hibernate issue when cascading entities from a relationship - java

I made my self a little hibernate sandbox to understand how it works.
I ve done quite well so far with all the basics. Everything works as expected.
I only have an unsolved issue.
To make it short, I have a Rats entity and a Sickness entity.
A Rat can have a single Sickness.
The association is correctly set into the DB and the entities files include this part:
in Rats class:
[...]
#ManyToOne(fetch = FetchType.LAZY )
#Cascade({ CascadeType.SAVE_UPDATE, CascadeType.DELETE})
#JoinColumn(name = "Sickness_Id")
public Sickness getSickness() {
return this.sickness;
}
[...]
in Sickness class:
[...]
#OneToMany(fetch = FetchType.LAZY, mappedBy = "sickness")
#Cascade({ /*CascadeType.SAVE_UPDATE,*/ CascadeType.MERGE, CascadeType.REFRESH})
public Set<Rats> getRatses() {
return this.ratses;
}
[...]
If I create a new Rats with a new Sickness and save the Rats, the cascade works as expected and the Sickness is automatically added to the DB too.
Deletion part works too, when I delete a Rats, its sickness is deleted.
What does not work is trying to create a Sickness and try to spread it to many Rats via its SetRatses method:
String sick_name2 = "Tourista";
System.out.println("\nsetting new sickness: " + sick_name2 + " and assigning it to all rats");
Sickness sickness2 = new Sickness();
sickness2.setNom(sick_name2);
ArrayList<Rats> sickratsList = (ArrayList<Rats>) session.createCriteria(Rats.class).list();// new HashSet<Rats>();
Set<Rats> sickRatsSet = new HashSet<Rats>();
for(Rats rat : sickratsList){
sickRatsSet.add(rat);
}
sickness2.setRatses(sickRatsSet);
session.save(sickness2);
Debuging this shows that the Sickness is correctly inserted into the DB, its sickRatsSet field is correctly set with all the rats.
But... if I check the Rats status, their Sickness has not been updated.
Trying to set CascadeType. into the Sickness relationship did not help.
I know that I could solve it with something like:
ArrayList<Rats> sickratsList = (ArrayList<Rats>) session.createCriteria(Rats.class).list();// new HashSet<Rats>();
Set<Rats> sickRatsSet = new HashSet<Rats>();
for(Rats rat : sickratsList){
rat.setSickness(seckness2);
session.save(rat);
}
But I would like to understand how to do it via Sickness.setRatses.
So that I can find my way later with a many to many relationship (I suppose it will be pretty similar).
Thx in advance.

A bidirectional association has an owner side (the side without the mappedBy attribute), and an inverse side (the side with the mappedBy attribute).
Hibernate only considers the owner side when deciding which entities are associated with each other.
Adding rats to a sickness thus won't make Hibernate associate the rat to the sickness, since that only modifies the inverse side. You must set the rat's sickness.
Note that using a DELETE cascade on a ManyToXxx annotation doesn't make much sense. There is no reason to delete the tourista sickness from the database as soon as one of the thousand rats having the tourista is deleted. And that will obviously cause an exception anyway, since 999 other rats have a foreign key to the tourista sickness.

This error happens because you're retrieving the objects that are already cached in the 1st level cache (session), and those objects don't have the bidirectional association set correctly. In your code, you're never calling rat.setSickeness(sickness).
Try calling the following methods and check if the data is now correct
session.flush()
session.clear()
// load the rats /sickness again and the relations should be set.
Bottom line: when you have a bidirectional association is the developer responsibility to add/set the objects on boths ends, otherwise you'll get into this error. The simplest way to fix this is to only have one method in one of your 2 objects that know how to maintain the assocation. For example
public class Rat {
public void setSickness(Sickness sickness) {
this.sicknesses = sickness;
sickness.addRat(this);
}
}
public class Sickness {
// leave this as package protected! So the only way to set the association is from the Rat
void addRat(Rat rat) {
rats.add(rat);
}
}
You might want to read the Hibernate documentation about Session and how it works as a 1st level cache.

Thanks JB and Augusto, I got a much better understanding now.
I was able to solve my issue by overriding this way:
public void setRatses(Set<Rats> ratses) {
this.ratses = ratses;
for(Rats rat : ratses){
rat.setSickness(this);
}
This bring me another methodological question.
I found out that if I do the following:
raton.setSickness(sickness1);
raton.display(); -> raton.sickness = sickness1 as expected
sickness1.display(); -> sickness1.ratses does not contain raton for the reasons that you guys pointed.
I can either use session.flush()
session.clear() or commit the transaction and start a new one if I need sickness1.ratses to be up to date.
I suppose that I can also override Rats.setSickness this way:
public void setSickness(Sickness sickness) {
if(sickness.ratses.contain(this) sickness.ratses.remove(this);
this.sickness = sickness;
ickness.ratses.add(this);
}
this way, my sickness is up to date inside the session without I need to flush the session.
Would this be such a good idea?
On regarding performance side, I suppose that the override solution generates additional DB operations that might not be really needed?

Related

Hibernate good practice, lazy/eager loading and saving/deleting children (help me Hibernate sensei)

So, I have found myself in quite a pickle regarding Hibernate. When I started developing my web application, I used "eager" loading everywhere so I could easily access children, parents etc.
After a while, I ran into my first problem - re-saving of deleted objects. Multiple stackoverflow threads suggested that I should remove the object from all the collections that it's in. Reading those suggestions made my "spidey sense" tickle as my relations weren't really simple and I had to iterate multiple objects which made my code look kind of ugly and made me wonder if this was the best approach.
For example, when deleting Employee (that belongs to User in a sense that User can act as multiple different Employees). Let's say Employee can leave Feedback to Party, so Employee can have multiple Feedback and Party can have multiple Feedback. Additionally, both Employee and Party belong to some kind of a parent object, let's say an Organization. Basically, we have:
class User {
// Has many
Set<Employee> employees;
// Has many
Set<Organization> organizations;
// Has many through employees
Set<Organization> associatedOrganizations;
}
class Employee {
// Belongs to
User user;
// Belongs to
Organization organization;
// Has many
Set<Feedback> feedbacks;
}
class Organization {
// Belongs to
User user;
// Has many
Set<Employee> employees;
// Has many
Set<Party> parties;
}
class Party {
// Belongs to
Organization organization;
// Has many
Set<Feedback> feedbacks;
}
class Feedback {
// Belongs to
Party party;
// Belongs to
Employee employee;
}
Here's what I ended up with when deleting an employee:
// First remove feedbacks related to employee
Iterator<Feedback> iter = employee.getFeedbacks().iterator();
while (iter.hasNext()) {
Feedback feedback = iter.next();
iter.remove();
feedback.getParty().getFeedbacks().remove(feedback);
session.delete(feedback);
}
session.update(employee);
// Now remove employee from organization
Organization organization = employee.getOrganization();
organization.getEmployees().remove(employee);
session.update(organization);
This is, by my definition, ugly. I would've assumed that by using
#Cascade({CascadeType.ALL})
then Hibernate would magically remove Employee from all associations by simply doing:
session.delete(employee);
instead I get:
Error during managed flush [deleted object would be re-saved by cascade (remove deleted object from associations)
So, in order to try to get my code a bit cleaner and maybe even optimized (sometimes lazy fetch is enough, sometimes I need eager), I tried lazy fetching almost everything and hoping that if I do, for example:
employee.getFeedbacks()
then the feedbacks are nicely fetched without any problem but nope, everything breaks:
failed to lazily initialize a collection of role: ..., could not initialize proxy - no Session
The next thing I thought about was removing the possibility for objects to insert/delete their related children objects but that would probably be a bad idea performance-wise - inserting every object separately with
child.parent=parent
instead of in a bulk with
parent.children().add(children).
Finally, I saw that multiple people recommended creating my own custom queries and stuff but at that point, why should I even bother with Hibernate? Is there really no good way to handle my problem relatively clean or am I missing something or am I an idiot?
If I understood the question correctly it's all about cascading through simple 1:N relations. In that case Hibernate can do the job rather well:
#Entity
public class Post {
#Id
#GeneratedValue(strategy = GenerationType.AUTO)
private Long id;
#OneToMany(cascade = CascadeType.ALL,
mappedBy = "post", orphanRemoval = true)
private List<Comment> comments = new ArrayList<>();
}
#Entity
public class Comment {
#Id
#GeneratedValue(strategy = GenerationType.AUTO)
private Long id;
#ManyToOne
private Post post;
}
Code:
Post post = newPost();
doInTransaction(session -> {
session.delete(post);
});
Generates:
delete from Comment where id = 1
delete from Comment where id = 2
delete from Post where id = 1
But if you have some other (synthetic) collections, Hibernate has no chance to know which ones, so you have to handle them yourself.
As for Hibernate and custom queries, Hibernate provides HQL which is more compact then traditional SQL, but still is less transparent then annotations.

How to maintain bi-directional relationships with Spring Data REST and JPA?

Working with Spring Data REST, if you have a OneToMany or ManyToOne relationship, the PUT operation returns 200 on the "non-owning" entity but does not actually persist the joined resource.
Example Entities:
#Entity(name = 'author')
#ToString
class AuthorEntity implements Author {
#Id
#GeneratedValue(strategy = GenerationType.IDENTITY)
Long id
String fullName
#ManyToMany(mappedBy = 'authors')
Set<BookEntity> books
}
#Entity(name = 'book')
#EqualsAndHashCode
class BookEntity implements Book {
#Id
#GeneratedValue(strategy = GenerationType.IDENTITY)
Long id
#Column(nullable = false)
String title
#Column(nullable = false)
String isbn
#Column(nullable = false)
String publisher
#ManyToMany(fetch = FetchType.LAZY, cascade = [CascadeType.ALL])
Set<AuthorEntity> authors
}
If you back them with a PagingAndSortingRepository, you can GET a Book, follow the authors link on the book and do a PUT with the URI of a author to associate with. You cannot go the other way.
If you do a GET on an Author and do a PUT on its books link, the response returns 200, but the relationship is never persisted.
Is this the expected behavior?
tl;dr
The key to that is not so much anything in Spring Data REST - as you can easily get it to work in your scenario - but making sure that your model keeps both ends of the association in sync.
The problem
The problem you see here arises from the fact that Spring Data REST basically modifies the books property of your AuthorEntity. That itself doesn't reflect this update in the authors property of the BookEntity. This has to be worked around manually, which is not a constraint that Spring Data REST makes up but the way that JPA works in general. You will be able to reproduce the erroneous behavior by simply invoking setters manually and trying to persist the result.
How to solve this?
If removing the bi-directional association is not an option (see below on why I'd recommend this) the only way to make this work is to make sure changes to the association are reflected on both sides. Usually people take care of this by manually adding the author to the BookEntity when a book is added:
class AuthorEntity {
void add(BookEntity book) {
this.books.add(book);
if (!book.getAuthors().contains(this)) {
book.add(this);
}
}
}
The additional if clause would've to be added on the BookEntity side as well if you want to make sure that changes from the other side are propagated, too. The if is basically required as otherwise the two methods would constantly call themselves.
Spring Data REST, by default uses field access so that theres actually no method that you can put this logic into. One option would be to switch to property access and put the logic into the setters. Another option is to use a method annotated with #PreUpdate/#PrePersist that iterates over the entities and makes sure the modifications are reflected on both sides.
Removing the root cause of the issue
As you can see, this adds quite a lot of complexity to the domain model. As I joked on Twitter yesterday:
#1 rule of bi-directional associations: don't use them… :)
It usually simplifies the matter if you try not to use bi-directional relationship whenever possible and rather fall back to a repository to obtain all the entities that make up the backside of the association.
A good heuristics to determine which side to cut is to think about which side of the association is really core and crucial to the domain you're modeling. In your case I'd argue that it's perfectly fine for an author to exist with no books written by her. On the flip side, a book without an author doesn't make too much sense at all. So I'd keep the authors property in BookEntity but introduce the following method on the BookRepository:
interface BookRepository extends Repository<Book, Long> {
List<Book> findByAuthor(Author author);
}
Yes, that requires all clients that previously could just have invoked author.getBooks() to now work with a repository. But on the positive side you've removed all the cruft from your domain objects and created a clear dependency direction from book to author along the way. Books depend on authors but not the other way round.
I faced a similar problem, while sending my POJO(containing bi-directional mapping #OneToMany and #ManyToOne) as JSON via REST api, the data was persisted in both the parent and child entities but the foreign key relation was not established. This happens because bidirectional associations need to be manually maintained.
JPA provides an annotation #PrePersist which can be used to make sure that the method annotated with it is executed before the entity is persisted. Since, JPA first inserts the parent entity to the database followed by the child entity, I included a method annotated with #PrePersist which would iterate through the list of child entities and manually set the parent entity to it.
In your case it would be something like this:
class AuthorEntitiy {
#PrePersist
public void populateBooks {
for(BookEntity book : books)
book.addToAuthorList(this);
}
}
class BookEntity {
#PrePersist
public void populateAuthors {
for(AuthorEntity author : authors)
author.addToBookList(this);
}
}
After this you might get an infinite recursion error, to avoid that annotate your parent class with #JsonManagedReference and your child class with #JsonBackReference. This solution worked for me, hopefully it will work for you too.
This link has a very good tutorial on how you can navigate the recursion problem:Bidirectional Relationships
I was able to use #JsonManagedReference and #JsonBackReference and it worked like a charm
I believe one can also utilize #RepositoryEventHandler by adding a #BeforeLinkSave handler to cross link the bidirectional relation between entities. This seems to be working for me.
#Component
#RepositoryEventHandler
public class BiDirectionalLinkHandler {
#HandleBeforeLinkSave
public void crossLink(Author author, Collection<Books> books) {
for (Book b : books) {
b.setAuthor(author);
}
}
}
Note: #HandlBeforeLinkSave is called based on the first parameter, if you have multiple relations in your equivalent of an Author class, the second param should be Object and you will need to test within the method for the different relation types.

Why am I getting deleted instance passed to merge, when merging the entity first

I believe the entity that I wish to delete, is a managed entity. But, regardless, why is merging it then removing it giving me the following error:
deleted instance passed to merge
Someone said on stackoverflow that merge should be ignored if it is a managed entity. So why is this not being ignored?
The way I wish to delete it is like so:
TrialUser mergedEntity = em.merge(tu);
em.remove(mergedEntity);
But this errors, but if I get rid of the first line it seems to work fine. But I want it the other way because that is consistent with the rest of the code.
EDIT:
#PersistenceContext(unitName = "UnitName")
protected EntityManager entityManager;
#Table(name="TRIAL_USER")
#Id
private BigDecimal id;
#ManyToOne(cascade= {CascadeType.ALL }, fetch=FetchType.EAGER)
#JoinColumn(name="TRIAL_USER_CLASS_ID3")
private TrialUserElement trialUserElement3;
#ManyToOne(cascade= {CascadeType.ALL }, fetch=FetchType.EAGER)
#JoinColumn(name="TRIAL_USER_CLASS_ID1")
private TrialUserElement trialUserElement1;
#ManyToOne(cascade= {CascadeType.ALL }, fetch=FetchType.EAGER)
#JoinColumn(name="TRIAL_USER_CLASS_ID2")
private TrialUserElement trialUserElement2;
You can have this error when you run some code into a transaction, when you commit at the end og the method.
When using spring in a method or class annotated with
#Transactional
This happens because you first delete the object (without committing) and then try to update it.
this code will generate the exception:
#Transactional
myethod(){
dao.delete(myObject);
myObject.setProperty("some value");
dao.save();
}
To avoid the error you should not delete and then save in the same transaction.
This is bit of a shot in the dark as I can't run your code, and these types of problems can turn out to be a bit complex. But rest assured that it should be fine to merge and then delete. I suspect it may be related to your many to one associated entities.
At the point where the transaction commits, the remove is being cascaded to the linked entities.
Even though the merge is redundant for your parent entity, I think the merge is being cascaded to the child entities, which have been deleted, hence the exception.
Try changing your cascade rules - pull it back to CascadeType.MERGE (for all three) and see if you still get the exception. Or change to CascadeType.DELETE, this will prevent the necessary merge being cascaded.
I faced the same issue, I discovered that during the update of the parent entity I was using cascade delete annotation at the child entity, so when I tried to delete this child, it triggered the cascade delete for the parent. then got this error.
To resolve the issue just remove the cascade delete from the child entity.
The JPA SPEC says that:
3.2.7.1 Merging Detached Entity State
If X is a removed entity instance, an IllegalArgumentException will be thrown by the
merge operation (or the transaction commit will fail).
That is why you cannot merge a deleted entity.

Merging JPA entity returns old values

I have 2 JPA entities that have a bidirectional relationship between them.
#Entity
public class A {
#ManyToOne(cascade={CascadeType.PERSIST, CascadeType.MERGE})
B b;
// ...
}
and
#Entity
public class B {
#OneToMany(mappedBy="b",cascade={CascadeType.PERSIST, CascadeType.MERGE})
Set<A> as = new HashSet<A>();
// ...
}
Now I update some field values of a detached A which also has relationships to some Bs and vice versa and merge it back by
public String save(A a) {
A returnedA = em.merge(a);
}
returnedA now has the values of A prior to updating them.
I suppose that
FINEST: Merge clone with references A#a7caa3be
FINEST: Register the existing object B#cacf2dfb
FINEST: Register the existing object A#a7caa3be
FINEST: Register the existing object A#3f2584b8
indicates that the referenced As in B (which still have the old values) are responsible for overwriting the new ones?
Does anyone have a hint how to prevent this to happen?
Any idea is greatly appreciated!
Thanks in advance.
Dirk, I've had a similar problem and the solution (I might not be leveraging the API correctly) was intensive. Eclipselink maintains a cache of objects and if they are not updated (merged/persisted) often the database reflects the change but the cascading objects are not updated (particularly the parents).
(I've declared A as the record joining multiple B's)
Entities:
public class A
{
#OneToMany(cascade = CascadeType.ALL)
Collection b;
}
public class B
{
#ManyToOne(cascade = {CascadeType.MERGE, CascadeType.REFRESH}) //I don't want to cascade a persist operation as that might make another A object)
A a;
}
In the case above a workaround is:
public void saveB(B b) //"Child relationship"
{
A a = b.getA();//do null checks as needed and get a reference to the parent
a.getBs().add(b); //I've had the collection be null
//Persistence here
entityInstance.merge(a); // or persist this will cascade and use b
}
public void saveA(A a)
{
//Persistence
entityInstance.merge(a) // or persist
}
What you're doing here is physically cascading the merge down the chain from the top. It is irritating to maintain, but it does solve the problem. Alternatively you can deal with it by checking if it is detached and refreshing/replacing but I've found that to be less desirable and irritating to work with.
If someone has a better answer as to what the correct setup is I would be happy to hear it. Right now I've taken this approach for my relational entities and it is definitely irritating to maintain.
Best of luck with it, I'd love to hear a better solution.

Found shared references to a collection org.hibernate.HibernateException

I got this error message:
error: Found shared references to a collection: Person.relatedPersons
When I tried to execute addToRelatedPersons(anotherPerson):
person.addToRelatedPersons(anotherPerson);
anotherPerson.addToRelatedPersons(person);
anotherPerson.save();
person.save();
My domain:
Person {
static hasMany = [relatedPersons:Person];
}
any idea why this happens ?
Hibernate shows this error when you attempt to persist more than one entity instance sharing the same collection reference (i.e. the collection identity in contrast with collection equality).
Note that it means the same collection, not collection element - in other words relatedPersons on both person and anotherPerson must be the same. Perhaps you're resetting that collection after entities are loaded? Or you've initialized both references with the same collection instance?
I had the same problem. In my case, the issue was that someone used BeanUtils to copy the properties of one entity to another, so we ended up having two entities referencing the same collection.
Given that I spent some time investigating this issue, I would recommend the following checklist:
Look for scenarios like entity1.setCollection(entity2.getCollection()) and getCollection returns the internal reference to the collection (if getCollection() returns a new instance of the collection, then you don't need to worry).
Look if clone() has been implemented correctly.
Look for BeanUtils.copyProperties(entity1, entity2).
Explanation on practice. If you try to save your object, e.g.:
Set<Folder> folders = message.getFolders();
folders.remove(inputFolder);
folders.add(trashFolder);
message.setFiles(folders);
MESSAGESDAO.getMessageDAO().save(message);
you don't need to set updated object to a parent object:
message.setFiles(folders);
Simple save your parent object like:
Set<Folder> folders = message.getFolders();
folders.remove(inputFolder);
folders.add(trashFolder);
// Not set updated object here
MESSAGESDAO.getMessageDAO().save(message);
Reading online the cause of this error can be also an hibernate bug, as workaround that it seems to work, it is to put a:
session.clear()
You must to put the clear after getting data and before commit and close, see example:
//getting data
SrReq sr = (SrReq) crit.uniqueResult();
SrSalesDetailDTO dt=SrSalesDetailMapper.INSTANCE.map(sr);
//CLEAR
session.clear();
//close session
session.getTransaction().commit();
session.close();
return dt;
I use this solution for select to database, for update or insert i don't know if this solution can work or can cause problems.
My problem is equal at 100% of this: http://www.progtown.com/topic128073-hibernate-many-to-many-on-two-tables.html
I have experienced a great example of reproducing such a problem.
Maybe my experience will help someone one day.
Short version
Check that your #Embedded Id of container has no possible collisions.
Long version
When Hibernate instantiates collection wrapper, it searches for already instantiated collection by CollectionKey in internal Map.
For Entity with #Embedded id, CollectionKey wraps EmbeddedComponentType and uses #Embedded Id properties for equality checks and hashCode calculation.
So if you have two entities with equal #Embedded Ids, Hibernate will instantiate and put new collection by the first key and will find same collection for the second key.
So two entities with same #Embedded Id will be populated with same collection.
Example
Suppose you have Account entity which has lazy set of loans.
And Account has #Embedded Id consists of several parts(columns).
#Entity
#Table(schema = "SOME", name = "ACCOUNT")
public class Account {
#OneToMany(fetch = FetchType.LAZY, mappedBy = "account")
private Set<Loan> loans;
#Embedded
private AccountId accountId;
...
}
#Embeddable
public class AccountId {
#Column(name = "X")
private Long x;
#Column(name = "BRANCH")
private String branchId;
#Column(name = "Z")
private String z;
...
}
Then suppose that Account has additional property mapped by #Embedded Id but has relation to other entity Branch.
#ManyToOne(fetch = FetchType.EAGER)
#JoinColumn(name = "BRANCH")
#MapsId("accountId.branchId")
#NotFound(action = NotFoundAction.IGNORE)//Look at this!
private Branch branch;
It could happen that you have no FK for Account to Brunch relation id DB so Account.BRANCH column can have any value not presented in Branch table.
According to #NotFound(action = NotFoundAction.IGNORE) if value is not present in related table, Hibernate will load null value for the property.
If X and Y columns of two Accounts are same(which is fine), but BRANCH is different and not presented in Branch table, hibernate will load null for both and Embedded Ids will be equal.
So two CollectionKey objects will be equal and will have same hashCode for different Accounts.
result = {CollectionKey#34809} "CollectionKey[Account.loans#Account#43deab74]"
role = "Account.loans"
key = {Account#26451}
keyType = {EmbeddedComponentType#21355}
factory = {SessionFactoryImpl#21356}
hashCode = 1187125168
entityMode = {EntityMode#17415} "pojo"
result = {CollectionKey#35653} "CollectionKey[Account.loans#Account#33470aa]"
role = "Account.loans"
key = {Account#35225}
keyType = {EmbeddedComponentType#21355}
factory = {SessionFactoryImpl#21356}
hashCode = 1187125168
entityMode = {EntityMode#17415} "pojo"
Because of this, Hibernate will load same PesistentSet for two entities.
In my case, I was copying and pasting code from my other classes, so I did not notice that the getter code was bad written:
#OneToMany(fetch = FetchType.LAZY, mappedBy = "credito")
public Set getConceptoses() {
return this.letrases;
}
public void setConceptoses(Set conceptoses) {
this.conceptoses = conceptoses;
}
All references conceptoses but if you look at the get says letrases
I too got the same issue, someone used BeanUtils.copyProperties(source, target). Here both source and target, are using the same collection as attribute.
So i just used the deep copy as below..
How to Clone Collection in Java - Deep copy of ArrayList and HashSet
Consider an entity:
public class Foo{
private<user> user;
/* with getters and setters */
}
And consider an Business Logic class:
class Foo1{
List<User> user = new ArrayList<>();
user = foo.getUser();
}
Here the user and foo.getUser() share the same reference. But saving the two references creates a conflict.
The proper usage should be:
class Foo1 {
List<User> user = new ArrayList<>();
user.addAll(foo.getUser);
}
This avoids the conflict.
I faced similar exception in my application. After looking into the stacktrace it was clear that exception was thrown within a FlushEntityEventListener class.
In Hibernate 4.3.7 the MSLocalSessionFactory bean no longer supports the eventListeners property. Hence, one has to explicitly fetch the service registry from individual Hibernate session beans and then set the required custom event listeners.
In the process of adding custom event listeners we need to make sure the corresponding default event listeners are removed from the respective Hibernate session.
If the default event listener is not removed then the case arises of two event listeners registered against same event. In this case while iterating over these listeners, against first listeners any collections in the session will be flagged as reached and while processing the same collection against second listener would throw this Hibernate exception.
So, make sure that when registering custom listeners corresponding default listeners are removed from registry.
My problem was that I had setup an #ManyToOne relationship. Maybe if the answers above don't fix your problem you might want to check the relationship that was mentioned in the error message.
Posting here because it's taken me over 2 weeks to get to the bottom of this, and I still haven't fully resolved it.
There is a chance, that you're also just running into this bug which has been around since 2017 and hasn't been addressed.
I honestly have no clue how to get around this bug. I'm posting here for my sanity and hopefully to shave a couple weeks of your googling. I'd love any input anyone may have, but my particular "answer" to this problem was not listed in any of the above answers.
I had to replace the following collection initilization:
challenge.setGoals(memberChallenge.getGoals());
with
challenge.setGoals(memberChallenge.getGoals()
.stream()
.map(dmo -> {
final ChallengeGoal goal = new ChallengeGoalImpl();
goal.setMemberChallenge(challenge);
goal.setGoalDate(dmo.getGoalDate());
goal.setGoalValue(dmo.getGoalValue());
return goal;
})
.collect(Collectors.toList()));
I changed
#OneToMany( cascade= CascadeType.ALL)
#JoinColumn(
name = "some_id",
referencedColumnName = "some_id"
)
to
#OneToMany(mappedBy = "some_id", cascade= CascadeType.ALL)
You're using pointers(indirectly), so sometimes you're copying the memory address instead of the object/collection you want. Hibernate checks this and throw that error. Here's what can you do:
Don't copy the object/collection;
Initiate a new empty one;
Make a function to copy it's content and call it;
For example:
public Entity copyEntity(Entity e){
Entity copy = new Entity();
e.copy(name);
e.setCollection2(null);
e.setCollection3(copyCollection(e.getCollection3());
return copy;
}
In a one to many and many to one relationship this error will occur. If you attempt to devote same instance from many to one entity to more than one instance from one to many entity.
For example, each person can have many books but each of these books can be owned by only one person if you consider more than one owner for a book this issue is raised.

Categories

Resources