I wrote a recursive backtracking algorithm for the so-called "Coin Change Problem". I store the coin values (int) in a self-written LinkedList ("ll") and each of those LinkedLists is stored inside one master LinkedList ("ll_total"). Now, when I try to print out the LinkedLists inside the master LinkedList, all I get is "LinkedList#1e88b3c". Can somebody tell me how to modify the code, in order to print out the coin values properly?
I would also like the algorithm to chose the LinkedList with the least values stored inside, as it would represent the optimal coin combination for the "coin change problem".
import java.util.Scanner;
public class CoinChange_Backtracking {
static int[] coins = {3, 2, 1};
static int index_coins = 0;
static int counter = 0;
static LinkedList ll = new LinkedList();
static LinkedList ll_total = new LinkedList();
public static void main(String[] args) {
Scanner myInput = new Scanner(System.in);
int amount;
System.out.println("Put in the amount of money: ");
amount = myInput.nextInt();
if (amount < 101) {
//Start recursion and display result.
recursiveFunction(coins, amount, index_coins, ll);
ll_total.show_ll();
} else {
System.out.println("The value must be less than 100!");
}
}
public static LinkedList recursiveFunction(int[] coins, int amount, int index_coins, LinkedList ll) {
//The current coin is being omitted. (If index_coins + 1 is still within range.)
if ((index_coins + 1) < coins.length) {
ll = recursiveFunction(coins, amount, index_coins + 1, ll);
ll_total.insert_ll(ll);
for (int i = 0; i < counter; i++) {
ll.deleteAt(0);
}
counter = 0;
}
//The current coin is not being omitted. (If there is still some change left and value of change isn't lower than value of current coin.)
if (amount != 0) {
if (amount >= coins[index_coins]) {
ll.insert(coins[index_coins]);
counter++;
ll = recursiveFunction(coins, amount - coins[index_coins], index_coins, ll);
}
}
return ll;
}
}
public class LinkedList {
Node head;
public void insert(int data) {
Node node = new Node();
node.data = data;
node.next = null;
if (head == null) {
head = node;
} else {
Node n = head;
while(n.next != null) {
n = n.next;
}
n.next = node;
}
}
public void insert_ll(LinkedList ll) {
Node node = new Node();
node.ll = ll;
node.next = null;
if (head == null) {
head = node;
} else {
Node n = head;
while(n.next != null) {
n = n.next;
}
n.next = node;
}
}
public void deleteAt(int index) {
if(index == 0) {
head = head.next;
} else {
Node n = head;
Node n1 = null;
for (int i = 0; i < index - 1; i++) {
n = n.next;
}
n1 = n.next;
n.next = n1.next;
n1 = null;
}
}
public void show() {
Node node = head;
while(node.next != null) {
System.out.println(node.data);
node = node.next;
}
System.out.println(node.data);
}
public void show_ll() {
Node node = head;
while(node.next != null) {
System.out.println(node.ll);
node = node.next;
}
System.out.println(node.ll);
}
//A toString method I tried to implement. Causes an array error.
/*
public String toString() {
Node n = head.next;
String temp = "";
while (n != null) {
temp = temp + n.data + " ";
n = n.next;
}
return temp;
}
*/
}
public class Node {
int data;
LinkedList ll;
Node next;
}
To answer your question. You are printing the linked list object, see here System.out.println(node.ll);
There are several ways to do it right. One approach is to question why you use Node and LinkedList the way you do ? A node can have a linked list and a linked list can have a node, I believe this is not really what you wanted. Maybe you can make it work, but from a design point of view in my experience it is not good. I find it confusing and it's a great source of bugs.
I try to list some points that caught my eye (or that my IDE had caught for my eyes).
You are not closing the Scanner object. Just close it at the end of the program or use the try-with-resources.
As mentioned before you have linked list that has a node and a node that has a linked list. You are not using that correctly in your program. I recommend to review that approach. It is error prone.
Also simply use the LinkedList of the Java library unless you have a good reason not to. It works fine and offers all you need.
You use many static, global (within the scope of the package) variables. In this case I think you can avoid that. coins does not need to be given as a parameter every time. It should be an immutable object. It is not supposed to change.
...
And I am not sure if it is a backtracking algorithm. It is certainly tree recursive. This just as a side note.
I'd like to propose a solution that looks similar to yours. I'd probably do it differently my way, but then it probably takes time to understand it. I try to adopt your style, which I hope helps. I simplified the program.
In order to print the result, simply write a helper function.
The linked list is an object. You have to make a copy of the list every time you call the recursion in order to work on a dedicated object. Otherwise you modify the same object while recursing different paths.
You can simply use a list of lists. A global list of lists (within package scope), and a list of which you make a copy every time you recurse. When you reach a good base case you add it to the global list. Otherwise just ignore.
import java.util.LinkedList;
import java.util.Scanner;
public class CoinChangeBacktracking {
static final int[] COINS = {3, 2, 1};
static final LinkedList<LinkedList<Integer>> changes = new LinkedList<>();
public static void main(String[] args) {
Scanner myInput = new Scanner(System.in);
int amount;
System.out.println("Put in the amount of money: ");
amount = myInput.nextInt();
if (amount < 101) {
// Start recursion and display result.
recursiveFunction(amount, 0, new LinkedList<>());
print(changes);
} else {
System.out.println("The value must be less than 100!");
}
myInput.close();
}
static void recursiveFunction(int amount, int index,
LinkedList<Integer> list) {
// exact change, so add it to the solution
if (amount == 0) {
changes.add(list);
return;
}
// no exact change possible
if (amount < 0 || index >= COINS.length) {
return;
}
// explore change of amount without current coin
recursiveFunction(amount, index + 1, new LinkedList<>(list));
// consider current coin for change and keep exploring
list.add(COINS[index]);
recursiveFunction(amount - COINS[index], index, new LinkedList<>(list));
}
static void print(LinkedList<LinkedList<Integer>> ll) {
for (LinkedList<Integer> list : ll) {
for (Integer n : list) {
System.out.print(n + ", ");
}
System.out.println();
}
}
}
Given singly Linked List: 1 -> 2 -> 3 -> 4 -> 5 -> null
Modify middle element as doubly Linked List Node
here middle element is 3
3 -> next should point to 4
3 -> prev should point to 1
Can any one suggest how can it be done ? interviewer gave me hint use interface. but I couldn't figure it out how.
I have to iterate over this linked list and print all the node and when it reaches to the middle, print where next and prev is pointing to, then print till the end of the list.
Expected output : 1, 2, Middle: 3, Prev: 1, Next: 4, 5
I'm facing problem in adding the middle node.
So, this "works", but if this is expected to be answered on an interview, it is way too much work.
LinkedList
public class LinkedList {
public interface Linkable<V, L extends Linkable> {
V getValue();
L getNext();
void setNext(L link);
}
public static class Node implements Linkable<Integer, Linkable> {
int value;
Linkable next;
Node(int value) {
this.value = value;
}
#Override
public Integer getValue() {
return value;
}
#Override
public Linkable getNext() {
return next;
}
#Override
public void setNext(Linkable link) {
this.next = link;
}
}
private Linkable head;
public boolean isEmpty() {
return this.head == null;
}
public Linkable getHead() {
return head;
}
public void add(int v) {
Node next = new Node(v);
if (isEmpty()) {
this.head = next;
} else {
Linkable tmp = this.head;
while (tmp.getNext() != null) {
tmp = tmp.getNext();
}
tmp.setNext(next);
}
}
}
Interface
interface DoublyLinkable<V, L extends LinkedList.Linkable> extends LinkedList.Linkable<V,L> {
LinkedList.Linkable getPrev();
void setPrev(LinkedList.Linkable prev);
}
DoubleNode
public class DoubleNode extends LinkedList.Node implements DoublyLinkable<Integer, LinkedList.Linkable> {
LinkedList.Linkable prev;
public DoubleNode(int value) {
super(value);
}
#Override
public LinkedList.Linkable getPrev() {
return prev;
}
#Override
public void setPrev(LinkedList.Linkable prev) {
this.prev = prev;
}
}
Driver
Outputs
1, 2, Middle: 3, Prev: 1, Next: 4, 5
public class Driver {
public static LinkedList getList() {
LinkedList list = new LinkedList();
for (int i = 1; i <= 5; i++) {
list.add(i);
}
return list;
}
public static void main(String[] args) {
LinkedList list = getList();
LinkedList.Linkable head = list.getHead();
LinkedList.Linkable beforeMiddle = null;
LinkedList.Linkable middle = list.getHead();
LinkedList.Linkable end = list.getHead();
if (head != null) {
// find the middle of the list
while (true) {
if (end.getNext() == null || end.getNext().getNext() == null) break;
beforeMiddle = middle;
middle = middle.getNext();
end = end.getNext().getNext();
}
// Replace middle by reassigning the pointer to it
if (beforeMiddle != null) {
DoubleNode n = new DoubleNode((int) middle.getValue()); // same value
n.setPrev(list.getHead()); // point back to the front
n.setNext(middle.getNext()); // point forward to original value
beforeMiddle.setNext((DoublyLinkable) n);
middle = beforeMiddle.getNext();
}
// Build the "expected" output
StringBuilder sb = new StringBuilder();
final String DELIMITER = ", ";
head = list.getHead();
boolean atMiddle = false;
if (head != null) {
do {
if (head instanceof DoublyLinkable) {
atMiddle = true;
String out = String.format("Middle: %d, Prev: %d, ", (int) head.getValue(), (int) ((DoublyLinkable) head).getPrev().getValue());
sb.append(out);
} else {
if (atMiddle) {
sb.append("Next: ");
atMiddle = false;
}
sb.append(head.getValue()).append(DELIMITER);
}
head = head.getNext();
} while (head != null);
}
sb.setLength(sb.length() - DELIMITER.length());
System.out.println(sb.toString());
}
}
}
By definition, a single-linked list consists of single-linked nodes only, and a double-linked consists of double-linked nodes only. Otherwise. it is neither.
By definition the field prev of a double-linked list must point to the previous element.
Whatever you are supposed to build. It's something not well specified. So if you really were asked this in an interview (and did not misunderstand the question - maybe he wanted you to point out that ghis violates the interface?) this is a case for the code horror stories of http://thedailywtf.com/ - section "incompetent interviewers".
If you haven't, you'd better define a lenght() function so given one linked list you can know how many nodes does it have.
Thanks to the response of Cereal_Killer to the previous version of this answer, I noticed that the list is firstly a singly linked list, and you just have to make the middle node be linked both to the next node and to some previous node.
Now I guess that you have defined two structures (Struct, Class or whatever depending on the language you're using). So lets say you have Node_s defined as a node with only a next pointer, and Node_d with both a next and a prev pointer. (Node_d may inherite from Node_s so you just have to add the prev attribute in the child class). Knowing this, the code above should be doing what you need:
function do_it(my_LinkedList linkedList){
int i_middle;
int length = linkedList.length();
if ( (length ÷ 2 ) != 0 ) i_middle = length / 2;
else return -1;
Node_s aux = linkedList.first();
int index = 0;
Node_d middle= null;
while (aux != null) {
if (index == i_middle - 1){ //now aux is the middle's previous node
middle.data = aux.next.data; //aux.next is the middle singly node, we assignate the data to the new double linked node
middle.prev = aux; //as we said, aux is the prev to the middle
midle.next = aux.next.next; //so aux.next.next is the next to the middle
print(what you need to print);
}else {
print("Node " + index " next: "+ aux.next);
}//end if
index++;
aux = aux.next;
} //end while
}//end function
This previous code should be doing what you need. I wrote the answer in some kind of pseudo-java code so if you're not familiar with Java or don't understand what my pseudo-code does, please let me know. Anyway, the idea of my code may present some troubles depending on the language you're working with, so you'll have to adapt it.
Note that at the end of the execution of this program, your data structure won't be a singly linked list, and neither a double one, since you'll have linkedList.length() - 1 nodes linked in a signly way but the middle one will have two links.
Hope this helps.
So the app reads from an external file a bunch of strings, each on a separate line.
For example:
and
cake
here
It is not arranged in any particular order. I need to read these letters and put them into linked list and finally sort them.
I need help on doing that:
Here is the current code:
import java.util.*;
import java.io.*;
public class LinkedList
{
static File dataInpt;
static Scanner inFile;
public static void main(String[] args) throws IOException
{
dataInpt=new File("C:\\lldata.txt");
inFile=new Scanner(dataInpt);
Node first = insertInOrder();
printList(first);
}
public static Node getNode(Object element)
{
Node temp=new Node();
temp.value=element;
temp.next=null;
return temp;
}
public static void printList(Node head)
{
Node ptr; //not pointing anywhere
for(ptr=head;ptr!=null;ptr=ptr.next)
System.out.println(ptr.value);
System.out.println();
}
public static Node insertInOrder()
{
Node first=getNode(inFile.next());
Node current=first,previous=null;
Node last=first;
int count=0;
while (inFile.hasNext())
{
if (previous!=null
&& ((String)current.value).compareTo((String)previous.value) > 0)
{
last.next=previous;
previous=last;
}
if (previous!=null
&& ((String)current.value).compareTo((String)previous.value) < 0)
{
current.next=last;
last=current;
}
previous=current;
current=getNode(inFile.next());
}
return last;
}
}
But that gives an infinite loop with "Cat".
Here is the data file:
Lol
Cake
Gel
Hi
Gee
Age
Rage
Tim
Where
And
Kite
Jam
Nickel
Cat
Ran
Jug
Here
Okay, self-study. Split the reading and inserting. Though old and new code both have 14 lines of code,
it makes it more intelligable.
public static Node insertInOrder() {
Node first = null;
while (inFile.hasNext()) {
String value = inFile.next().toString();
first = insert(first, value);
}
return first;
}
/**
* Insert in a sub-list, yielding a changed sub-list.
* #param node the sub-list.
* #param value
* #return the new sub-list (the head node might have been changed).
*/
private static Node insert(Node node, String value) {
if (node == null) { // End of list
return getNode(value);
}
int comparison = node.value.compareTo(value);
if (comparison >= 0) { // Or > 0 for stable sort.
Node newNode = getNode(value); // Insert in front.
newNode.next = node;
return newNode;
}
node.next = insert(node.next, value); // Insert in the rest.
return node;
}
This uses recursion (nested "rerunning"), calling insert inside insert. This works like a loop, or work delegation to a clone, or like a mathematical inductive proof.
Iterative alternative
also simplified a bit.
private static void Node insert(Node list, String value) {
Node node = list;
Node previous = null;
for (;;) {
if (node == null || node.value.compareTo(value) >= 0) {
Node newNode = getNode(value);
newNode.next = node;
if (previous == null)
list = newNode;
else
previous.next = newNode;
break;
}
// Insert in the rest:
previous = node;
node = node.next;
}
return list;
}
public static Node insertInOrder()
{
Node first=getNode(inFile.next());
Node current=first,previous=null;
Node last=first;
int count=0;
while (inFile.hasNext())
{
if (previous!=null
&& ((String)current.value).compareTo((String)previous.value) > 0)
{
last.next=previous;
previous=last;
}
if (previous!=null
&& ((String)current.value).compareTo((String)previous.value) < 0)
{
current.next=last;
last=current;
}
previous=current;
current=getNode(inFile.next());
}
return last;
}
First of all, you never do anything with the last line read from the file, so that's not ever inserted. You have to read the line and create the new Node before relinking next pointers.
Then, if last and previous refer to the same Node and the data of current is larger than that of previous,
if (previous!=null
&& ((String)current.value).compareTo((String)previous.value) > 0)
{
last.next=previous;
previous=last;
}
You set last.next = last, breaking the list. From the code (in particular the absence of a sort(Node) function), it seems as though you want to sort the list as it is created. But you only ever compare each new Node with one other, so that doesn't maintain order.
For each new node, you have to find the node after which it has to be inserted, scanning from the front of the list, and modify current.next and the predecessor's next.
In relatively simple code like that in your question, a good exercise to understanding it is to work through a few interations of your loop, inspecting the values of all your local variable to see the effect of your code. You can even do it by hand if the code is simple. If it is too difficult to do by hand, your code is probably too complicated. If you can't follow it, how can you know if you are doing what you intend. For example, I could be wrong, but this appears the be the state at the top of each iteration of the loop. It starts falling apart on the third time through, and by the fourth you have a severe problem as your list becomes disjointed.
1)last = first = Lol, current = previous = null
Lol->null
2)last = first = previous = Lol, current = Cake
Lol->Lol
3)first = Lol, last = Cake, previous = Cake, current = Gel
Cake->Lol->Lol
4)first = Lol, last = Cake, previous = Cake, current = Hi
Cake->Gel, Lol->Lol
Quite honestly, if I were running the course, I would consider the correct answer to be:
List<String> list = new LinkedList<String>();
// read in lines and: list.add(word);
Collections.sort(list);
Ok, I don't remember exactly school theory about insertion sort, but here is somehow a mix of what I think it is and your code:
import java.io.File;
import java.io.IOException;
import java.util.Scanner;
public class LinkedList {
public static class Node {
public String value;
public Node next;
}
static File dataInpt;
static Scanner inFile;
public static void main(String[] args) throws IOException {
inFile = new Scanner("Lol\r\n" + "Cake\r\n" + "Gel\r\n" + "Hi\r\n" + "Gee\r\n" + "Age\r\n" + "Rage\r\n" + "Tim\r\n" + "Where\r\n"
+ "And\r\n" + "Kite\r\n" + "Jam\r\n" + "Nickel\r\n" + "Cat\r\n" + "Ran\r\n" + "Jug\r\n" + "Here");
Node first = insertInOrder();
printList(first);
}
public static Node getNode(String element) {
Node temp = new Node();
temp.value = element;
temp.next = null;
return temp;
}
public static void printList(Node head) {
Node ptr; // not pointing anywhere
for (ptr = head; ptr != null; ptr = ptr.next) {
System.out.println(ptr.value);
}
System.out.println();
}
public static Node insertInOrder() {
Node current = getNode(inFile.next());
Node first = current, last = current;
while (inFile.hasNext()) {
if (first != null && current.value.compareTo(first.value) < 0) {
current.next = first;
first = current;
} else if (last != null && current.value.compareTo(last.value) > 0) {
last.next = current;
last = current;
} else {
Node temp = first;
while (current.value.compareTo(temp.value) < 0) {
temp = temp.next;
}
current.next = temp.next;
temp.next = current;
}
current = getNode(inFile.next());
}
return first;
}
}
And it works like a charm. Of course this far from optimal, both in terms of performance and code reuse.
Okay, I have read through all the other related questions and cannot find one that helps with java. I get the general idea from deciphering what i can in other languages; but i am yet to figure it out.
Problem: I would like to level sort (which i have working using recursion) and print it out in the general shape of a tree.
So say i have this:
1
/ \
2 3
/ / \
4 5 6
My code prints out the level order like this:
1 2 3 4 5 6
I want to print it out like this:
1
2 3
4 5 6
Now before you give me a moral speech about doing my work... I have already finished my AP Comp Sci project and got curious about this when my teacher mentioned the Breadth First Search thing.
I don't know if it will help, but here is my code so far:
/**
* Calls the levelOrder helper method and prints out in levelOrder.
*/
public void levelOrder()
{
q = new QueueList();
treeHeight = height();
levelOrder(myRoot, q, myLevel);
}
/**
* Helper method that uses recursion to print out the tree in
* levelOrder
*/
private void levelOrder(TreeNode root, QueueList q, int curLev)
{
System.out.print(curLev);
if(root == null)
{
return;
}
if(q.isEmpty())
{
System.out.println(root.getValue());
}
else
{
System.out.print((String)q.dequeue()+", ");
}
if(root.getLeft() != null)
{
q.enqueue(root.getLeft().getValue());
System.out.println();
}
if(root.getRight() != null)
{
q.enqueue(root.getRight().getValue());
System.out.println();
curLev++;
}
levelOrder(root.getLeft(),q, curLev);
levelOrder(root.getRight(),q, curLev);
}
From what i can figure out, i will need to use the total height of the tree, and use a level counter... Only problem is my level counter keeps counting when my levelOrder uses recursion to go back through the tree.
Sorry if this is to much, but some tips would be nice. :)
Here is the code, this question was asked to me in one of the interviews...
public void printTree(TreeNode tmpRoot) {
Queue<TreeNode> currentLevel = new LinkedList<TreeNode>();
Queue<TreeNode> nextLevel = new LinkedList<TreeNode>();
currentLevel.add(tmpRoot);
while (!currentLevel.isEmpty()) {
Iterator<TreeNode> iter = currentLevel.iterator();
while (iter.hasNext()) {
TreeNode currentNode = iter.next();
if (currentNode.left != null) {
nextLevel.add(currentNode.left);
}
if (currentNode.right != null) {
nextLevel.add(currentNode.right);
}
System.out.print(currentNode.value + " ");
}
System.out.println();
currentLevel = nextLevel;
nextLevel = new LinkedList<TreeNode>();
}
}
This is the easiest solution
public void byLevel(Node root){
Queue<Node> level = new LinkedList<>();
level.add(root);
while(!level.isEmpty()){
Node node = level.poll();
System.out.print(node.item + " ");
if(node.leftChild!= null)
level.add(node.leftChild);
if(node.rightChild!= null)
level.add(node.rightChild);
}
}
https://github.com/camluca/Samples/blob/master/Tree.java
in my github you can find other helpful functions in the class Tree like:
Displaying the tree
****......................................................****
42
25 65
12 37 43 87
9 13 30 -- -- -- -- 99
****......................................................****
Inorder traversal
9 12 13 25 30 37 42 43 65 87 99
Preorder traversal
42 25 12 9 13 37 30 65 43 87 99
Postorder traversal
9 13 12 30 37 25 43 99 87 65 42
By Level
42 25 65 12 37 43 87 9 13 30 99
Here is how I would do it:
levelOrder(List<TreeNode> n) {
List<TreeNode> next = new List<TreeNode>();
foreach(TreeNode t : n) {
print(t);
next.Add(t.left);
next.Add(t.right);
}
println();
levelOrder(next);
}
(Was originally going to be real code - got bored partway through, so it's psueodocodey)
Just thought of sharing Anon's suggestion in real java code and fixing a couple of KEY issues (like there is not an end condition for the recursion so it never stops adding to the stack, and not checking for null in the received array gets you a null pointer exception).
Also there is no exception as Eric Hauser suggests, because it is not modifying the collection its looping through, it's modifying a new one.
Here it goes:
public void levelOrder(List<TreeNode> n) {
List<TreeNode> next = new ArrayList<TreeNode>();
for (TreeNode t : n) {
if (t != null) {
System.out.print(t.getValue());
next.add(t.getLeftChild());
next.add(t.getRightChild());
}
}
System.out.println();
if(next.size() > 0)levelOrder(next);
}
Below method returns ArrayList of ArrayList containing all nodes level by level:-
public ArrayList<ArrayList<Integer>> levelOrder(TreeNode root) {
ArrayList<ArrayList<Integer>> result = new ArrayList<ArrayList<Integer>>();
if(root == null) return result;
Queue q1 = new LinkedList();
Queue q2 = new LinkedList();
ArrayList<Integer> list = new ArrayList<Integer>();
q1.add(root);
while(!q1.isEmpty() || !q2.isEmpty()){
while(!q1.isEmpty()){
TreeNode temp = (TreeNode)q1.poll();
list.add(temp.val);
if(temp.left != null) q2.add(temp.left);
if(temp.right != null) q2.add(temp.right);
}
if(list.size() > 0)result.add(new ArrayList<Integer>(list));
list.clear();
while(!q2.isEmpty()){
TreeNode temp = (TreeNode)q2.poll();
list.add(temp.val);
if(temp.left != null) q1.add(temp.left);
if(temp.right != null) q1.add(temp.right);
}
if(list.size() > 0)result.add(new ArrayList<Integer>(list));
list.clear();
}
return result;
}
The answer is close....the only issue I could see with it is that if a tree doesn't have a node in a particular position, you would set that pointer to null. What happens when you try to put a null pointer into the list?
Here is something I did for a recent assignment. It works flawlessly. You can use it starting from any root.
//Prints the tree in level order
public void printTree(){
printTree(root);
}
public void printTree(TreeNode tmpRoot){
//If the first node isn't null....continue on
if(tmpRoot != null){
Queue<TreeNode> currentLevel = new LinkedList<TreeNode>(); //Queue that holds the nodes on the current level
Queue<TreeNode> nextLevel = new LinkedList<TreeNode>(); //Queue the stores the nodes for the next level
int treeHeight = height(tmpRoot); //Stores the height of the current tree
int levelTotal = 0; //keeps track of the total levels printed so we don't pass the height and print a billion "null"s
//put the root on the currnt level's queue
currentLevel.add(tmpRoot);
//while there is still another level to print and we haven't gone past the tree's height
while(!currentLevel.isEmpty()&& (levelTotal< treeHeight)){
//Print the next node on the level, add its childen to the next level's queue, and dequeue the node...do this until the current level has been printed
while(!currentLevel.isEmpty()){
//Print the current value
System.out.print(currentLevel.peek().getValue()+" ");
//If there is a left pointer, put the node on the nextLevel's stack. If there is no ponter, add a node with a null value to the next level's stack
tmpRoot = currentLevel.peek().getLeft();
if(tmpRoot != null)
nextLevel.add(tmpRoot);
else
nextLevel.add(new TreeNode(null));
//If there is a right pointer, put the node on the nextLevel's stack. If there is no ponter, add a node with a null value to the next level's stack
tmpRoot = currentLevel.remove().getRight();
if(tmpRoot != null)
nextLevel.add(tmpRoot);
else
nextLevel.add(new TreeNode(null));
}//end while(!currentLevel.isEmpty())
//populate the currentLevel queue with items from the next level
while(!nextLevel.isEmpty()){
currentLevel.add(nextLevel.remove());
}
//Print a blank line to show height
System.out.println("");
//flag that we are working on the next level
levelTotal++;
}//end while(!currentLevel.isEmpty())
}//end if(tmpRoot != null)
}//end method printTree
public int height(){
return height(getRoot());
}
public int height(TreeNode tmpRoot){
if (tmpRoot == null)
return 0;
int leftHeight = height(tmpRoot.getLeft());
int rightHeight = height(tmpRoot.getRight());
if(leftHeight >= rightHeight)
return leftHeight + 1;
else
return rightHeight + 1;
}
I really like the simplicity of Anon's code; its elegant. But, sometimes elegant code doesn't always translate into code that is intuitively easy to grasp. So, here's my attempt to show a similar approach that requires Log(n) more space, but should read more naturally to those who are most familiar with depth first search (going down the length of a tree)
The following snippet of code sets nodes belonging to a particular level in a list, and arranges that list in a list that holds all the levels of the tree. Hence the List<List<BinaryNode<T>>> that you will see below. The rest should be fairly self explanatory.
public static final <T extends Comparable<T>> void printTreeInLevelOrder(
BinaryTree<T> tree) {
BinaryNode<T> root = tree.getRoot();
List<List<BinaryNode<T>>> levels = new ArrayList<List<BinaryNode<T>>>();
addNodesToLevels(root, levels, 0);
for(List<BinaryNode<T>> level: levels){
for(BinaryNode<T> node: level){
System.out.print(node+ " ");
}
System.out.println();
}
}
private static final <T extends Comparable<T>> void addNodesToLevels(
BinaryNode<T> node, List<List<BinaryNode<T>>> levels, int level) {
if(null == node){
return;
}
List<BinaryNode<T>> levelNodes;
if(levels.size() == level){
levelNodes = new ArrayList<BinaryNode<T>>();
levels.add(level, levelNodes);
}
else{
levelNodes = levels.get(level);
}
levelNodes.add(node);
addNodesToLevels(node.getLeftChild(), levels, level+1);
addNodesToLevels(node.getRightChild(), levels, level+1);
}
Following implementation uses 2 queues. Using ListBlokcingQueue here but any queue would work.
import java.util.concurrent.*;
public class Test5 {
public class Tree {
private String value;
private Tree left;
private Tree right;
public Tree(String value) {
this.value = value;
}
public void setLeft(Tree t) {
this.left = t;
}
public void setRight(Tree t) {
this.right = t;
}
public Tree getLeft() {
return this.left;
}
public Tree getRight() {
return this.right;
}
public String getValue() {
return this.value;
}
}
Tree tree = null;
public void setTree(Tree t) {
this.tree = t;
}
public void printTree() {
LinkedBlockingQueue<Tree> q = new LinkedBlockingQueue<Tree>();
q.add(this.tree);
while (true) {
LinkedBlockingQueue<Tree> subQueue = new LinkedBlockingQueue<Tree>();
while (!q.isEmpty()) {
Tree aTree = q.remove();
System.out.print(aTree.getValue() + ", ");
if (aTree.getLeft() != null) {
subQueue.add(aTree.getLeft());
}
if (aTree.getRight() != null) {
subQueue.add(aTree.getRight());
}
}
System.out.println("");
if (subQueue.isEmpty()) {
return;
} else {
q = subQueue;
}
}
}
public void testPrint() {
Tree a = new Tree("A");
a.setLeft(new Tree("B"));
a.setRight(new Tree("C"));
a.getLeft().setLeft(new Tree("D"));
a.getLeft().setRight(new Tree("E"));
a.getRight().setLeft(new Tree("F"));
a.getRight().setRight(new Tree("G"));
setTree(a);
printTree();
}
public static void main(String args[]) {
Test5 test5 = new Test5();
test5.testPrint();
}
}
public class PrintATreeLevelByLevel {
public static class Node{
int data;
public Node left;
public Node right;
public Node(int data){
this.data = data;
this.left = null;
this.right = null;
}
}
public void printATreeLevelByLevel(Node n){
Queue<Node> queue = new LinkedList<Node>();
queue.add(n);
int node = 1; //because at root
int child = 0; //initialize it with 0
while(queue.size() != 0){
Node n1 = queue.remove();
node--;
System.err.print(n1.data +" ");
if(n1.left !=null){
queue.add(n1.left);
child ++;
}
if(n1.right != null){
queue.add(n1.right);
child ++;
}
if( node == 0){
System.err.println();
node = child ;
child = 0;
}
}
}
public static void main(String[]args){
PrintATreeLevelByLevel obj = new PrintATreeLevelByLevel();
Node node1 = new Node(1);
Node node2 = new Node(2);
Node node3 = new Node(3);
Node node4 = new Node(4);
Node node5 = new Node(5);
Node node6 = new Node(6);
Node node7 = new Node(7);
Node node8 = new Node(8);
node4.left = node2;
node4.right = node6;
node2.left = node1;
// node2.right = node3;
node6.left = node5;
node6.right = node7;
node1.left = node8;
obj.printATreeLevelByLevel(node4);
}
}
Try this, using 2 Queues to keep track of the levels.
public static void printByLevel(Node root){
LinkedList<Node> curLevel = new LinkedList<Node>();
LinkedList<Node> nextLevel = curLevel;
StringBuilder sb = new StringBuilder();
curLevel.add(root);
sb.append(root.data + "\n");
while(nextLevel.size() > 0){
nextLevel = new LinkedList<Node>();
for (int i = 0; i < curLevel.size(); i++){
Node cur = curLevel.get(i);
if (cur.left != null) {
nextLevel.add(cur.left);
sb.append(cur.left.data + " ");
}
if (cur.right != null) {
nextLevel.add(cur.right);
sb.append(cur.right.data + " ");
}
}
if (nextLevel.size() > 0) {
sb.append("\n");
curLevel = nextLevel;
}
}
System.out.println(sb.toString());
}
A - Solution
I've written direct solution here. If you want the detailed answer, demo code and explanation, you can skip and check the rest headings of the answer;
public static <T> void printLevelOrder(TreeNode<T> root) {
System.out.println("Tree;");
System.out.println("*****");
// null check
if(root == null) {
System.out.printf(" Empty\n");
return;
}
MyQueue<TreeNode<T>> queue = new MyQueue<>();
queue.enqueue(root);
while(!queue.isEmpty()) {
handleLevel(queue);
}
}
// process each level
private static <T> void handleLevel(MyQueue<TreeNode<T>> queue) {
int size = queue.size();
for(int i = 0; i < size; i++) {
TreeNode<T> temp = queue.dequeue();
System.out.printf("%s ", temp.data);
queue.enqueue(temp.left);
queue.enqueue(temp.right);
}
System.out.printf("\n");
}
B - Explanation
In order to print a tree in level-order, you should process each level using a simple queue implementation. In my demo, I've written a very minimalist simple queue class called as MyQueue.
Public method printLevelOrder will take the TreeNode<T> object instance root as a parameter which stands for the root of the tree. The private method handleLevel takes the MyQueue instance as a parameter.
On each level, handleLevel method dequeues the queue as much as the size of the queue. The level restriction is controlled as this process is executed only with the size of the queue which exactly equals to the elements of that level then puts a new line character to the output.
C - TreeNode class
public class TreeNode<T> {
T data;
TreeNode<T> left;
TreeNode<T> right;
public TreeNode(T data) {
this.data = data;;
}
}
D - MyQueue class : A simple Queue Implementation
public class MyQueue<T> {
private static class Node<T> {
T data;
Node next;
public Node(T data) {
this(data, null);
}
public Node(T data, Node<T> next) {
this.data = data;
this.next = next;
}
}
private Node head;
private Node tail;
private int size;
public MyQueue() {
head = null;
tail = null;
}
public int size() {
return size;
}
public void enqueue(T data) {
if(data == null)
return;
if(head == null)
head = tail = new Node(data);
else {
tail.next = new Node(data);
tail = tail.next;
}
size++;
}
public T dequeue() {
if(tail != null) {
T temp = (T) head.data;
head = head.next;
size--;
return temp;
}
return null;
}
public boolean isEmpty() {
return size == 0;
}
public void printQueue() {
System.out.println("Queue: ");
if(head == null)
return;
else {
Node<T> temp = head;
while(temp != null) {
System.out.printf("%s ", temp.data);
temp = temp.next;
}
}
System.out.printf("%n");
}
}
E - DEMO : Printing Tree in Level-Order
public class LevelOrderPrintDemo {
public static void main(String[] args) {
// root level
TreeNode<Integer> root = new TreeNode<>(1);
// level 1
root.left = new TreeNode<>(2);
root.right = new TreeNode<>(3);
// level 2
root.left.left = new TreeNode<>(4);
root.right.left = new TreeNode<>(5);
root.right.right = new TreeNode<>(6);
/*
* 1 root
* / \
* 2 3 level-1
* / / \
* 4 5 6 level-2
*/
printLevelOrder(root);
}
public static <T> void printLevelOrder(TreeNode<T> root) {
System.out.println("Tree;");
System.out.println("*****");
// null check
if(root == null) {
System.out.printf(" Empty\n");
return;
}
MyQueue<TreeNode<T>> queue = new MyQueue<>();
queue.enqueue(root);
while(!queue.isEmpty()) {
handleLevel(queue);
}
}
// process each level
private static <T> void handleLevel(MyQueue<TreeNode<T>> queue) {
int size = queue.size();
for(int i = 0; i < size; i++) {
TreeNode<T> temp = queue.dequeue();
System.out.printf("%s ", temp.data);
queue.enqueue(temp.left);
queue.enqueue(temp.right);
}
System.out.printf("\n");
}
}
F - Sample Input
1 // root
/ \
2 3 // level-1
/ / \
4 5 6 // level-2
G - Sample Output
Tree;
*****
1
2 3
4 5 6
public void printAllLevels(BNode node, int h){
int i;
for(i=1;i<=h;i++){
printLevel(node,i);
System.out.println();
}
}
public void printLevel(BNode node, int level){
if (node==null)
return;
if (level==1)
System.out.print(node.value + " ");
else if (level>1){
printLevel(node.left, level-1);
printLevel(node.right, level-1);
}
}
public int height(BNode node) {
if (node == null) {
return 0;
} else {
return 1 + Math.max(height(node.left),
height(node.right));
}
}
First of all, I do not like to take credit for this solution. It's a modification of somebody's function and I tailored it to provide the solution.
I am using 3 functions here.
First I calculate the height of the tree.
I then have a function to print a particular level of the tree.
Using the height of the tree and the function to print the level of a tree, I traverse the tree and iterate and print all levels of the tree using my third function.
I hope this helps.
EDIT: The time complexity on this solution for printing all node in level order traversal will not be O(n). The reason being, each time you go down a level, you will visit the same nodes again and again.
If you are looking for a O(n) solution, i think using Queues would be a better option.
I think we can achieve this by using one queue itself. This is a java implementation using one queue only. Based on BFS...
public void BFSPrint()
{
Queue<Node> q = new LinkedList<Node>();
q.offer(root);
BFSPrint(q);
}
private void BFSPrint(Queue<Node> q)
{
if(q.isEmpty())
return;
int qLen = q.size(),i=0;
/*limiting it to q size when it is passed,
this will make it print in next lines. if we use iterator instead,
we will again have same output as question, because iterator
will end only q empties*/
while(i<qLen)
{
Node current = q.remove();
System.out.print(current.data+" ");
if(current.left!=null)
q.offer(current.left);
if(current.right!=null)
q.offer(current.right);
i++;
}
System.out.println();
BFSPrint(q);
}
the top solutions only print the children of each node together. This is wrong according to the description.
What we need is all the nodes of the same level together in the same line.
1) Apply BFS
2) Store heights of nodes to a map that will hold level - list of nodes.
3) Iterate over the map and print out the results.
See Java code below:
public void printByLevel(Node root){
Queue<Node> q = new LinkedBlockingQueue<Node>();
root.visited = true;
root.height=1;
q.add(root);
//Node height - list of nodes with same level
Map<Integer, List<Node>> buckets = new HashMap<Integer, List<Node>>();
addToBuckets(buckets, root);
while (!q.isEmpty()){
Node r = q.poll();
if (r.adjacent!=null)
for (Node n : r.adjacent){
if (!n.visited){
n.height = r.height+1; //adjust new height
addToBuckets(buckets, n);
n.visited = true;
q.add(n);
}
}
}
//iterate over buckets and print each list
printMap(buckets);
}
//helper method that adds to Buckets list
private void addToBuckets(Map<Integer, List<Node>> buckets, Node n){
List<Node> currlist = buckets.get(n.height);
if (currlist==null)
{
List<Node> list = new ArrayList<Node>();
list.add(n);
buckets.put(n.height, list);
}
else{
currlist.add(n);
}
}
//prints the Map
private void printMap(Map<Integer, List<Node>> buckets){
for (Entry<Integer, List<Node>> e : buckets.entrySet()){
for (Node n : e.getValue()){
System.out.print(n.value + " ");
}
System.out.println();
}
Simplest way to do this without using any level information implicitly assumed to be in each Node. Just append a 'null' node after each level. check for this null node to know when to print a new line:
public class BST{
private Node<T> head;
BST(){}
public void setHead(Node<T> val){head = val;}
public static void printBinaryTreebyLevels(Node<T> head){
if(head == null) return;
Queue<Node<T>> q = new LinkedList<>();//assuming you have type inference (JDK 7)
q.add(head);
q.add(null);
while(q.size() > 0){
Node n = q.poll();
if(n == null){
System.out.println();
q.add(null);
n = q.poll();
}
System.out.print(n.value+" ");
if(n.left != null) q.add(n.left);
if(n.right != null) q.add(n.right);
}
}
public static void main(String[] args){
BST b = new BST();
c = buildListedList().getHead();//assume we have access to this for the sake of the example
b.setHead(c);
printBinaryTreeByLevels();
return;
}
}
class Node<T extends Number>{
public Node left, right;
public T value;
Node(T val){value = val;}
}
This works for me. Pass an array list with rootnode when calling printLevel.
void printLevel(ArrayList<Node> n){
ArrayList<Node> next = new ArrayList<Node>();
for (Node t: n) {
System.out.print(t.value+" ");
if (t.left!= null)
next.add(t.left);
if (t.right!=null)
next.add(t.right);
}
System.out.println();
if (next.size()!=0)
printLevel(next);
}
Print Binary Tree in level order with a single Queue:
public void printBFSWithQueue() {
java.util.LinkedList<Node> ll = new LinkedList<>();
ll.addLast(root);
ll.addLast(null);
Node in = null;
StringBuilder sb = new StringBuilder();
while(!ll.isEmpty()) {
if(ll.peekFirst() == null) {
if(ll.size() == 1) {
break;
}
ll.removeFirst();
System.out.println(sb);
sb = new StringBuilder();
ll.addLast(null);
continue;
}
in = ll.pollFirst();
sb.append(in.v).append(" ");
if(in.left != null) {
ll.addLast(in.left);
}
if(in.right != null) {
ll.addLast(in.right);
}
}
}
void printTreePerLevel(Node root)
{
Queue<Node> q= new LinkedList<Node>();
q.add(root);
int currentlevel=1;
int nextlevel=0;
List<Integer> values= new ArrayList<Integer>();
while(!q.isEmpty())
{
Node node = q.remove();
currentlevel--;
values.add(node.value);
if(node.left != null)
{
q.add(node.left);
nextlevel++;
}
if(node.right != null)
{
q.add(node.right);
nextlevel++;
}
if(currentlevel==0)
{
for(Integer i:values)
{
System.out.print(i + ",");
}
System.out.println();
values.clear();
currentlevel=nextlevel;
nextlevel=0;
}
}
}
Python implementation
# Function to print level order traversal of tree
def printLevelOrder(root):
h = height(root)
for i in range(1, h+1):
printGivenLevel(root, i)
# Print nodes at a given level
def printGivenLevel(root , level):
if root is None:
return
if level == 1:
print "%d" %(root.data),
elif level > 1 :
printGivenLevel(root.left , level-1)
printGivenLevel(root.right , level-1)
""" Compute the height of a tree--the number of nodes
along the longest path from the root node down to
the farthest leaf node
"""
def height(node):
if node is None:
return 0
else :
# Compute the height of each subtree
lheight = height(node.left)
rheight = height(node.right)
#Use the larger one
if lheight > rheight :
return lheight+1
else:
return rheight+1
Queue<Node> queue = new LinkedList<>();
queue.add(root);
Node leftMost = null;
while (!queue.isEmpty()) {
Node node = queue.poll();
if (leftMost == node) {
System.out.println();
leftMost = null;
}
System.out.print(node.getData() + " ");
Node left = node.getLeft();
if (left != null) {
queue.add(left);
if (leftMost == null) {
leftMost = left;
}
}
Node right = node.getRight();
if (right != null) {
queue.add(right);
if (leftMost == null) {
leftMost = right;
}
}
}
To solve this type of question which require in-level or same-level traversal approach, one immediately can use Breath First Search or in short BFS. To implement the BFS one can use Queue. In Queue each item comes in order of insertion, so for example if a node has two children, we can insert its children into queue one after another, thus make them in order inserted. When in return polling from queue, we traverse over children as it like we go in same-level of tree. Hense I am going to use a simple implementation of an in-order traversal approach.
I build up my Tree and pass the root which points to the root.
inorderTraversal takes root and do a while-loop that peeks one node first, and fetches children and insert them back into queue. Note that nodes one by one get inserted into queue, as you see, once you fetch the children nodes, you append it to the StringBuilder to construct the final output.
In levelOrderTraversal method though, I want to print the tree in level order. So I need to do the above approach, but instead I don't poll from queue and insert its children back to queue. Because I intent to insert "next-line-character" in a loop, and if I insert the children to queue, this loop would continue inserting a new line for each node, instead I need to check do it only for a level. That's why I used a for-loop to check how many items I have in my queue.
I simply don't poll anything from queue, because I only want to know if there are any level exists.
This separation of method helps me to still keep using BFS data and when required I can print them in-order or level-order , based-on requirements of the application.
public class LevelOrderTraversal {
public static void main(String[] args) throws InterruptedException {
BinaryTreeNode node1 = new BinaryTreeNode(100);
BinaryTreeNode node2 = new BinaryTreeNode(50);
BinaryTreeNode node3 = new BinaryTreeNode(200);
node1.left = node2;
node1.right = node3;
BinaryTreeNode node4 = new BinaryTreeNode(25);
BinaryTreeNode node5 = new BinaryTreeNode(75);
node2.left = node4;
node2.right = node5;
BinaryTreeNode node6 = new BinaryTreeNode(350);
node3.right = node6;
String levelOrderTraversal = levelOrderTraversal(node1);
System.out.println(levelOrderTraversal);
String inorderTraversal = inorderTraversal(node1);
System.out.println(inorderTraversal);
}
private static String inorderTraversal(BinaryTreeNode root) {
Queue<BinaryTreeNode> queue = new LinkedList<>();
StringBuilder sb = new StringBuilder();
queue.offer(root);
BinaryTreeNode node;
while ((node = queue.poll()) != null) {
sb.append(node.data).append(",");
if (node.left != null) {
queue.offer(node.left);
}
if (node.right != null) {
queue.offer(node.right);
}
}
return sb.toString();
}
public static String levelOrderTraversal(BinaryTreeNode root) {
Queue<BinaryTreeNode> queue = new LinkedList<>();
queue.offer(root);
StringBuilder stringBuilder = new StringBuilder();
while (!queue.isEmpty()) {
handleLevelPrinting(stringBuilder, queue);
}
return stringBuilder.toString();
}
private static void handleLevelPrinting(StringBuilder sb, Queue<BinaryTreeNode> queue) {
for (int i = 0; i < queue.size(); i++) {
BinaryTreeNode node = queue.poll();
if (node != null) {
sb.append(node.data).append("\t");
queue.offer(node.left);
queue.offer(node.right);
}
}
sb.append("\n");
}
private static class BinaryTreeNode {
int data;
BinaryTreeNode right;
BinaryTreeNode left;
public BinaryTreeNode(int data) {
this.data = data;
}
}
}
Wow. So many answers. For what it is worth, my solution goes like this:
We know the normal way to level order traversal: for each node, first the node is visited and then it’s child nodes are put in a FIFO queue. What we need to do is keep track of each level, so that all the nodes at that level are printed in one line, without a new line.
So I naturally thought of it as miaintaining a queue of queues. The main queue contains internal queues for each level. Each internal queue contains all the nodes in one level in FIFO order. When we dequeue an internal queue, we iterate through it, adding all its children to a new queue, and adding this queue to the main queue.
public static void printByLevel(Node root) {
Queue<Node> firstQ = new LinkedList<>();
firstQ.add(root);
Queue<Queue<Node>> mainQ = new LinkedList<>();
mainQ.add(firstQ);
while (!mainQ.isEmpty()) {
Queue<Node> levelQ = mainQ.remove();
Queue<Node> nextLevelQ = new LinkedList<>();
for (Node x : levelQ) {
System.out.print(x.key + " ");
if (x.left != null) nextLevelQ.add(x.left);
if (x.right != null) nextLevelQ.add(x.right);
}
if (!nextLevelQ.isEmpty()) mainQ.add(nextLevelQ);
System.out.println();
}
}
public void printAtLevel(int i){
printAtLevel(root,i);
}
private void printAtLevel(BTNode<T> n,int i){
if(n != null){
sop(n.data);
} else {
printAtLevel(n.left,i-1);
printAtLevel(n.right,i-1);
}
}
private void printAtLevel(BTNode<T> n,int i){
if(n != null){
sop(n.data);
printAtLevel(n.left,i-1);
printAtLevel(n.right,i-1);
}
}