ConcurrentModificationException only in Java 1.8.0_45 - java

I've got two question about this code:
import java.util.*;
public class TestClass {
private static List<String> list;
public static void main(String[] argv) {
list = generateStringList(new Random(), "qwertyuioasdfghjklzxcvbnmPOIUYTREWQLKJHGFDSAMNBVCXZ1232456789", 50, 1000);
// Collections.sort(list, new Comparator<String>() {
// public int compare(String f1, String f2) {
// return -f1.compareTo(f2);
// }
// });
for (int i = 0; i < 500; i++) {
new MyThread(i).start();
}
}
private static class MyThread extends Thread {
int id;
MyThread(int id) { this.id = id; }
public void run() {
Collections.sort(list, new Comparator<String>() {
public int compare(String f1, String f2) {
return -f1.compareTo(f2);
}
});
for (Iterator it = list.iterator(); it.hasNext();) {
String s = (String) it.next();
try {
Thread.sleep(10 + (int)(Math.random()*100));
}catch (Exception e) { e.printStackTrace(); }
System.out.println(id+" -> "+s);
}
}
}
public static List<String> generateStringList(Random rng, String characters, int length, int size)
{
List<String> list = new ArrayList<String>();
for (int j = 0; j < size; j++) {
char[] text = new char[length];
for (int i = 0; i < length; i++)
{
text[i] = characters.charAt(rng.nextInt(characters.length()));
}
list.add(new String(text));
}
return list;
}
}
Running this code on java 1.8.0_45 i got java.util.ConcurrentModificationException.
1) Why I got the exception also if I decomment the sort before the thread.start?
2) Why I only got the exception on java 1.8.0_45? On 1.6.0_45, 1.7.0_79, 1.8.0_5 it works fine.

#nbokmans already nailed the general reason why you get that exception. However, it's true that this seems to be version dependant. I'll fill in why you get that in java 8.0_45 but not 1.6.0_45, 1.7.0_79, 1.8.0_5.
This is due to fact that Collections.sort() was changed in java 8.0_20. There's an in-depth article about it here. In the new version, sort, according to the article, is like this:
public void sort(Comparator<? super E> c) {
final int expectedModCount = modCount;
Arrays.sort((E[]) elementData, 0, size, c);
if (modCount != expectedModCount) {
throw new ConcurrentModificationException();
}
modCount++;
}
Like the article explains:
Contrary to the old Collections.sort, this implementation modifies the
modCount of the collection (line 7 above) once the list has been
sorted, even if the structure itself didn’t really change (still the
same number of elements).
So it will do an internal change even if the collection is already sorted, whereas before that change it didn't do that. That's why you're getting an exception now.
The actual fix is to not to sort a collection using multiple threads at the same time. You shouldn't do that.

A ConcurrentModificationException is thrown by methods that have detected concurrent (i.e. in a separate thread) modification of an object when such modification is not permissible.
The reason you're getting this exception is because you are modifying (sorting) the collection in a separate thread and iterating it.
I quote from the ConcurrentModificationException javadoc:
For example, it is not generally permissible for one thread to modify a Collection while another thread is iterating over it. In general, the results of the iteration are undefined under these circumstances.
Source
In your code, you are starting 500 threads that each sort and iterate over the list.
Try sorting the list before you start your threads, and remove the call to Collections#sort from MyThread's #run().

With Java 8, the Collections::sort method was reimplemented to delegate to the List::sort method. This way, a list can implement a more efficient sort algorithm if this is possible for the given implementation. For example, an ArrayList can use its random access property to implement a more effcient sorting algorithm than a LinkedList without random access.
The current implementation for ArrayList::sort explicitly checks for modifications as the implementation is defined within the class and is capable of accessing iternal properties.
Before Java 8, the Collections::sort method had to implement the actual sorting itself and could not delegate. Of course, the implementation could not access any internal properties of the specific list. The more generic sorting was implemented as follows:
public static <T> void sort(List<T> list, Comparator<? super T> c) {
Object[] a = list.toArray();
Arrays.sort(a, (Comparator)c);
ListIterator i = list.listIterator();
for (int j=0; j<a.length; j++) {
i.next();
i.set(a[j]);
}
}
The implementation first extracts a copy of elements and delegates the sorting to the implementation of Arrays::sort. This can not cause the observed exception as the sorting is conducted on a non-shared copy of elements. Later, the elements are updated element by element according to the sorted array by using a ListIterator.
For an ArrayList, the ArrayList and its iterator keep track of the number of structural modifications, i.e. modifications that change the size of the list. If those numbers diverge for the iterator and the list, the iterator can know that the list was modified outside of its own iteration. It is however not capable of discovering that the elements of a list were altered as it happens for the Collections::sort implementation.
The contract of a ArrayList does however not permit concurrent modifications in its contract. Despite the sorting not failing before Java 8, applying the sorting could lead to incorrect results. Since Java 8, it is however for the first time that this is discovered by the implementation.

You're getting this exception because you have separate threads modifying and iterating the list at the same time.
The commented out sort is not causing the problem. The CME is caused by the sort and the iteration inside the thread. Since you have multiple threads sorting and iterating, you're getting a CME. This is not dependent on the Java version.
It looks like your threads don't need to modify the list, so you can perform the sort once before your loop that creates threads, then remove if from the thread.

Related

best way to Iterate over a collection and array consecutively

Its a very trivial question and related to coding Style and I am just asking to make my coding style more readable
Suppose I have a Collection like linkedList and an Array and I need to iterate over both simultaneously.
currently the best way I know is to get a iterator over list and define a index variable outside the iterator loop and increment the index variable simultaneously to access both next elements {list and array}. Please refer the example below
LinkedList<Integer> list = new LinkedList<Integer>();
Integer[] arr = new Array[25];
// lets suppose both have 25 elements.
// My Iteration method will be
int index =0;
for (Integer val : list) {
System.out.println(val);
System.out.println(arr[index++]);
}
so is it the only way or is there any other way I can perform this iteration in more readable and more relatable manner, where I don't have to take index variable separately.
I know it can be possible that array might have less or more elements than collection but I am only talking about the cases where they have equal and we need to iterate over Both of them.
PS : anybody can write a code that a computer can understand, actual challenge is to write code which humans can understand easily.
What you have is essentially fine: it's simple, and simple can be sufficient to make code readable.
The only thing I would caution about is the side effect of index++ inside arr[index++]: if, say, you want to use the same value multiple times in the loop body, you couldn't simply copy+paste.
Consider pulling out a variable as the first thing in the loop to store the "current" array element (which is essentially what the enhanced for loop does for the list element).
for (Integer val : list) {
Integer fromArr = arr[index++];
// ...
}
Just to point out an alternative without having a separate variable for the index, you can use ListIterator, which provides you with the index of the element.
// Assuming list and are have same number of elements.
for (ListIterator<Integer> it = list.listIterator();
it.hasNext();) {
// The ordering of these statements is important, because next() changes nextIndex().
Integer fromArr = arr[it.nextIndex()];
Integer val = it.next();
// ...
}
ListIterator is not an especially widely-used class, though; its use may in and of itself be confusing.
One of the downsides of the ListIterator approach is that you have to use the it correctly: you shouldn't touch it inside the loop (after getting the values), you have to put the statements in the right order, etc.
Another approach would be to create a library method analogous to Python's enumerate:
static <T> Iterable<Map.Entry<Integer, T>> enumerate(Iterable<? extends T> iterable) {
return () -> new Iterator<T>() {
int index = 0;
Iterator<? extends T> delegate = iterable.iterator();
#Override public boolean hasNext() { return delegate.hasNext(); }
#Override public Map.Entry<Integer, T> next() {
return new AbstractMap.SimpleEntry<>(index++, delegate.next());
}
};
}
This returns an iterable of map entries, where the key is the index and the value is the corresponding value.
You could then use this in an enhanced for loop:
for (Map.Entry<Integer, Integer> entry : enumerate(list)) {
Integer fromList = entry.getValue();
Integer fromArr = arr[entry.getKey()];
}
One option is to have 2 iterators, but I don't think it is any clearer:
for (Iterator<Integer> i1 = list.iterator(), i2 = Arrays.asList(arr).iterator();
i1.hasNext() && i2.hasNext();) {
System.out.println(i1.next());
System.out.println(i2.next());
}
But it is more robust in that it finishes at the shorter of the 2 collections.
I tried to simplify and handle size wise collections where both need not be of the same size. I believe this would work even if the sizes are not same and just one loop would suffice. Code snippet below:
LinkedList<Integer> list = new LinkedList<Integer>();
Integer[] arr = new Array[25];
int maxLength= Math.max(list.size(),arr.size());
//Looping over the lengthy collection( could be Linkedlist or arraylist)
for(int i=0;i<maxLength;i++){
if(list.size()>i)
System.out.println(list[i]);
if(arr.size()>i)
System.out.println(arr[i]);
}
Hope this helps! Thanks

Java Iterated HashTable vs ArrayList speed

I am writing a simple 3D SW rendering engine. I have a default ArrayList<Object3D> containing the whole scene. Now, I want to be able to add, remove and select objects by name, like 3D editors do (because its MUCH more simple than mouse select, but still looking good in homework :) ).
So, the first thing I thought is to have Hashtable for name and index to scene ArrayList. But, then I thought I could just simply save the scene using Hashtable directly, and go through it to render using iterator.
So I want to ask, in a 3D engine, what is speed-preferable? Because I will for-loop the scene many times per second, compared to selecting object. Is ArrayList any faster than iterated Hashtable? Thanks.
First, I suggest you use a HashMap instead of a Hashtable, for the same reason that ArrayList is a better choice than a Vector: less overhead due to useless synchronization.
My guess is that iterating through an ArrayList will be faster than iterating through the Set returned by a Hashtable's (or HashMap's) entrySet() method. But the only way to know is to profile.
Obviously, changes to the display list (other than appending or chopping off the last element) are going to be faster for a HashMap than for an ArrayList.
EDIT
So I followed my own advice and benchmarked. Here's the code I used:
import java.util.*;
public class IterTest {
static class Thing {
Thing(String name) { this.name = name; }
String name;
}
static class ArrayIterTest implements Runnable {
private final ArrayList<Thing> list;
ArrayIterTest(ArrayList<Thing> list) {
this.list = list;
}
public void run() {
int i = 0;
for (Thing thing : list) {
++i;
}
}
}
static class ArraySubscriptTest implements Runnable {
private final ArrayList<Thing> list;
ArraySubscriptTest(ArrayList<Thing> list) {
this.list = list;
}
public void run() {
int i = 0;
int n = list.size();
for (int j = 0; j < n; ++j) {
Thing thing = list.get(j);
++i;
}
}
}
static class MapIterTest implements Runnable {
private final Map<String, Thing> map;
MapIterTest(Map<String, Thing> map) {
this.map = map;
}
public void run() {
int i = 0;
Set<Map.Entry<String, Thing>> set = map.entrySet();
for (Map.Entry<String, Thing> entry : set) {
++i;
}
}
}
public static void main(String[] args) {
final int ITERS = 10000;
final Thing[] things = new Thing[1000];
for (int i = 0; i < things.length; ++i) {
things[i] = new Thing("thing " + i);
}
final ArrayList<Thing> arrayList = new ArrayList<Thing>();
Collections.addAll(arrayList, things);
final HashMap<String, Thing> hashMap = new HashMap<String, Thing>();
for (Thing thing : things) {
hashMap.put(thing.name, thing);
}
final ArrayIterTest t1 = new ArrayIterTest(arrayList);
final ArraySubscriptTest t2 = new ArraySubscriptTest(arrayList);
final MapIterTest t3 = new MapIterTest(hashMap);
System.out.println("t1 time: " + time(t1, ITERS));
System.out.println("t2 time: " + time(t2, ITERS));
System.out.println("t3 time: " + time(t3, ITERS));
}
private static long time(Runnable runnable, int iters) {
System.gc();
long start = System.nanoTime();
while (iters-- > 0) {
runnable.run();
}
return System.nanoTime() - start;
}
}
And here are the results for a typical run:
t1 time: 41412897
t2 time: 30580187
t3 time: 146536728
Clearly using an ArrayList is a big win (by a factor of 3-4) over a HashMap, at least for my style of iterating through a HashMap. I suspect the reason the array iterator is slower than array subscripting is all the iterator objects that need to be created and then garbage-collected.
For reference, this was done with Java 1.6.0_26 (64-bit JVM) on an Intel 1.6GHz quad-core Windows machine with plenty of free memory.
I'm fairly sure that iterating through the ArrayList will be faster than iterating over the Hashtable. Not sure how significant the difference is, though -- maybe (thumb suck) 2x in the actual internal logic, but that's not much.
But note that, unless you need multithread synchronization, you should use a HashMap rather than a Hashtable. There's some performance to be gained there.
Actually, I looked at the current HashMap implementation (preferred over Hashtable as everyone points out). Iterating over the values looks like it's simply iterating through an underlying array.
So, speed will probably be comparable to iterating an ArrayList, though there may be some time skipping over gaps in the HashMaps underlying array.
All said, profiling is king.
A) don't use Hashtable, use HashMap. Hashtable is informally deprecated
B) That depends on the application. Lookup will be faster in the HashMap, Iteration will likely be the same as both use arrays internally. (but the arrays in a HashMap have gaps, so that might give a slight advantage to the ArrayList). Oh, and if you want to maintain a fixed order of iteration, use LinkedHashMap (sorted by insertion) or TreeMap (sorted by natural ordering)
As already said, it's better to use HashMap. Regarding to iteration, in theory, ArrayList has to be faster for two reasons. First is that data structure is simpler, which gives less access time. The second is that ArrayList can be iterated by index without creating Iterator object, which, in case of intense use, produce less garbage and therefore less gc.
In practice - you may not notice difference, depends how heavy you are going to use it.
Use java.util.HashMap instead of java.util.Hashtable if you don't need retrieval synchronization.

Why am I not getting a java.util.ConcurrentModificationException in this example?

Note: I am aware of the Iterator#remove() method.
In the following code sample, I don't understand why the List.remove in main method throws ConcurrentModificationException, but not in the remove method.
public class RemoveListElementDemo {
private static final List<Integer> integerList;
static {
integerList = new ArrayList<Integer>();
integerList.add(1);
integerList.add(2);
integerList.add(3);
}
public static void remove(Integer toRemove) {
for(Integer integer : integerList) {
if(integer.equals(toRemove)) {
integerList.remove(integer);
}
}
}
public static void main(String... args) {
remove(Integer.valueOf(2));
Integer toRemove = Integer.valueOf(3);
for(Integer integer : integerList) {
if(integer.equals(toRemove)) {
integerList.remove(integer);
}
}
}
}
Here's why:
As it is says in the Javadoc:
The iterators returned by this class's iterator and listIterator
methods are fail-fast: if the list is structurally modified at any
time after the iterator is created, in any way except through the
iterator's own remove or add methods, the iterator will throw a
ConcurrentModificationException.
This check is done in the next() method of the iterator (as you can see by the stacktrace). But we will reach the next() method only if hasNext() delivered true, which is what is called by the for each to check if the boundary is met. In your remove method, when hasNext() checks if it needs to return another element, it will see that it returned two elements, and now after one element was removed the list only contains two elements. So all is peachy and we are done with iterating. The check for concurrent modifications does not occur, as this is done in the next() method which is never called.
Next we get to the second loop. After we remove the second number the hasNext method will check again if can return more values. It has returned two values already, but the list now only contains one. But the code here is:
public boolean hasNext() {
return cursor != size();
}
1 != 2, so we continue to the next() method, which now realizes that someone has been messing with the list and fires the exception.
Hope that clears your question up.
Summary
List.remove() will not throw ConcurrentModificationException when it removes the second last element from the list.
One way to handle it it to remove something from a copy of a Collection (not Collection itself), if applicable. Clone the original collection it to make a copy via a Constructor.
This exception may be thrown by methods that have detected concurrent
modification of an object when such modification is not permissible.
For your specific case, first off, i don't think final is a way to go considering you intend to modify the list past declaration
private static final List<Integer> integerList;
Also consider modifying a copy instead of the original list.
List<Integer> copy = new ArrayList<Integer>(integerList);
for(Integer integer : integerList) {
if(integer.equals(remove)) {
copy.remove(integer);
}
}
The forward/iterator method does not work when removing items. You can remove the element without error, but you will get a runtime error when you try to access removed items. You can't use the iterator because as pushy shows it will cause a ConcurrentModificationException, so use a regular for loop instead, but step backwards through it.
List<Integer> integerList;
integerList = new ArrayList<Integer>();
integerList.add(1);
integerList.add(2);
integerList.add(3);
int size= integerList.size();
//Item to remove
Integer remove = Integer.valueOf(3);
A solution:
Traverse the array in reverse order if you are going to remove a list element. Simply by going backwards through the list you avoid visiting an item that has been removed, which removes the exception.
//To remove items from the list, start from the end and go backwards through the arrayList
//This way if we remove one from the beginning as we go through, then we will avoid getting a runtime error
//for java.lang.IndexOutOfBoundsException or java.util.ConcurrentModificationException as when we used the iterator
for (int i=size-1; i> -1; i--) {
if (integerList.get(i).equals(remove) ) {
integerList.remove(i);
}
}
This snippet will always throw a ConcurrentModificationException.
The rule is "You may not modify (add or remove elements from the list) while iterating over it using an Iterator (which happens when you use a for-each loop)".
JavaDocs:
The iterators returned by this class's iterator and listIterator methods are fail-fast: if the list is structurally modified at any time after the iterator is created, in any way except through the iterator's own remove or add methods, the iterator will throw a ConcurrentModificationException.
Hence if you want to modify the list (or any collection in general), use iterator, because then it is aware of the modifications and hence those will be handled properly.
Hope this helps.
I had that same problem but in case that I was adding en element into iterated list.
I made it this way
public static void remove(Integer remove) {
for(int i=0; i<integerList.size(); i++) {
//here is maybe fine to deal with integerList.get(i)==null
if(integerList.get(i).equals(remove)) {
integerList.remove(i);
}
}
}
Now everything goes fine because you don't create any iterator over your list, you iterate over it "manually". And condition i < integerList.size() will never fool you because when you remove/add something into List size of the List decrement/increment..
Hope it helps, for me that was solution.
If you use copy-on-write collections it will work; however when you use list.iterator(), the returned Iterator will always reference the collection of elements as it was when ( as below )
list.iterator() was called, even if another thread modifies the collection. Any
mutating methods called on a copy-on-write–based Iterator or ListIterator
(such as add, set, or remove) will throw an UnsupportedOperationException.
import java.util.List;
import java.util.concurrent.CopyOnWriteArrayList;
public class RemoveListElementDemo {
private static final List<Integer> integerList;
static {
integerList = new CopyOnWriteArrayList<>();
integerList.add(1);
integerList.add(2);
integerList.add(3);
}
public static void remove(Integer remove) {
for(Integer integer : integerList) {
if(integer.equals(remove)) {
integerList.remove(integer);
}
}
}
public static void main(String... args) {
remove(Integer.valueOf(2));
Integer remove = Integer.valueOf(3);
for(Integer integer : integerList) {
if(integer.equals(remove)) {
integerList.remove(integer);
}
}
}
}
This runs fine on Java 1.6
~ % javac RemoveListElementDemo.java
~ % java RemoveListElementDemo
~ % cat RemoveListElementDemo.java
import java.util.*;
public class RemoveListElementDemo {
private static final List<Integer> integerList;
static {
integerList = new ArrayList<Integer>();
integerList.add(1);
integerList.add(2);
integerList.add(3);
}
public static void remove(Integer remove) {
for(Integer integer : integerList) {
if(integer.equals(remove)) {
integerList.remove(integer);
}
}
}
public static void main(String... args) {
remove(Integer.valueOf(2));
Integer remove = Integer.valueOf(3);
for(Integer integer : integerList) {
if(integer.equals(remove)) {
integerList.remove(integer);
}
}
}
}
~ %
In my case I did it like this:
int cursor = 0;
do {
if (integer.equals(remove))
integerList.remove(cursor);
else cursor++;
} while (cursor != integerList.size());
Change Iterator for each into for loop to solve.
And the Reason is:
The iterators returned by this class's iterator and listIterator
methods are fail-fast: if the list is structurally modified at any
time after the iterator is created, in any way except through the
iterator's own remove or add methods, the iterator will throw a
ConcurrentModificationException.
--Referred Java Docs.
Check your code man....
In the main method you are trying to remove the 4th element which is not there and hence the error.
In the remove() method you are trying to remove the 3rd element which is there and hence no error.

Using iterator on a TreeSet

SITUATION: I have a TreeSet of custom Objects and I have also used a custom Comparator. I have created an iterator to use on this TreeSet.
TreeSet<Custom> ts=new TreeSet<Custom>();
Iterator<Custom> itr=ts.iterator();
while(itr.hasNext()){
Custom c=itr.next();
//Code to add a new element to the TreeSet ts
}
QUESTION: Well I want to know that if I add a new element to the TreeSet within the while loop, then will that new element get sorted immediately. In other words, if I add a new element within the while loop and it is less than the one which I am currently holding in c, then in the next iteration will I be getting the same element in c as in the last iteration?(since after sorting, the newly added element will occupy a place somewhere before the current element).
If you add an element during your iteration, your next iterator call will likely throw a ConcurrentModificationException. See the fail-fast behavior in TreeSet docs.
To iterate and add elements, you could copy first to another set:
TreeSet<Custom> ts = ...
TreeSet<Custom> tsWithExtra = new TreeSet(ts);
for (Custom c : ts) {
// possibly add to tsWithExtra
}
// continue, using tsWithExtra
or create a separate collection to be merged with ts after iteration, as Colin suggests.
You will get a java.util.ConcurrentModificationException if you add an element into the TreeSet inside while loop.
Set<String> ts = new TreeSet<>();
ts.addAll(Arrays.asList(new String[]{"abb", "abd", "abg"}));
Iterator<String> itr = ts.iterator();
while(itr.hasNext()){
String s = itr.next();
System.out.println("s: " + s);
if (s.equals("abd"))
ts.add("abc");
}
###Output
Exception in thread "main" java.util.ConcurrentModificationException
public static void main(String[] args) {
TreeSet<Integer> ts=new TreeSet<Integer>();
ts.add(2);
ts.add(4);
ts.add(0);
Iterator<Integer> itr=ts.iterator();
while(itr.hasNext()){
Integer c=itr.next();
System.out.println(c);
//Code
ts.add(1);
}
}
Exception in thread "main" java.util.ConcurrentModificationException
This will come to all collections like List , Map , Set
Because when iterator starts it may be putting some lock on it .
if you iterate list using iterator then this exception will come. I think otherwise this loop will be infinite as you are adding element whole iterating.
Consider without iterator:
public static void main(String[] args) {
List<Integer> list=new ArrayList<Integer>();
list.add(2);
list.add(4);
list.add(0);
for (int i = 0; i < 3; i++) {
System.out.println(list.get(i));
list.add(3);
}
System.out.println("Size" +list.size());
}
this will be fine .
In order to avoid the ConcurrentModificationException you might want to check out my UpdateableTreeSet. I have even added a new test case showing how to add elements during a loop. To be more exact, you mark new elements for a later, deferred update of the set. This works quite nicely. Basically you do something like
for (MyComparableElement element : myUpdateableTreeSet) {
if (someCondition) {
// Add new element (deferred)
myUpdateableTreeSet.markForUpdate(
new MyComparableElement("foo", "bar", 1, 2)
);
}
}
// Perform bulk update
myUpdateableTreeSet.updateMarked();
I guess this is quite exactly what you need. :-)
To prevent the ConcurrentModificationException while walking.
Below is my version to allow high frequency insertion into the TreeSet() and allow concurrently iterate on it. This class use a extra queue to store the inserting object when the TreeSet is being iterating.
public class UpdatableTransactionSet {
TreeSet <DepKey> transactions = new TreeSet <DepKey> ();
LinkedList <DepKey> queue = new LinkedList <DepKey> ();
boolean busy=false;
/**
* directly call it
* #param e
*/
void add(DepKey e) {
boolean bb = getLock();
if(bb) {
transactions.add(e);
freeLock();
} else {
synchronized(queue) {
queue.add(e);
}
}
}
/**
* must getLock() and freeLock() while call this getIterator function
* #return
*/
Iterator<DepKey> getIterator() {
return null;
}
synchronized boolean getLock() {
if(busy) return false;
busy = true;
return true;
}
synchronized void freeLock() {
synchronized(queue) {
for(DepKey e:queue) {
transactions.add(e);
}
}
busy = false;
}
}
While the question has already been answered, I think the most satisfactory answer lies in javadoc of TreeSet itself
The iterators returned by this class's iterator method are fail-fast: if the set is modified at any time after the iterator is created, in any way except through the iterator's own remove method, the iterator will throw a ConcurrentModificationException. Thus, in the face of concurrent modification, the iterator fails quickly and cleanly, rather than risking arbitrary, non-deterministic behavior at an undetermined time in the future.
Note that the fail-fast behavior of an iterator cannot be guaranteed as it is, >generally speaking, impossible to make any hard guarantees in the presence of unsynchronized concurrent modification. Fail-fast iterators throw ConcurrentModificationException on a best-effort basis. Therefore, it would be wrong to write a program that depended on this exception for its correctness: the fail-fast behavior of iterators should be used only to detect bugs.
To avoid the concurrent modification error that's bound to occur when you're doing the insertion, you could also create a temporary copy of the Set, iterate through the copy instead, and modify the original.

How can I make a resizable array in Java?

What is the best way to do a resizable array in Java? I tried using Vector, but that shifts all elements over by when when you do an insert, and I need an array that can grow but the elements stay in place. I'm sure there's a simple answer for this, but I still not quite sure.
As an alternative, you could use an ArrayList. It is a resizable-array implementation of the List interface.
Usage (using String):
List<String> myList = new ArrayList<String>();
myList.add("a");
myList.add("c");
myList.add("b");
The order will be just like you put them in: a, c, b.
You can also get an individual item like this:
String myString = myList.get(0);
Which will give you the 0th element: "a".
Like Sanjo pointed out: "An array is a static datastructure, so they can't grow". The list interface can by backed by an array(for example ArrayList like Kevin pointed out in his post). When the list structure is full and a new item has to be added to the list. Then the structure first creates a new array which can contain the old elements plus the new element which has to be added to the list.
The list interface has a different implementations which all have there pros/cons and you should pick the one best solving your problem-set. Below I will try to give a short summary when to use which implementation:
Not thread-safe implementations:
ArrayList: Resizable-array implementation of the List interface. You should use this implementation when you are doing a lot of size, isEmpty, get, set, iterator, and listIterator operations run in constant time. The add operation runs in amortized constant time, that is, adding n elements requires O(n) time. I think you should use this implementation when doing more lookups(get()) then adding items to list(add()).
LinkedList: This implementation is not backup by an array but "links" the nodes together. In my opinion you should use this implementation when you are doing more add() then get().
Thread-safe implementations:
Be aware that these list implementations aren't thread-safe which means it is possible to get race conditions when accesing them from multiple threads. If you want to use List implementations from multiple threads I would advise you to study the java.util.concurrent package and use implementation from that class.
You probably should use ArrayList instead of Vector for reasons explained in other answers.
However ...
I tried using Vector, but that shifts all elements over by when when you do an insert, and I need an array that can grow but the elements stay in place.
When you do an insertElementAt(pos, elem), you have specifically asked for the element shifting. If you don't want the elements to be shifted, you should use set(pos, elem) instead. Or if you want to add the element at the end of the vector, you can also use add(elem).
Incidentally, the previous paragraph applies to all implementations of List, not just Vector, though the implementation details and performance vary across the different kinds of List.
I tried using Vector, but that shifts all elements over by when when you do an insert, and I need an array that can grow but the elements stay in place.
You probably want to use ArrayList instead of Vector.
They both provide about the same interface, and you can replace elements with both of them by calling set(idx, element). That does not do any shifting around. It also does not allow you to grow the array, though: You can only insert at already occupied positions (not beyond the current size of the array), to add new elements at the end you have to use add(element).
The difference between ArrayList and Vector is that Vector has synchronization code which you most likely do not need, which makes ArrayList a little faster.
If you want to operate array data after all element had already inserted or deleted, there is a way that try to create a LinkedList or ArrayList, its simply resize, after the data input is finished, you can transfer the ArrayList to an Array, then do all the things you normally to Array.
ArrayList and LinkedList
Space Complexity:
a) ArrayList:
Allocates a chunk of memory when you initialize and doubles everytime it reaches it max size whenever you add an element dynamically.
b) LinkedList:
It allocates memory only everytime you add an item to the list.
Runtime Complexity:
a) ArrayList:
Search is faster, insertion and deletion is slower compared to linked list
b) LinkedList:
Insertion and deletion is faster, search is slower compared to array list
An array cannot be resized dynamically in Java. The solution to this is using ArrayList or creating another temporary array and then assign it.
You can find tutorials about ArrayList, but if you just want custom ResizableArray in Java. Here's it is. But it's NOT recommend to use! It's just a FAKE resizable array and heap memory will be increased when you create too many objects. This is just to show you the idea.
The Interface
public interface Resizable<T> {
void add(T data);
int delete(int index);
int size();
void print();
}
Implementation Class
public class ResizeableImpl<T> implements Resizable<T> {
private Object[] temp = null;
private Object[] originals = new Object[0];
#Override
public void add(T data) {
Object[] temp = new Object[originals.length+1];
for (int i=0; i<originals.length; i++) {
temp[i]=originals[i];
}
temp[originals.length]=data;
originals=temp;
}
#Override
public int delete(int index) {
int success=0;
switch (originals.length) {
case 0: //No Data to delete
success=0;
break;
case 1: //One Data is delete and so no data, too!
originals = new Object[0];
success = 1;
break;
default: //>=2
int count=0;
originals[index]=null;
temp = new Object[originals.length-1];
for (int i=0; i<originals.length; i++) {
if (originals[i]!=null)
temp[count++]=originals[i];
}
originals = temp;
success = 1;
}
return success;
}
#Override
public int size() {
return originals.length;
}
#Override
public void print() {
StringBuilder sb = null;
if (originals.length==0) {
System.out.println("No data available!");
return;
}
for (int i=0; i<originals.length; i++) {
if (sb==null) {
sb = new StringBuilder();
sb.append(originals[i]);
}
else {
sb.append(", "+originals[i]);
}
}
sb.append(".");
System.out.println(sb.toString());
}
}
Main method
public class App {
public static void main(String[] args) {
//Program to interfaces, not implementations
Resizable<Integer> obj = new ResizeableImpl<>();
obj.add(13);
obj.add(20);
obj.add(17);
obj.add(25);
obj.add(100);
obj.add(12);
obj.print();
int result = obj.delete(2); //This will delete 17.
if (result==1) {
System.out.println("Deletion is successful!");
}
obj.print();
obj.delete(3); //This will delete 100.
obj.print();
}
}
Output
13, 20, 17, 25, 100, 12.
Deletion is successful!
13, 20, 25, 100, 12.
13, 20, 25, 12.
Use either ArrayList or LinkedList.
Using wonderful classes in Collections framework is the better than using arrays.
But in case your question is from a "quizzing" perspective, here is what you should do.
Create your own resize method such as:
int[] oldArray = {1,2,3};
int oldSize = java.lang.reflect.Array.getLength(oldArray);
Class elementType = oldArray.getClass().getComponentType();
Object newArray = java.lang.reflect.Array.newInstance(
elementType,newSize);
int preserveLength = Math.min(oldSize,newSize);
if (preserveLength > 0)
System.arraycopy (oldArray,0,newArray,0,preserveLength);
oldArray = newArray;

Categories

Resources