null) {
root = minLeftNode;
} else {
if (parentofTheNodeToDelete.right.data == nodeToDelete.data) {
parentofTheNodeToDelete.right = minLeftNode;
} else if (parentofTheNodeToDelete.left.data == nodeToDelete.data) {
parentofTheNodeToDelete.left = minLeftNode;
}
}
minLeftNode.right = rightOfNodeToDelete;
minLeftNode.left = leftofNodeToDelete;
nodeToRemove = null;
}
return succes;
}
You have to follow delete by merging approach when deleting the node with both left and right children
Your hasTwoChildren() method with the delete by merging logic
public void hasTwoChildren(Node child, Node parent) {
Node rightNode = child.right;
Node leftNode = child.left;
// Delete child
if (child.val < parent.val)
parent.left = leftNode;
else
parent.right = leftNode;
// Travel to the right most node of the leftNode
Node tmp = leftNode;
while (tmp.right != null)
tmp = tmp.right;
// set the rightNode
tmp.right = rightNode;
}
Related
I'm currently struggling to write a union() method for my AVL (auto balancing) tree IntegerSet Class.
Some requirements for my class:
Integer sets are ordered
Methods must be at most O(NlogN) time
You may not use a built in tree Java library. You must implement your own tree
The union() method: This is the mathematical union on two sets which creates a new set that contains all the elements from both sets. For example, [1, 2, 3] U [2, 3, 5, 6] results in a new set [1, 2, 3, 5, 6].
My thought was to copy the unique elements of each tree into an array, then use my constructor to create a new tree from that array. However, I haven't been able to copy the elements into an array correctly. I'm also wondering if there's a better way to be doing this.
My current code is below:
package dataStructures.AVL;
import java.util.LinkedList;
import java.util.Queue;
public class IntegerSet {
private Node root;
private int size;
public IntegerSet() {
clear();
}
public IntegerSet(int array[]) {
// Add elements of array to Binary Search Tree
for (int i = 0; i < array.length; i++) {
add(array[i]);
}
}
public int magnitude() {
return size;
}
public void clear() {
root = null;
size = 0;
}
public boolean isEmpty() {
return size == 0;
}
public boolean add(int newItem) {
boolean added = false;
if (isEmpty()) {
root = new Node(newItem);
size += 1;
added = true;
} else {
added = add(null, root, newItem);
}
return added;
}
private boolean add(Node parent, Node current, int data) {
boolean added = false;
if (current == null) {
int result = data - parent.data; // data.compareTo(parent.data);
if (result < 0) {
parent.leftChild = new Node(data);
} else {
parent.rightChild = new Node(data);
}
size += 1;
return true;
} else if ((data - current.data) < 0) { // (data.compareTo(current.data) < 0) {
added = add(current, current.leftChild, data);
} else if (data - current.data > 0) { // (data.compareTo(current.data) > 0) {
added = add(current, current.rightChild, data);
} else {
return false;
}
fixHeight(current);
if (added) {
rebalance(parent, current);
}
return added;
}
public boolean remove(int itemToRemove) {
if (isEmpty()) {
return false;
} else if (size == 1 && root.data == itemToRemove) { // (size == 1 && root.data.equals(itemToRemove)) {
clear();
return true;
} else if (removeTraversal(null, root, itemToRemove)) {
size -= 1;
return true;
} else {
return false;
}
}
private boolean removeTraversal(Node parent, Node current, int data) {
boolean removed = true;
if (current == null) {
return false;
} else if (data - current.data < 0) { // (data.compareTo(current.data) < 0) {
removed = removeTraversal(current, current.leftChild, data);
} else if (data - current.data > 0) { // (data.compareTo(current.data) > 0) {
removed = removeTraversal(current, current.rightChild, data);
} else {
removeNode(parent, current);
}
fixHeight(current);
if (removed) {
rebalance(parent, current);
}
return removed;
}
private void removeNode(Node parent, Node current) {
if (current.leftChild == null && current.rightChild == null) {
// Remove leaf node
removeCase1(parent, current);
} else if (current.leftChild != null && current.rightChild == null) {
// Remove node with no right child
removeCase2(parent, current);
} else if (current.leftChild == null && current.rightChild != null) {
// Remove node with no left child
removeCase3(parent, current);
} else {
// Remove node with both children
removeCase4(parent, current);
}
fixHeight(parent);
}
private void removeCase1(Node parent, Node current) {
if (parent == null) {
root = null;
} else if (parent.leftChild == current) {
parent.leftChild = null;
} else {
parent.rightChild = null;
}
}
private void removeCase2(Node parent, Node current) {
if (parent == null) {
root = root.leftChild;
} else if (parent.leftChild == current) {
parent.leftChild = current.leftChild;
} else {
parent.rightChild = current.leftChild;
}
current.leftChild = null;
}
private void removeCase3(Node parent, Node current) {
if (parent == null) {
root = root.rightChild;
} else if (parent.leftChild == current) {
parent.leftChild = current.rightChild;
} else {
parent.rightChild = current.rightChild;
}
current.rightChild = null;
}
private void removeCase4(Node parent, Node current) {
Node leftMost = current.rightChild;
Node leftMostParent = current;
while (leftMost.leftChild != null) {
leftMostParent = leftMost;
leftMost = leftMost.leftChild;
}
current.data = leftMost.data;
removeNode(leftMostParent, leftMost);
rebalance(current, current.rightChild);
}
public boolean contains(int itemToFind) {
if (isEmpty()) {
return false;
} else {
Node temp = root;
while (temp != null) {
int result = itemToFind - temp.data;
if (result < 0) {
temp = temp.leftChild;
} else if (result > 0) {
temp = temp.rightChild;
} else {
return true;
}
}
}
return false;
}
public IntegerSet union(IntegerSet other) {
return null;
}
public IntegerSet intersection(IntegerSet other) {
return null;
}
public IntegerSet difference(IntegerSet other) {
return null;
}
public IntegerSet symmetricDifference(IntegerSet other) {
return null;
}
public int getMin() {
if (isEmpty()) {
throw new EmptyCollectionException("Cannot remove from an empty tree.");
} else {
Node temp = root;
while (temp.leftChild != null) {
temp = temp.leftChild;
}
return temp.data;
}
}
public int getMax() {
if (isEmpty()) {
throw new EmptyCollectionException("Cannot remove from an empty tree.");
} else {
Node temp = root;
while (temp.rightChild != null) {
temp = temp.rightChild;
}
return temp.data;
}
}
public int getHeight() {
return getHeight(root);
}
private int getHeight(Node node) {
if (node == null) {
return -1;
}
return Math.max(node.leftHeight, node.rightHeight);
}
private void fixHeight(Node node) {
if (node != null) {
node.leftHeight = getHeight(node.leftChild) + 1;
node.rightHeight = getHeight(node.rightChild) + 1;
}
}
private int balance(Node node) {
// If the balance > 1 imbalance is in left subtree
// If the balance < -1 imbalance is in right subtree
return node.leftHeight - node.rightHeight;
}
private Node rightRotation(Node n) {
Node c = n.leftChild;
Node t2 = c.rightChild;
c.rightChild = n;
n.leftChild = t2;
fixHeight(n);
fixHeight(c);
return c;
}
private Node leftRotation(Node n) {
Node c = n.rightChild;
Node t2 = c.leftChild;
c.leftChild = n;
n.rightChild = t2;
fixHeight(n);
fixHeight(c);
return c;
}
private void rebalance(Node parent, Node node) {
if (node == null) {
return;
}
// Imbalance in left subtree
if (balance(node) > 1) {
// Handles case III
if (balance(node.leftChild) < 0) {
// leftRotation
node.leftChild = leftRotation(node.leftChild);
}
if (parent == null) {
root = rightRotation(node);
} else if (parent.leftChild == node) {
parent.leftChild = rightRotation(node);
} else {
parent.rightChild = rightRotation(node);
}
// Imbalance in right subtree
} else if (balance(node) < -1) {
// Handle case IV
if (balance(node.rightChild) > 0) {
node.rightChild = rightRotation(node.rightChild);
}
if (parent == null) {
root = leftRotation(node);
} else if (parent.leftChild == node) {
parent.leftChild = leftRotation(node);
} else {
parent.rightChild = leftRotation(node);
}
}
}
#Override
public String toString() {
return levelOrderString();
}
public String levelOrderString() {
StringBuffer sb = new StringBuffer();
sb.append("{");
if (!isEmpty()) {
Queue<Node> q = new LinkedList<>();
q.add(root);
Node current = null;
while (!q.isEmpty()) {
current = q.remove();
if (current.leftChild != null) {
q.add(current.leftChild);
}
if (current.rightChild != null) {
q.add(current.rightChild);
}
sb.append(current);
if (!q.isEmpty()) {
sb.append(", ");
}
}
}
sb.append("}");
return sb.toString();
}
public String inOrderToString() {
StringBuffer sb = new StringBuffer();
sb.append("{ ");
inOrderToString(root, sb);
sb.append(" }");
return sb.toString();
}
private void inOrderToString(Node current, StringBuffer sb) {
if (current != null) {
inOrderToString(current.leftChild, sb);
if (current.leftChild != null) {
sb.append(", ");
}
sb.append(current.data);
if (current.rightChild != null) {
sb.append(", ");
}
inOrderToString(current.rightChild, sb);
}
}
// You may add any methods or constructors
// to this class that you see fit.
private class Node {
private int data;
private Node leftChild;
private Node rightChild;
private int leftHeight;
private int rightHeight;
public Node(int data) {
this.data = data;
}
public String toString() {
String formatter = "(%s | %s | %s)";
String leftString = leftChild != null ? Integer.toString(leftChild.data) : "";
String rightString = rightChild != null ? Integer.toString(rightChild.data) : "";
return String.format(formatter, Integer.toString(data), leftString, rightString);
}
}
}
My removal method consists of 4 if statements that tackle the 4 different kinds of removal in a binary search tree. Not sure where wrong but it didn't remove any node when I check it. Any help if appreciated. Thanks in advance'
I suspect the problems lies in are where I try to replace the node removal to be null
public class BinaryTree<T extends Comparable<T>> {
private class Node{
private T data;
private Node left;
private Node right;
// left and right child do not have to nessary exist
public Node ( T data) {
this.data = data;
this.left = null;
this.right = null;
}}
private Node root;
private int count = 0;
public void add( T data) {
if ( isEmpty()) {
root = new Node(data);
count++;
}
else {
insert(data, root);
count++;
}
}
public boolean isEmpty() {
return root == null;
}
public T getRoot() {
if ( root.data == null) {
System.out.println("Root is empty");
return null;
}
else {
return root.data;
}}
public Node getRootNode() {
return root;
}
/*
* Checking if the data is larger or lesser than the parent's data
* If the data is smaller than the parent's data, node.left is created
* If the data is bigger than the parent's data, node.right is created
*/
private void insert( T data, Node node) {
/*
* If 1st obj is less than the 2nd obj return a neg
* if 1st obj is more than the 2nd obj return a pos
* if equal return 0
*/
int compare = data.compareTo(node.data);
if ( compare < 1 ){
if (node.left == null ) {
node.left = new Node(data);
}
// make node.left if it is filled
else {
insert(data, node.left);
}
}
else {
if ( node.right == null) {
node.right = new Node(data);
}
else {
insert( data, node.right);
}
}
}
public int getSize() {
return count;
}
public boolean search ( T data) {
Node temp = searchInner(data, root);
if ( temp.data == data) {
System.out.println(temp.data);
return true;
}
else {
return false;
}
}
public Node searchInner( T data, Node node) {
int compare = data.compareTo(node.data);
if ( getRoot() == data ) {
return root;
}
if ( compare > 0) {
return searchInner( data, node.right);
}
if ( compare < 0 ) {
return searchInner(data , node.left);
}
if ( compare == 0 ) {
return node;
}
else {
System.out.println("Not found");
return node;
}
}
public void remove( T data) {
remove1( root, data);
}
private Node remove1( Node node1, T data) {
Node parent = root;
Node node = root;
Node temp;
boolean isLeft = true;
while ( node.data != data) {
parent = node;
if ( isEmpty()) {
System.out.println("Unable to remove, root is empty");
break;
}
if ( compare(data, node.data) < 0) {
node = node.left;
isLeft = true;
}
if ( compare(data, node.data) > 0) {
node = node.right;
isLeft = false;
}
else {
// remove node if left child available
if ( node.left == null && node.right != null) {
if ( isLeft) {
parent.left = node.right;
}
else {
parent.right = node.right;
}
count --;
break;
}
//remove node if right child available
if ( node.right == null && node.left != null) {
if ( isLeft) {
parent.left = node.left;
}
else {
parent.right = node.left;
}
count --;
break;
}
// Remove node if 2 child available
if ( node.left != null && node.right != null ) {
node = min(node.right);
node.right = remove1(node.right, node.data);
}
// remove node if no child available
if ( node.left == null && node.right == null) {
if ( isLeft ) {
parent.left = null;
}
else {
parent.right = null;
}
count --;
break;
}
}
}
return node;
}
// fine the smallest node in the right subtree
private Node min ( Node node1 ) {
while ( node1.left != null) {
node1 = node1.left;
}
return node1;
}
private int compare( T data, T data1) {
return data.compareTo(data1);
}
public void printBST(T data) {
printTree( root, data);
}
private void printTree( Node node, T data)
{
if(node == null) return;
System.out.println(data + " + " + node.data);
printTree(node.left , data);
printTree(node.right , data);
}
public int getHeight() {
return height(root);
}
private int height( Node node) {
if (node == null) return 0;
else
return 1 + Math.max(height(node.left), height(node.right));
}
public void print() {
println(root);
}
private void println ( Node node) {
LinkedList<T> q = new LinkedList<T>();
q.add(node.data);
if ( node == null) {
return;
}
int size = getSize();
while ( size > 0) {
System.out.print(q);
q.clear();
if ( node.left != null) {
q.add(node.left.data);
size --;
}
if ( node.right != null) {
q.add(node.right.data);
size --;
}
if ( node.right != null&& node.left != null) {
System.out.println();
}
if ( size > 1) {
System.out.println(",");
}
}
}
public boolean sameTree( Node root1, Node root2) {
if ( root1 == null && root2 == null) {
return true;
}
if ( root1 != null && root2 != null) {
return root1.data == root2.data && sameTree(root1.left,root2.left) && sameTree(root1.right, root2.right);
}
else {
return false;
}
}
}
I have rewritten your BinaryTree class. I have added a new remove method, which uses your min(Node node) method and other one I have created, that only removes the minimum element of the tree. In addition, I have modified your Node class too by adding a new constructor and added your size variable that was in BinaryTree class
I have modified all of this in order to make the method remove() working properly
import java.util.LinkedList;
public class BinaryTree<T extends Comparable<T>> {
private class Node<T> { //Here we specify what the node contains
private T data;
private Node<T> left;
private Node<T> right;
private int size;
public Node(T value) {
this(value, null, null);
}
// left and right child do not have to nessary exist
public Node(T data, Node<T> left, Node<T> right) {
this.data = data;
this.left = null;
this.right = null;
size = 1;
if (left != null) {
size += left.size;
}
if (right != null) {
size += right.size;
}
}
}
private Node root;
public BinaryTree() { //Added a constructor to set the root node to null
root = null;
}
public boolean isEmpty() {
return root == null;
}
public T getRootData() { //Changed the name to other more clear
if (root.data == null) {
System.out.println("Root is empty");
return null;
} else {
return (T) root.data;
}
}
public Node getRootNode() {
return root;
}
public void insert(T x) { //The new insert method
root = insert(x, root);
}
protected Node<T> insert(T x, Node<T> actual) {
//We check if the node exists, in case not we just create a new node
if (actual == null) {
return new Node<T>(x);
}
int cmp = compare(x, actual.data);
if (cmp < 0) {
actual.left = insert(x, actual.left);
} else if (cmp > 0) {
actual.right = insert(x, actual.right);
} else {
// If the node exists we just update his content
actual.data = x;
}
actual.size = 1 + getSize(actual.left) + getSize(actual.right);
return actual;
}
public int getSize() { //New method
return getSize(root);
}
private int getSize(Node<T> actual) {
if (actual == null) {
return 0;
} else {
return actual.size;
}
}
public boolean search(T data) {
Node temp = searchInner(data, root);
if (temp.data == data) {
System.out.println(temp.data);
return true;
} else {
return false;
}
}
public Node searchInner(T data, Node node) {
int compare = data.compareTo((T) node.data);
if (getRootData() == data) {
return root;
}
if (compare > 0) {
return searchInner(data, node.right);
}
if (compare < 0) {
return searchInner(data, node.left);
}
if (compare == 0) {
return node;
} else {
System.out.println("Not found");
return node;
}
}
public void remove(T data) {
remove1(root, data);
}
private Node remove1(Node actual, T data) {
if (actual == null) {
return actual;
}
int cmp = compare(data, (T) actual.data);
//Check whether the value is lesser greater or equal than the one we are just visiting
if (cmp < 0) {
actual.left = remove1(actual.left, data);
} else if (cmp > 0) {
actual.right = remove1(actual.right, data);
} else {
if (actual.right == null) {
return actual.left;
}
if (actual.left == null) {
return actual.right;
}
actual.data = min(actual.right).data;
actual.right = removeMin(actual.right);
}
return actual;
}
public Node removeMin() {
//A new method to remove the minimum element
Node min = min(root);
root = removeMin(root);
return min;
}
private Node removeMin(Node actual) {
if (actual.left == null) {
return actual.right;
}
actual.left = removeMin(actual.left);
actual.size--;
return actual;
}
// fine the smallest node in the right subtree
private Node min(Node node1) {
while (node1.left != null) {
node1 = node1.left;
}
return node1;
}
private int compare(T data, T data1) {
return data.compareTo(data1);
}
public void printBST(T data) {
printTree(root, data);
}
private void printTree(Node node, T data) {
if (node == null) {
return;
}
System.out.println(data + " + " + node.data);
printTree(node.left, data);
printTree(node.right, data);
}
public int getHeight() {
return height(root);
}
private int height(Node node) {
if (node == null) {
return 0;
} else {
return 1 + Math.max(height(node.left), height(node.right));
}
}
public void print() {
println(root);
}
private void println(Node node) {
LinkedList<T> q = new LinkedList<T>();
q.add((T) node.data);
if (node == null) {
return;
}
int size = getSize();
while (size > 0) {
System.out.print(q);
q.clear();
if (node.left != null) {
q.add((T) node.left.data);
size--;
}
if (node.right != null) {
q.add((T) node.right.data);
size--;
}
if (node.right != null && node.left != null) {
System.out.println();
}
if (size > 1) {
System.out.println(",");
}
}
}
public boolean sameTree(Node root1, Node root2) {
if (root1 == null && root2 == null) {
return true;
}
if (root1 != null && root2 != null) {
return root1.data == root2.data && sameTree(root1.left, root2.left) && sameTree(root1.right, root2.right);
} else {
return false;
}
}
}
I hope this helps to you
I am learning about Binary Search Tree and working on a project. When I tried to delete the first node I inserted, it doesn't delete and still show that node when I call showAll method. Is that how Binary Search Tree works or did I do something incorrectly?
Thanks,
Here is the code for BinarySearchTree class:
public class BinarySearchTree_Pham {
TreeNode root;
public BinarySearchTree_Pham() {
root = null;
}
public boolean insert(Student_Pham newStudent) {
TreeNodeWrapper p = new TreeNodeWrapper();
TreeNodeWrapper c = new TreeNodeWrapper();
TreeNode n = new TreeNode();
if(n == null)
return false;
else {
n.node = newStudent.deepCopy();
n.lc = null;
n.rc = null;
if(root == null) {
root = n;
}
else {
findNode(newStudent.getId(), p, c);
if(newStudent.getId().compareTo(p.get().node.getId()) < 0)
p.get().lc = n;
else
p.get().rc = n;
}
return true;
}
} //end insert
public Student_Pham fetch(String id) {
boolean found;
TreeNodeWrapper p = new TreeNodeWrapper();
TreeNodeWrapper c = new TreeNodeWrapper();
found = findNode(id, p, c);
if (found == true)
return c.get().node.deepCopy();
else
return null;
} //end fetch
public boolean delete(String id) {
boolean found;
TreeNodeWrapper p = new TreeNodeWrapper();
TreeNodeWrapper c = new TreeNodeWrapper();
TreeNode largest;
TreeNode nextLargest;
found = findNode(id, p, c);
if(found == false)
return false;
else {
if(c.get().lc == null && c.get().rc == null) {
if (p.get().lc == c.get())
p.get().lc = null;
else
p.get().rc = null;
} //end case 1
else if (c.get().lc == null || c.get().rc == null) {
if (p.get().lc == c.get()) {
if (c.get().lc != null)
p.get().lc = c.get().lc;
else
p.get().lc = c.get().rc;
}
else {
if (c.get().lc != null)
p.get().rc = c.get().lc;
else
p.get().rc = c.get().rc;
}
} // end case 2
else {
nextLargest = c.get().lc;
largest = nextLargest.rc;
if (largest != null) {
while (largest.rc != null) {
nextLargest = largest;
largest = largest.rc;
}
c.get().node = largest.node;
nextLargest.rc = largest.lc;
}
else {
nextLargest.rc = c.get().rc;
if (p.get().lc == c.get())
p.get().lc =nextLargest;
else
p.get().rc = nextLargest;
}
} // end case 3
return true;
}
} // end of delete
public boolean update(String id, Student_Pham newStudent) {
if(delete(id) == false)
return false;
else if (insert(newStudent) == false)
return false;
return true;
} // end update
public void showAll() {
if (root == null)
System.out.println("Structure is empty.");
else
LNRoutputTraversal(root);
} //end showAll
private void LNRoutputTraversal(TreeNode root) {
if (root.lc != null)
LNRoutputTraversal(root.lc);
System.out.println(root.node);
if (root.rc != null)
LNRoutputTraversal(root.rc);
}
public class TreeNode {
private Student_Pham node;
private TreeNode lc;
private TreeNode rc;
public TreeNode() {}
}
private boolean findNode(String targetKey, TreeNodeWrapper parent, TreeNodeWrapper child) {
parent.set(root);
child.set(root);
if (root == null)
return true;
while (child.get() != null) {
if(child.get().node.getId().compareTo(targetKey) == 0)
return true;
else {
parent.set(child.get());
if(targetKey.compareTo(child.get().node.getId()) < 0)
child.set(child.get().lc);
else
child.set(child.get().rc);
}
} //end while
return false;
}
public class TreeNodeWrapper {
TreeNode treeRef = null;
public TreeNodeWrapper() {}
public TreeNode get() {return treeRef;}
public void set(TreeNode t) {treeRef = t;}
}
}
everyone.
I am trying to come up with a way to allow the user to create a tree at run-time, with a branching factor of 2 and an unlimited depth (depends on user).
The user must begin with the root_node, then go on to the root node's two children (left_node and right_node). after that the left child becomes the root and the user does the same process and moves on to the right child.
Any help on how to achieve this is appreciated.
Thanks in advance
Are you looking for something like this?
import java.util.LinkedList;
import java.util.Queue;
public class BinaryTree {
Node root;
public void add(int value) {
root = addRecursive(root, value);
}
private Node addRecursive(Node current, int value) {
if (current == null) {
return new Node(value);
}
if (value < current.value) {
current.left = addRecursive(current.left, value);
} else if (value > current.value) {
current.right = addRecursive(current.right, value);
}
return current;
}
public boolean isEmpty() {
return root == null;
}
public int getSize() {
return getSizeRecursive(root);
}
private int getSizeRecursive(Node current) {
return current == null ? 0 : getSizeRecursive(current.left) + 1 + getSizeRecursive(current.right);
}
public boolean containsNode(int value) {
return containsNodeRecursive(root, value);
}
private boolean containsNodeRecursive(Node current, int value) {
if (current == null) {
return false;
}
if (value == current.value) {
return true;
}
return value < current.value
? containsNodeRecursive(current.left, value)
: containsNodeRecursive(current.right, value);
}
public void delete(int value) {
root = deleteRecursive(root, value);
}
private Node deleteRecursive(Node current, int value) {
if (current == null) {
return null;
}
if (value == current.value) {
// Case 1: no children
if (current.left == null && current.right == null) {
return null;
}
// Case 2: only 1 child
if (current.right == null) {
return current.left;
}
if (current.left == null) {
return current.right;
}
// Case 3: 2 children
int smallestValue = findSmallestValue(current.right);
current.value = smallestValue;
current.right = deleteRecursive(current.right, smallestValue);
return current;
}
if (value < current.value) {
current.left = deleteRecursive(current.left, value);
return current;
}
current.right = deleteRecursive(current.right, value);
return current;
}
private int findSmallestValue(Node root) {
return root.left == null ? root.value : findSmallestValue(root.left);
}
public void traverseInOrder(Node node) {
if (node != null) {
traverseInOrder(node.left);
System.out.print(" " + node.value);
traverseInOrder(node.right);
}
}
public void traversePreOrder(Node node) {
if (node != null) {
System.out.print(" " + node.value);
traversePreOrder(node.left);
traversePreOrder(node.right);
}
}
public void traversePostOrder(Node node) {
if (node != null) {
traversePostOrder(node.left);
traversePostOrder(node.right);
System.out.print(" " + node.value);
}
}
public void traverseLevelOrder() {
if (root == null) {
return;
}
Queue<Node> nodes = new LinkedList<>();
nodes.add(root);
while (!nodes.isEmpty()) {
Node node = nodes.remove();
System.out.print(" " + node.value);
if (node.left != null) {
nodes.add(node.left);
}
if (node.left != null) {
nodes.add(node.right);
}
}
}
class Node {
int value;
Node left;
Node right;
Node(int value) {
this.value = value;
right = null;
left = null;
}
}
}
I am trying to implement a delete function for my BST class. I am trying to follow a few standard tutorials, and am good with everything besides my delete function. I don't get any errors, but it doesn't delete the intended node. I am recursively getting to the intended Node, returning the opposite side node if it only has one child, otherwise I am returning the smallest value from n.right.
Any help would be appreciated - Thanks!
public class BinaryTree {
private Node root = null;
private class Node {
private Node left;
private Node right;
private int data;
public Node(int data, Node left, Node right) {
this.data = data;
this.left = left;
this.right = right;
}
}
public boolean add(int data) {
root = add(root, data);
return true;
}
private Node add(Node node, int data) {
if (node == null) {
node = new Node(data, null, null);
}
else {
if (data < node.data) {
node.left = add(node.left, data);
}
else {
node.right = add(node.right, data);
}
}
return node;
}
// Helper function
private Node findMin(Node node) {
while (node.left != null) {
node = node.left;
}
return node;
}
private Node findMax(Node node) {
while (node.right != null) {
node = node.right;
}
return node;
}
private void inOrderTraversal(Node n) {
if (n == null) return;
else {
inOrderTraversal(n.left);
System.out.println(n.data);
inOrderTraversal(n.right);
}
}
public void inOrderTraversal() {
inOrderTraversal(root);
}
private Node deleteKey(Node n, int data) {
if (n == null) return n;
if (data < n.data) deleteKey(n.left, data);
else if (data > n.data) deleteKey(n.right, data);
else {
if (n.left == null) return n.right;
else if (n.right == null) return n.left;
n.data = findMin(n.right).data;
n.right = deleteKey(n.right, n.data);
}
return n;
}
public void deleteKey(int data) {
root = deleteKey(root, data);
}
public static void main(String[] args) {
BinaryTree bst = new BinaryTree();
bst.add(2);
bst.add(8);
bst.add(1);
bst.add(7);
bst.add(3);
bst.add(11);
bst.add(1);
bst.add(21);
bst.add(10);
bst.add(12);
bst.inOrderTraversal();
System.out.println("----------------");
bst.deleteKey(3);
bst.inOrderTraversal();
}
}
I think the problem is in your deleteKey function:
private Node deleteKey(Node n, int data) {
if (n == null) return n;
if (data < n.data)
n.left = deleteKey(n.left, data); // must reassign child here
else if (data > n.data)
n.right = deleteKey(n.right, data); // must reassign child here
else {
if (n.left == null) return n.right;
else if (n.right == null) return n.left;
n.data = findMin(n.right).data;
n.right = deleteKey(n.right, n.data); // this was correct
}
return n;
}
When data < n.data or data > n.data, you aren't updating the current node's leaves. So this was finding the appropriate node to delete, but it wasn't rebuilding the node branches properly on the way back up from the recursion.