I am working on GWT project with JDK7. It has two entryPoints (two clients) that are located in separate packages of the project. Clients share some code that is located in /common package, which is universal and accessible to both by having the following line in their respective xml-build files:
<source path='ui/common' />
Both clients have their own specific implementations of the Callback class which serves their running environments and performs various actions in case of failure or success. I have the following abstract class that implements AsyncCallback interface and then gets extended by its respective client.
public abstract class AbstractCallback<T> implements AsyncCallback<T> {
public void handleSuccess( T result ) {}
...
}
Here are the client's classes:
public class Client1Callback<T> extends AbstractCallback<T> {...}
and
public class Client2Callback<T> extends AbstractCallback<T> {...}
In the common package, that also contains these callback classes, I am working on implementing the service layer that serves both clients. Clients use the same back-end services, just handle the results differently. Based on the type of the client I want to build a corresponding instance of AbstractCallback child without duplicating anonymous class creation for each call. I am going to have many declarations that will look like the following:
AsyncCallback<MyVO> nextCallback = isClient1 ?
new Client1Callback<MyVO>("ABC") {
public void handleSuccess(MyVO result) {
doThatSameAction(result);
}
}
:
new Client2Callback<MyVO>("DEF") {
public void handleSuccess(MyVO result) {
doThatSameAction(result);
}
};
That will result in a very verbose code.
The intent (in pseudo-code) is to have the below instead:
AsyncCallback<MyVO> nextCallback = new CallbackTypeResolver.ACallback<MyVO>(clientType, "ABC"){
public void handleSuccess(MyVO result) {
doThatSameAction(result);
}
};
I was playing with the factory pattern to get the right child instance, but quickly realized that I am not able to override handleSuccess() method after the instance is created.
I think the solution may come from one of the two sources:
Different GWT way of dealing with custom Callback implementations, lets call it alternative existent solution.
Java generics/types juggling magic
I can miss something obvious, and would appreciate any advice.
I've read some articles here and on Oracle about types erasure for generics, so I understand that my question may have no direct answer.
Refactor out the handleSuccess behavior into its own class.
The handleSuccess behavior is a separate concern from what else is going on in the AsyncCallback classes; therefore, separate it out into a more useful form. See Why should I prefer composition over inheritance?
Essentially, by doing this refactoring, you are transforming an overridden method into injected behavior that you have more control over. Specifically, you would have instead:
public interface SuccessHandler<T> {
public void handleSuccess(T result);
}
Your callback would look something like this:
public abstract class AbstractCallback<T> implements AsyncCallback<T> {
private final SuccessHandler<T> handler; // Inject this in the constructor
// etc.
// not abstract anymore
public void handleSuccess( T result ) {
handler.handleSuccess(result);
}
}
Then your pseudocode callback creation statement would be something like:
AsyncCallback<MyVO> nextCallback = new CallbackTypeResolver.ACallback<MyVO>(
clientType,
"ABC",
new SuccessHandler<MyVO>() {
public void handleSuccess(MyVO result) {
doThatSameMethod(result);
}
});
The implementations of SuccessHandler don't have to be anonymous, they can be top level classes or even inner classes based on your needs. There's a lot more power you can do once you're using this injection based framework, including creating these handlers with automatically injected dependencies using Gin and Guice Providers. (Gin is a project that integrates Guice, a dependency injection framework, with GWT).
Related
I have a BIG Android app that needs to run different code for depending on the OS version, the manufacturer, and many other things. This app however needs to be a single APK. It needs to be smart enough at runtime to determine which code to use. Until now we have been using Guice but performance issues are causing us to consider migrating to Dagger. However, I've been unable to determine if we can achieve the same use case.
The main goal is for us have some code that runs at startup to provide a list of compatible Modules. Then pass that this list to Dagger to wire everything up.
Here is some pseudocode of the current implementation in Guice we want to migrate
import com.google.inject.AbstractModule;
#Feature("Wifi")
public class WifiDefaultModule extends AbstractModule {
#Override
protected void configure() {
bind(WifiManager.class).to(WifiDefaultManager.class);
bind(WifiProcessor.class).to(WifiDefaultProcessor.class);
}
}
#Feature("Wifi")
#CompatibleWithMinOS(OS > 4.4)
class Wifi44Module extends WifiDefaultModule {
#Override
protected void configure() {
bind(WifiManager.class).to(Wifi44Manager.class);
bindProcessor();
}
#Override
protected void bindProcessor() {
(WifiProcessor.class).to(Wifi44Processor.class);
}
}
#Feature("Wifi")
#CompatibleWithMinOS(OS > 4.4)
#CompatibleWithManufacturer("samsung")
class WifiSamsung44Module extends Wifi44Module {
#Override
protected void bindProcessor() {
bind(WifiProcessor.class).to(SamsungWifiProcessor.class);
}
#Feature("NFC")
public class NfcDefaultModule extends AbstractModule {
#Override
protected void configure() {
bind(NfcManager.class).to(NfcDefaultManager.class);
}
}
#Feature("NFC")
#CompatibleWithMinOS(OS > 6.0)
class Nfc60Module extends NfcDefaultModule {
#Override
protected void configure() {
bind(NfcManager.class).to(Nfc60Manager.class);
}
}
public interface WifiManager {
//bunch of methods to implement
}
public interface WifiProcessor {
//bunch of methods to implement
}
public interface NfcManager {
//bunch of methods to implement
}
public class SuperModule extends AbstractModule {
private final List<Module> chosenModules = new ArrayList<Module>();
public void addModules(List<Module> features) {
chosenModules.addAll(features);
}
#Override
protected void configure() {
for (Module feature: chosenModules) {
feature.configure(binder())
}
}
}
so at startup the app does this:
SuperModule superModule = new SuperModule();
superModule.addModules(crazyBusinessLogic());
Injector injector = Guice.createInjector(Stage.PRODUCTION, superModule);
where crazyBusinessLogic() reads the annotations of all the modules and determines a single one to use for each feature based on device properties. For example:
a Samsung device with OS = 5.0 will have crazyBusinessLogic() return the list { new WifiSamsung44Module(), new NfcDefaultModule() }
a Samsung device with OS = 7.0 will have crazyBusinessLogic() return the list { new WifiSamsung44Module(), new Nfc60Module() }
a Nexus device with OS = 7.0 will have crazyBusinessLogic() return the list { new Wifi44Module(), new Nfc60Module() }
and so on....
Is there any way to do the same with Dagger? Dagger seems to require you to pass the list of modules in the Component annotation.
I read a blog that seems to work on a small demo, but it seems clunky and the extra if statement and extra interfaces for components might cause my code to balloon.
https://blog.davidmedenjak.com/android/2017/04/28/dagger-providing-different-implementations.html
Is there any way to just use a list of modules returned from a function like we are doing in Guice? If not, what would be the closest way that would minimize rewriting the annotations and the crazyBusinessLogic() method?
Dagger generates code at compile-time, so you are not going to have as much module flexibility as you did in Guice; instead of Guice being able to reflectively discover #Provides methods and run a reflective configure() method, Dagger is going to need to know how to create every implementation it may need at runtime, and it's going to need to know that at compile time. Consequently, there's no way to pass an arbitrary array of Modules and have Dagger correctly wire your graph; it defeats the compile-time checking and performance that Dagger was written to provide.
That said, you seem to be okay with a single APK containing all possible implementations, so the only matter is selecting between them at runtime. This is very possible in Dagger, and will probably fall into one of four solutions: David's component-dependencies-based solution, Module subclasses, stateful module instances, or #BindsInstance-based redirection.
Component dependencies
As in David's blog you linked, you can define an interface with a set of bindings that you need to pass in, and then supply those bindings through an implementation of that interface passed into the builder. Though the structure of the interface makes this well-designed to pass Dagger #Component implementations into other Dagger #Component implementations, the interface may be implemented by anything.
However, I'm not sure this solution suits you well: This structure is also best for inheriting freestanding implementations, rather than in your case where your various WifiManager implementations all have dependencies that your graph needs to satisfy. You might be drawn to this type of solution if you need to support a "plugin" architecture, or if your Dagger graph is so huge that a single graph shouldn't contain all of the classes in your app, but unless you have those constraints you may find this solution verbose and restrictive.
Module subclasses
Dagger allows for non-final modules, and allows for the passing of instances into modules, so you can simulate the approach you have by passing subclasses of your modules into the Builder of your Component. Because the ability to substitute/override implementations is frequently associated with testing, this is described on the Dagger 2 Testing page under the heading "Option 1: Override bindings by subclassing modules (don’t do this!)"—it clearly describes the caveats of this approach, notably that the virtual method call will be slower than a static #Provides method, and that any overridden #Provides methods will necessarily need to take all parameters that any implementation uses.
// Your base Module
#Module public class WifiModule {
#Provides WifiManager provideWifiManager(Dep1 dep1, Dep2 dep2) {
/* abstract would be better, but abstract methods usually power
* #Binds, #BindsOptionalOf, and other declarative methods, so
* Dagger doesn't allow abstract #Provides methods. */
throw new UnsupportedOperationException();
}
}
// Your Samsung Wifi module
#Module public class SamsungWifiModule {
#Override WifiManager provideWifiManager(Dep1 dep1, Dep2 dep2) {
return new SamsungWifiManager(dep1); // Dep2 unused
}
}
// Your Huawei Wifi module
#Module public class HuaweiWifiModule {
#Override WifiManager provideWifiManager(Dep1 dep1, Dep2 dep2) {
return new HuaweiWifiManager(dep1, dep2);
}
}
// To create your Component
YourAppComponent component = YourAppComponent.builder()
.baseWifiModule(new SamsungWifiModule()) // or name it anything
// via #Component.Builder
.build();
This works, as you can supply a single Module instance and treat it as an abstract factory pattern, but by calling new unnecessarily, you're not using Dagger to its full potential. Furthermore, the need to maintain a full list of all possible dependencies may make this more trouble than it's worth, especially given that you want all dependencies to ship in the same APK. (This might be a lighter-weight alternative if you need certain kinds of plugin architecture, or you want to avoid shipping an implementation entirely based on compile-time flags or conditions.)
Module instances
The ability to supply a possibly-virtual Module was really meant more for passing module instances with constructor arguments, which you could then use for choosing between implementations.
// Your NFC module
#Module public class NfcModule {
private final boolean useNfc60;
public NfcModule(boolean useNfc60) { this.useNfc60 = useNfc60; }
#Override NfcManager provideNfcManager() {
if (useNfc60) {
return new Nfc60Manager();
}
return new NfcDefaultManager();
}
}
// To create your Component
YourAppComponent component = YourAppComponent.builder()
.nfcModule(new NfcModule(true)) // again, customize with #Component.Builder
.build();
Again, this doesn't use Dagger to its fullest potential; you can do that by manually delegating to the right Provider you want.
// Your NFC module
#Module public class NfcModule {
private final boolean useNfc60;
public NfcModule(boolean useNfc60) { this.useNfc60 = useNfc60; }
#Override NfcManager provideNfcManager(
Provider<Nfc60Manager> nfc60Provider,
Provider<NfcDefaultManager> nfcDefaultProvider) {
if (useNfc60) {
return nfc60Provider.get();
}
return nfcDefaultProvider.get();
}
}
Better! Now you don't create any instances unless you need them, and Nfc60Manager and NfcDefaultManager can take arbitrary parameters that Dagger supplies. This leads to the fourth solution:
Inject the configuration
// Your NFC module
#Module public abstract class NfcModule {
#Provides static NfcManager provideNfcManager(
YourConfiguration yourConfiguration,
Provider<Nfc60Manager> nfc60Provider,
Provider<NfcDefaultManager> nfcDefaultProvider) {
if (yourConfiguration.useNfc60()) {
return nfc60Provider.get();
}
return nfcDefaultProvider.get();
}
}
// To create your Component
YourAppComponent component = YourAppComponent.builder()
// Use #Component.Builder and #BindsInstance to make this easy
.yourConfiguration(getConfigFromBusinessLogic())
.build();
This way you can encapsulate your business logic in your own configuration object, let Dagger provide your required methods, and go back to abstract modules with static #Provides for the best performance. Furthermore, you don't need to use Dagger #Module instances for your API, which hides implementation details and makes it easier to move away from Dagger later if your needs change. For your case, I recommend this solution; it'll take some restructuring, but I think you'll wind up with a clearer structure.
Side note about Guice Module#configure(Binder)
It's not idiomatic to call feature.configure(binder()); please use install(feature); instead. This allows Guice to better describe where errors occur in your code, discover #Provides methods in your Modules, and to de-duplicate your module instances in case a module is installed more than once.
Is there any way to just use a list of modules returned from a
function like we are doing in Guice? If not, what would be the closest
way that would minimize rewriting the annotations and the
crazyBusinessLogic() method?
Not sure this is the answer you're looking for, but just in case you do have other options and for other community members I will describe completely different approach.
I would say that the way you used Guice until now is an abuse of DI framework, and you will be much better off leveraging this opportunity to remove this abuse instead of implementing it in Dagger.
Let me explain.
The main goal of dependency injection architectural pattern is to have construction logic segregated from functional logic.
What you basically want to achieve is standard polymorphism - provide different implementations based on a set of parameters.
If you use Modules and Components for that purpose, you will end up structuring your DI code according to business rules governing the need for these polymorphic implementations.
Not only will this approach requires much more boilerplate, but it also prevents emergence of cohesive Modules that have meaningful structure and provide insights into application's design and architecture.
In addition, I doubt you will be able to unit test these business rules "encoded" inside dependency injection logic.
There are two approaches which are much better IMHO.
First approach is still not very clean, but, at least, it doesn't compromise the large scale structure of dependency injection code:
#Provides
WifiManager wifiManager(DeviceInfoProvider deviceInfoProvider) {
if (deviceInfoProvider.isPostKitKat() ) {
if (deviceInfoProvider.isSamsung()) {
return new WifiMinagerSamsungPostKitKat();
} else {
return new WifiMinagerPostKitKat();
}
} else {
return new WifiMinagerPreKitKat();
}
}
The logic that chooses between implementation still resides in DI code, but, at least, it did not make it into the large scale structure of that part.
But the best solution in this case is to make a proper object oriented design, instead of abusing DI framework.
I'm pretty sure that the source code of all these classes is very similar. They might even inherit from one another while overriding just one single method.
In this case, the right approach is not duplication/inheritance, but composition using Strategy design pattern.
You would extract the "strategy" part into a standalone hierarchy of classes, and define a factory class that constructs them based on system's parameters. Then, you could do it like this:
#Provides
WiFiStrategyFactory wiFiStrategyFactory(DeviceInfoProvider deviceInfoProvider) {
return new WiFiStrategyFactory(deviceInfoProvider);
}
#Provides
WifiManager wifiManager(WiFiStrategyFactory wiFiStrategyFactory) {
return new WifiMinager(WiFiStrategyFactory.newWiFiStrategy());
}
Now construction logic is simple and clear. The differentiation between strategies encapsulated inside WiFiStrategyFactory and can be unit tested.
The best part of this proper approach is that when a new strategy will need to be implemented (because we all know that Android fragmentation is unpredictable), you won't need to implement new Modules and Components, or make any changes to DI structure. This new requirement will be handled by just providing yet another implementation of the strategy and adding the instantiation logic to the factory.
All that while being kept safe with unit tests.
Let's say I have 1 complete class with around 20 methods which provide different functionalities.
Now we have multiple clients using this class, but we want them to have restricted access.
For e.g. -
Client 1 - Gets access to method1/m3/m5/m7/m9/m11
Client 2 - Gets access to method2/m4/m6/m8/m10/m12
Is there any way I can restrict this access?
One solution which I thought:
Create 2 new classes extending Parent class and override methods which are not accessible and throw Exception from them.
But then if 3rd client with different requirement, we have to create new subclass for them.
Is there any other way to do this?
Create 2 new classes extending Parent class and override methods which
are not accessible and throw Exception from them. But then if 3rd
client with different requirement, we have to create new subclass for
them.
It is a bad solution because it violates Polymorphism and the Liskov Substitution Principle. This way will make your code less clear.
At first, you should think about your class, are you sure that it isn't overloaded by methods? Are you sure that all of those methods relate to one abstraction? Perhaps, there is a sense to separate methods to different abstractions and classes?
If there is a point in the existence of those methods in the class then you should use different interfaces to different clients. For example, you can make two interfaces for each client
interface InterfaceForClient1 {
public void m1();
public void m3();
public void m5();
public void m7();
public void m9();
public void m11();
}
interface InterfaceForClient2 {
public void m2();
public void m4();
public void m6();
public void m8();
public void m10();
public void m12();
}
And implement them in your class
class MyClass implements InterfaceForClient1, InterfaceForClient2 {
}
After it, clients must use those interfaces instead of the concrete implementation of the class to implement own logic.
You can create an Interface1 which defines methods only for Client1, and an Interface2 which defines methods only for Client2. Then, your class implements Interface1 and Interface2.
When you declare Client1 you can do something like: Interface1 client1.
With this approach, client1 can accesses only methods of this interface.
I hope this will help you.
The other answers already present the idiomatic approach. Another idea is a dynamic proxy decorating the API with an access check.
In essence, you generate a proxy API that has additional checks on method calls to implement a form of Access Control.
Example Implementation:
package com.example;
import java.lang.reflect.InvocationHandler;
import java.lang.reflect.InvocationTargetException;
import java.lang.reflect.Method;
import java.lang.reflect.Proxy;
#FunctionalInterface
public interface ACL<P, Q> {
boolean allowed(P accessor, Q target, Method method, Object[] args);
class ACLException extends RuntimeException {
ACLException(String message) {
super(message);
}
}
#SuppressWarnings("unchecked")
default Q protect(P accessor, Q delegate, Class<Q> dType) {
if (!dType.isInterface()) {
throw new IllegalArgumentException("Delegate type must be an Interface type");
}
final InvocationHandler handler = (proxy, method, args) -> {
if (allowed(accessor, delegate, method, args)) {
try {
return method.invoke(delegate, args);
} catch (InvocationTargetException e) {
throw e.getCause();
}
} else {
throw new ACLException("Access denies as per ACL");
}
};
return (Q) Proxy.newProxyInstance(dType.getClassLoader(), new Class[]{dType}, handler);
}
}
Example Usage:
package com.example;
import java.lang.reflect.Method;
public class Main {
interface API {
void doAlpha(int arg);
void doBeta(String arg);
void doGamma(Object arg);
}
static class MyAPI implements API {
#Override
public void doAlpha(int arg) {
System.out.println("Alpha");
}
#Override
public void doBeta(String arg) {
System.out.println("Beta");
}
#Override
public void doGamma(Object arg) {
System.out.println("Gamma");
}
}
static class AlphaClient {
void use(API api) {
api.doAlpha(100);
api.doBeta("100");
api.doGamma(this);
}
}
public static class MyACL implements ACL<AlphaClient, API> {
#Override
public boolean allowed(AlphaClient accessor, API target, Method method, Object[] args) {
final String callerName = accessor.getClass().getName().toLowerCase();
final String methodName = method.getName().toLowerCase().replace("do", "");
return callerName.contains(methodName);
}
}
public static void main(String[] args) {
final MyACL acl = new MyACL();
final API api = new MyAPI();
final AlphaClient client = new AlphaClient();
final API guardedAPI = acl.protect(client, api, API.class);
client.use(guardedAPI);
}
}
Notes:
The accessor does not have to be the client object itself, it can be a string key or token that helps ACL identify the client.
The ACL implementation here is rudimentary, more interesting ones could be One that reads ACL from some file or One that uses method and client annotations as rules.
If you don't want to define an interface for API class, consider a tool like javassist to directly proxy a class.
Consider other popular Aspect Oriented Programming solutions
You should create one super class with all the methods and then provide Client specific implementations in their corresponding sub classes extending from the super class defined earlier.
If there are methods which are common implementation for all clients, leave their implementations to the super class.
It seems like you are a bit confused about the purpose of Classes and Interfaces. As far as I know, an Interface is a contract defining which functionality a piece of software provides. This is from official java tutorial:
There are a number of situations in software engineering when it is
important for disparate groups of programmers to agree to a "contract"
that spells out how their software interacts. Each group should be
able to write their code without any knowledge of how the other
group's code is written. Generally speaking, interfaces are such
contracts.
Then you can write a Class which implements this Interface/contract, that is, provides the code that actually perform what was specified. The List interface and the ArrayList class are both an example of this.
Interfaces and Classes have access modifiers, but they aren't designed to specify permissions to specific clients. They specify what is visible for other piece of software depending the location where it is defined: Class, Package, Subclass, World. For example, a private method can be accessed only inside the class where it is defined.
From official Java tutorial again:
Access level modifiers determine whether other classes can use a
particular field or invoke a particular method. There are two levels
of access control:
At the top level—public, or package-private (no explicit modifier).
At the member level—public, private, protected, or package-private (no
explicit modifier).
Maybe you want something more powerful like Access Control List (ACL).
Your question is a little unclear, leading to different possible answers. I'll try to cover some of the possible areas:
Object encapsulation
If your goal is to provide interfaces to different clients that only provide certain functionality or a specific view there are several solutions. Which matches best depends on the purpose of your class:
Refactoring
The question somehow suggests that your class is responsible for different tasks. That might be an indicator, that you could tear it apart into distinct classes that provide the different interfaces.
Original
class AllInOne {
A m1() {}
B m2() {}
C m3() {}
}
client1.useClass(allInOneInstance);
client2.useClass(allInOneInstance);
client3.useClass(allInOneInstance);
Derived
class One {
A m1() {}
}
class Two {
B m2() {}
}
class Three {
C m3() {}
}
client1.useClass(oneInstance);
client2.useClass(twoInstance);
client3.useClass(threeInstance);
Interfaces
If you choose to keep the class together (there might be good reasons for it), you could have the class implement interfaces that model the view required by different clients. By passing instances of the appropriate interface to the clients they will not see the full class interface:
Example
class AllInOne implements I1, I2, I3 {
...
}
interface I1 {
A m1();
}
But be aware that clients will still be able to cast to the full class like ((AllInOne) i1Instance).m2().
Inheritance
This was already outline in other answers. I'll therefore skip this here. I don't think this is a good solution as it might easily break in a lot of scenarios.
Delegation
If casting is a risk to you, you can create classes that only offer the desired interface and delegate to the actual implementation:
Example
class Delegate1 {
private AllInOne allInOne;
public A m1() {
return allInOne.m1();
}
}
Implementing this can be done in various ways and depends on your environment like explicit classes, dynamic proxies , code generation, ...
Framework
If you are using an Application Framework like Spring you might be able to use functionality from this Framework.
Aspects
AOP allows you to intercept method calls and therefor apply some access control logic there.
Security
Please note that all of the above solutions will not give you actual security. Using casts, reflection or other techniques will still allow clients to obtain access to the full functionality.
If you require stronger access limitations there are techniques that I will just briefly outline as they might depend on your environment and are more complex.
Class Loader
Using different class loaders you can make sure that parts of your code have no access to class definitions outsider their scope (used e.g. in tomcat to isolate different deployments).
SecurityManager
Java offers possibilities to implement your own SecurityManager this offers ways to add some extra level of access checking.
Custom build Security
Of course you can add your own access checking logic. Yet I don't think this will be a viable solution for in JVM method access.
In the project I'm working on (not my project, just working on it), there are many structures like this:
project.priv.logic.MyServiceImpl.java
project.priv.service.MyServiceFactoryImpl.java
project.pub.logic.MyServiceIF.java
project.pub.service.MyServiceFactoryIF.java
project.pub.service.MyServiceFactorySupplier.java
And the Service is called like this:
MyServiceFactorySupplier.getMyServiceFactory().getMyService()
I understand that a factory is used to hide the implementation of MyServiceImpl if the location or content of MyServiceImpl changes. But why is there another factory for my factory (the supplier)? I think the probability of my Factory and my FactorySupplier to change is roughly equal. Additionally I have not found one case, where the created factory is created dynamically (I think this would be the case in the Abstract Factory Pattern) but only returns MyServiceFactoryImpl.getInstance(). Is it common practice to implement a FactorySupplier? What are the benefits?
I can think of a couple of examples (some of the quite contrived) where this pattern may be useful. Generally, you have two or more implementations for your Services e.g.
one for production use / one for testing
one implementation for services accessing a database, another one for accessing a file base storage
different implementations for different locales (translations, formatting of dates and numbers etc)
one implementation for each type of database you want to access
In each of these examples, an initialization for your FactorySupplier is needed at startup of the application, e.g. the FactorySupplier is parametrized with the locale or the database type and produces the respective factories based in these parameters.
If I understand you correctly, you don't have any kind of this code in your application, and the FactorySupplier always returns the same kind of factory.
Maybe this was done to program for extensibility that was not needed yet, but IMHO this looks rather like guessing what the application might need at some time in the future than like a conscious architecture choice.
Suppose you have a hierarchy of classes implementing MyServiceIF.
Suppose you have a matching hierarchy of factory classes to create each of the instances in the original hierarchy.
In that case, MyServiceFactorySupplier could have a registry of available factories, and you might have a call to getMyServiceFactory(parameter), where the parameter determines which factory will be instantiated (and therefore an instance of which class would be created by the factory).
I don't know if that's the use case in your project, but it's a valid use case.
Here's a code sample of what I mean :
public class MyServiceImpl implements MyServiceIF
{
....
}
public class MyServiceImpl2 implements MyServiceIF
{
....
}
public class MyServiceFactoryImpl implements MyServiceFactoryIF
{
....
public MyServiceIF getMyService ()
{
return new MyServiceImpl ();
}
....
}
public class MyServiceFactoryImpl2 implements MyServiceFactoryIF
{
....
public MyServiceIF getMyService ()
{
return new MyServiceImpl2 ();
}
....
}
public class MyServiceFactorySupplier
{
....
public static MyServiceFactoryIF getMyServiceFactory()
{
return new MyServiceFactoryImpl (); // default factory
}
public static MyServiceFactoryIF getMyServiceFactory(String type)
{
Class serviceClass = _registry.get(type);
if (serviceClass != null) {
return serviceClass.newInstance ();
} else {
return getMyServiceFactory(); // default factory
}
}
....
}
I have a related hierarchy of classes that are instantiated by a hierarchy of factories. While I don't have a FactorySupplier class, I have in the base class of the factories hierarchy a static method BaseFactory.getInstance(parameter), which returns a factory instance that depends on the passed parameter.
I'm designing UI Tests for a web application with Selenium in JUnit. I have a base test class with something like this from which I inherit my tests:
public class BaseTest {
protected TestSteps test;
protected Assertions assertion;
// set everything up...
}
and the tests then only look like this:
public class TestX extends BaseTest {
#Test
public testFeature1() {
test.clickSomething().enterSomething(); // method chaining
assertion.assertSomething();
//...
}
}
The problem I'm having: There are different modules in the web app, and Assertions/TestSteps methods that only apply to one module clutter the interface of the Assertions/TestSteps class for the other modules.
Thus I tried to split the Assertions/TestSteps up.
The problem is, the method chaining returns instances of TestSteps. Of course, when I have Module1TestSteps with method doSomethingSpecific() then I would expect test.clickSomething().doSomethingSpecific() to work, but it does not, because clickSomething() would return a TestSteps instance, not a Module1TestSteps instance.
I "solved" this by making an AbstractTestSteps<T extends AbstractTestSteps<T> class (which contains all the base TestSteps methods) protected abstract T getThis();.
I then extend this class like this:
public class BaseTestSteps extends AbstractTestSteps<BaseTestSteps> {
// Constructors
protected BaseTestSteps getThis() {
return this;
}
// that's it, the "base methods" are all inherited from AbstractTestSteps...
}
for the base TestSteps and
public class Module1TestSteps extends AbstractTestSteps<Module1TestSteps> {
// same constructors...
protected Module1TestSteps getThis() {
return this;
}
public Module1TestSteps doSomeThingSpecific() {
// do something
return getThis();
}
}
for my specialized TestSteps. It works for now, but I don't like it because of the following reasons:
All the general methods are in the AbstractTestSteps class, but they are used through an instance of BaseTestSteps
What if I have a submodule of Module1? I can't inherit from Module1TestSteps, only from AbstractTestSteps.
I think it's not trivial to understand the relation of these classes when one of my colleagues tries to add a new TestSteps class.
How can this be made better?
Use the Page Object pattern. That is, create an API for each page so that your tests describe navigating and interacting with pages in a way that describes the user's experience.
It has a few benefits that address your concerns:
It uses composition, not inheritance
It is easy to understand and explain to people maintaining the tests because the tests read like a description of somebody using the application
I'm developing an app with Jersey where I have many resources. Although main functionality of these resources varies, they share lots of common methods (like list, read, update and etc). The app runs on Google App Engine and uses Guice for dependency injection.
My first approach was to have a generic AbstactResource which contains all common logic, and it's respectively extended by all other resources which add their required custom methods.
public class AbstractResource<T> {
#GET
public ListPage<T> list(#QueryParam("limit") Integer limit,
#QueryParam("start") Integer start) {
// ... implementation
}
#GET
#Path("/{id}")
public T get(#PathParam("id") Long id) {
// ... implementation
}
And sample resource looks like:
public class TenantResource extends AbstractResource<Tenant> {
// custom resource related methods here
}
Everything works fine in this case. The problems appear when I add one more level of abstraction. Let's say if I want to store history and changelogs only for some of my resources. I've created one more abstract class extending AbstractResource called AudiatableResource which adds the required functionality.
public abstract class AuditableResource<T extends AuditableModel>
extends AbstractResource {
// here I override update and create methods to save changelogs
}
As you see the type parameter in this case has changed (now it extends AuditableModel).
New concrete resources will look like:
public class PropertyResource extends AuditableResource<Tenant> {
// custom resource related methods here
}
In this case everything still works, but this time I'm getting lots of warning messages on start-up:
WARNING: Return type T of method public T com.pkg.AbstractResource.get(java.lang.Long) is not resolvable to a concrete type
WARNING: Return type T of method public T com.pkg.AbstractResource.getNew() is not resolvable to a concrete type
WARNING: Return type com.pkg.data.ListPage<T> of method public com.pkg.ListPage<T> com.pkg.AbstractResource.list(java.lang.Integer,java.lang.Integer) is not resolvable to a concrete type
I really wonder if this approach is correct using Jersey and if I can just ignore this messages. It would be interesting to know how resources are organized in cases when there are large number of them.
One way to go is to separate the definition of the resources from the implementation.
Have very simple resource classes, defining the different services you want to offer. This way, the API you expose through rest is easily located and audited. The different methods are probably delegates to an implementation class
Implement the business logic of your resources in the implementations, where you might want to use inheritance to factor common behavior.
The reason you get those messages at runtime is that jersey uses runtime information about types in the resource. Generic type information being erased at compile time, it cannot get the actual return type of the generic class methods. If you provide a REST "facade" to your implementation, you can make this explicit.
public class Facade {
private final PropertyResource propertyResource;
public Facade() {
propertyResource = new PropertyResource();
}
#GET
#Path("somepath")
public Tenant something() {
return propertyResource.something();
}
}