So I'm having the following problem: I have a method that breaks a big matrix into smaller blocks of the same size. After I do some operations on the blocks, I want to reconstruct the big matrix in the right order, but I'm going wrong at it somehow.
The following code reconstructs correctly a 4x4 matrix that breaks into 2x2, but for any other dimensions, it's not working properly.
public long[][] blocksToMatrix(List<long[][]> blocks, int blockDimension, int width, int height ){
long[][] yuvMatrix = new long[height][width];
int heightPos = 0;
int widthPos = 0;
for (int i = 0; i < blocks.size(); i++) {
long[][] yuvBlock = blocks.get(i);
int heightPosTemp = heightPos;
for (int j = 0; j < blockDimension * blockDimension; j++) {
yuvMatrix[heightPos][widthPos] = yuvBlock[j / blockDimension][j % blockDimension];
widthPos++;
if (widthPos >= width){
widthPos = (i * blockDimension) % width;
heightPos++;
}
if (widthPos == ((i + 1) * blockDimension) % width){
widthPos = (i * blockDimension) % width;
heightPos++;
}
}
if (heightPos == height ){
heightPos = heightPosTemp;
}
else {
heightPos = (i * blockDimension) % height;
}
widthPos = ((i + 1) * blockDimension) % width;
}
return yuvMatrix;
}
The method I used to break the matrix:
public List<long[][]> matrixToBlocks(long[][] yuvMatrix, int blockDimension, int width, int height){
int blocksSize = width / blockDimension * (height / blockDimension);
List<long[][]> blocks = new ArrayList<long[][]>();
for (int i = 0; i < blocksSize; i++) {
long[][] subBlock = new long[blockDimension][blockDimension];
int heightPos = (blockDimension * (i / blockDimension)) % height;
int widthPos = (blockDimension * i) % width;
if (widthPos + blockDimension > width) {
widthPos = 0;
}
for (int row = 0; row < blockDimension; row++) {
for (int col = 0; col < blockDimension; col++) {
subBlock[row][col] = yuvMatrix[heightPos + row][col + widthPos];
}
}
blocks.add(subBlock);
}
return blocks;
}
The way I tested it:
public static void testareMatBlo(int height, int width, int blockdim){
long[][] test = new long[height][width];
int val = 1;
for (int i = 0; i < height; i++){
for (int j = 0; j < width; j++){
test[i][j] = val;
val++;
}
}
List<long[][]> blocks = matrixToBlocks(test, blockdim, width, height);
long[][] matrix = blocksToMatrix(blocks, blockdim, width, height);
if (Arrays.deepEquals(test, matrix)){
System.out.println("YES");
}
else {
System.out.println("NO");
}
}
This works:
testareMatBlo(4, 4, 2);
But anything else doesn't. Can anyone explain what I did wrong?
I didn't thoroughly read your code for matrixToBlocks(...) but all those calculations like int blocksSize = width / blockDimension * (height / blockDimension); are very likely to introduce hard to spot errors - and you actually don't need them:
public static List<long[][]> matrixToBlocks(long[][] yuvMatrix, int blockDimension){
//Check matrix and block dimension match
if( yuvMatrix.length == 0 || yuvMatrix.length % blockDimension != 0
|| yuvMatrix[0].length == 0 || yuvMatrix[0].length % blockDimension != 0 ) {
throw new IllegalArgumentException("whatever message you like");
}
List<long[][]> blocks = new ArrayList<long[][]>();
//Iterate over the blocks in row-major order (down first, then right)
for( int c = 0; c < yuvMatrix.length; c += blockDimension ) {
for( int r = 0; r < yuvMatrix[c].length; r += blockDimension ) {
long[][] subBlock = new long[blockDimension][blockDimension];
//Iterate over the block in row-major order
for(int bc = 0; bc < blockDimension; bc++ ) {
for(int br = 0; br < blockDimension; br++ ) {
subBlock[bc][br]=yuvMatrix[c+bc][r+br];
}
}
blocks.add(subBlock);
}
}
return blocks;
}
That method doesn't look shorter but it is: discounting the preliminary check yours is missing there are only 8 actual lines of code compared to 13 in your code. That's not the point however. What's more important is that the logic is easier since there are only a few calculations involved (like c+bc).
You might think this is inefficient but it isn't: you're accessing each element only once and thus even though there are 4 nested loops the overall complexity is still O(n) with n being the size of the matrix.
Constructing the matrix back is equally easy. The major thing you need to take care of is the ordering of the blocks: if you create them in row-major order (blocks below each other are next to each other in the list) you need to recreate the matrix in the same way:
public static long[][] blocksToMatrix( List<long[][]> blocks, int width, int height ) {
long[][] yuvMatrix = new long[width][height];
int c = 0;
int r = 0;
for( long[][] block : blocks ) {
int blockWidth = block.length;
int blockHeight = block[0].length;
for( int bc = 0; bc < block.length; bc++ ) {
for( int br = 0; br < block[bc].length; br++ ) {
yuvMatrix[c + bc][r + br] = block[bc][br];
}
}
//calculate the next offset into the matrix
//The blocks where created in row-major order so we need to advance the offset in the same way
r += blockHeight;
if( r >= height ) {
r = 0;
c += blockWidth;
}
}
return yuvMatrix;
}
package net.gfx;
public class TileSet {
public final int TILES = 627;
class Tiles {
int x = 0, y = 0;
int w = 0, h = 0;
}
public Tiles tiles[] = new Tiles[TILES];
public TileSet() {
for (int i = 0, y = 0; i < TILES; i++) {
for (int x = 0; x < 1280; x =+ 25) {
if (x > 1280) {
x = 0;
y += 40;
}
else {
tiles[i].x = x; //ERROR CAUSED HERE
tiles[i].y = y; //TO HERE *Unknown reason*
tiles[i].w = 40;
tiles[i].h = 40;
}
}
}
}
}
The Error im getting:
Exception in thread "main" java.lang.ExceptionInInitializerError
at net.jump.Jump.<clinit>(Jump.java:8)
Caused by: java.lang.NullPointerException
at net.gfx.TileSet.<init>(TileSet.java:24)
at net.gfx.Graphics.<clinit>(Graphics.java:10)
... 1 more
What I'm trying to do is basically create an array of tiles on a screen. Everyting else works besides the setting the Object array Values.
I've searched almost everywhere and haven't found anything. I bet its probaly some simple thing i missed.
You have to create an instance of Tiles before you can do any operation on it.
for (int i = 0, y = 0; i < TILES; i++) {
for (int x = 0; x < 1280; x =+ 25) {
if (x > 1280) {
x = 0;
y += 40;
}
else {
tiles[i] = new Tiles(); //instance created here.
tiles[i].x = x;
tiles[i].y = y;
tiles[i].w = 40;
tiles[i].h = 40;
}
}
}
You aren't initializing each Tiles in your array, as the default value is null.
Perhaps you should try initializing each Tiles:
for(int i = 0; i < tiles.length; i++){
tiles[i] = new Tiles();
}
After that, you could perform operations with each Tiles element in the array.
I have a Matlab code of bat algorithm and I write java version of this algorithm
Bat algorithm is a simple optimization algorithm for finding the minimum of any function
here is the matlab code and my java version of this code
My java version of this algorithm can't find the optimum result like matlab version
and I can't find where is my mistake in converting the code from matlab to java
Can anyone help me where is my mistake?
import java.util.Random;
public class Bat
{
private int n;
private float A, r;
private float Qmin, Qmax;
private int d;
private int NofGen;
private float fmin;
private int fminIndex;
private float Fnew;
private int loopCounter;
private float Q[], V[][], Sol[][], UL_bound[][], fitness[], S[][], Best[];
private Random myRand;
public Bat(
int NBats,
float loudness,
float pulseRate,
float minFreq,
float maxFreq,
int NofGeneration,
int dimension
)
{
n = NBats;
A = loudness;
r = pulseRate;
Qmin = minFreq;
Qmax = maxFreq;
NofGen = NofGeneration;
d = dimension;
S = new float[n][d];
Best = new float[d];
UL_bound = new float[2][d];
//default bounds
for(int i = 0 ; i < d ; i++)
{
UL_bound[0][i] = -10000;
UL_bound[1][i] = 10000;
}
loopCounter = 0;
myRand = new Random();
Q = new float[n];
for(int i = 0 ; i < n ; i++)
Q[i] = 0;
V = new float[n][d];
for(int i = 0 ; i < n ; i++)
for(int j = 0 ; j < d ; j++)
V[i][j] = 0;
}
public void intial()
{
Sol = new float[n][d];
for(int i = 0 ; i < n ; i++)
for(int j = 0 ; j < d ; j++)
{
float t = myRand.nextFloat();
//(upper -lower)*rand + lower
Sol[i][j] = t * (UL_bound[1][j] - UL_bound[0][j]) + UL_bound[0][j];
}
fitness = new float[n];
for(int i = 0 ; i < n ; i++)
fitness[i] = function(Sol[i]);
//finding fmin
fmin = fitness[0];
fminIndex = 0;
for(int i = 0 ; i < n ; i++)
{
if (fitness[i] < fmin)
{
fmin = fitness[i];
fminIndex = i;
}
}
//setting best
for(int j = 0 ; j < d ; j++)
Best[j] = Sol[fminIndex][j];
}
public void start()
{
while(loopCounter < NofGen)
{
for(int i = 0 ; i < n ; i++)
{
Q[i] = Qmin + (Qmin - Qmax)* myRand.nextFloat();
for(int j = 0 ; j < d ; j++)
V[i][j] = V[i][j] + (Sol[i][j]-Best[j])*Q[i];
for(int j = 0 ; j < d ; j++)
S[i][j] = Sol[i][j] + V[i][j];
Sol[i] = simpleBounds(Sol[i]);
if(myRand.nextFloat() > r)
for(int j = 0 ; j < d ; j++)
S[i][j] = (float) (Best[j] + (.001 * myRand.nextFloat()) );
Fnew = function(S[i]);
if(Fnew <= fitness[i] && myRand.nextFloat() < A)
{
for(int j = 0 ; j < d ; j++)
Sol[i][j] = S[i][j];
fitness[i] = Fnew;
}
if(Fnew <= fmin)
{
fmin = Fnew;
for(int j = 0 ; j < d ; j++)
Best[j] = S[i][j];
}
}
loopCounter++;
}
}
public float[] simpleBounds(float p[])
{
for(int i = 0 ; i < d ; i++)
{
if(p[i] < UL_bound[0][i])
p[i] = UL_bound[0][i];
if(p[i] > UL_bound[1][i])
p[i] = UL_bound[1][i];
}
return p;
}
float function(float p[])
{
// Sphere function with fmin=0 at (0,0,...,0)
float sum = 0;
for(int i = 0 ; i < p.length ; i++)
sum = sum + p[i]*p[i];
return sum;
}
public float printResult()
{
System.out.println("After " + loopCounter + "Repeats :");
for(int i = 0 ; i < d ; i++)
System.out.print(Best[i] + ", ");
System.out.println ( "F(x) = " + fmin);
return fmin;
}
public void set_UL_Bound(int n, float L, float U)
{
if( n < d && n >= 0)
{
UL_bound[0][n] = L;
UL_bound[1][n] = U;
}
}
}
and this is the matlab versian
function [best,fmin,N_iter]=bat_algorithm(para)
% Display help
help bat_algorithm.m
% Default parameters
if nargin<1, para=[20 1000 0.5 0.5]; end
n=para(1); % Population size, typically 10 to 40
N_gen=para(2); % Number of generations
A=para(3); % Loudness (constant or decreasing)
r=para(4); % Pulse rate (constant or decreasing)
% This frequency range determines the scalings
% You should change these values if necessary
Qmin=0; % Frequency minimum
Qmax=2; % Frequency maximum
% Iteration parameters
N_iter=0; % Total number of function evaluations
% Dimension of the search variables
d=5; % Number of dimensions
% Lower limit/bounds/ a vector
Lb=-3*ones(1,d);
% Upper limit/bounds/ a vector
Ub=6*ones(1,d);
% Initializing arrays
Q=zeros(n,1); % Frequency
v=zeros(n,d); % Velocities
% Initialize the population/solutions
for i=1:n,
Sol(i,:)=Lb+(Ub-Lb).*rand(1,d);
Fitness(i)=Fun(Sol(i,:));
end
% Find the initial best solution
[fmin,I]=min(Fitness);
best=Sol(I,:);
for t=1:N_gen,
% Loop over all bats/solutions
for i=1:n,
Q(i)=Qmin+(Qmin-Qmax)*rand;
v(i,:)=v(i,:)+(Sol(i,:)-best)*Q(i);
S(i,:)=Sol(i,:)+v(i,:);
% Apply simple bounds/limits
Sol(i,:)=simplebounds(Sol(i,:),Lb,Ub);
% Pulse rate
if rand>r
% The factor 0.001 limits the step sizes of random walks
S(i,:)=best+0.001*randn(1,d);
end
% Evaluate new solutions
Fnew=Fun(S(i,:));
% Update if the solution improves, or not too loud
if (Fnew<=Fitness(i)) & (rand<A) ,
Sol(i,:)=S(i,:);
Fitness(i)=Fnew;
end
% Update the current best solution
if Fnew<=fmin,
best=S(i,:);
fmin=Fnew;
end
end
N_iter=N_iter+n;
end
% Output/display
disp(['Number of evaluations: ',num2str(N_iter)]);
disp(['Best =',num2str(best),' fmin=',num2str(fmin)]);
% Application of simple limits/bounds
function s=simplebounds(s,Lb,Ub)
% Apply the lower bound vector
ns_tmp=s;
I=ns_tmp<Lb;
ns_tmp(I)=Lb(I);
% Apply the upper bound vector
J=ns_tmp>Ub;
ns_tmp(J)=Ub(J);
% Update this new move
s=ns_tmp;
function z=Fun(u)
% Sphere function with fmin=0 at (0,0,...,0)
z=sum(u.^2);
%%%%% ============ end ====================================
The diff between two codes
In Matlab code:
S(i,:)=best+0.001*randn(1,d);
randn=>standard normal distribution.
While in Java code:
S[i][j] = (float) (Best[j] + (.001 * myRand.nextFloat()) );
java.util.Random.nextFloat()=>uniformly distributed float value between 0.0 and 1.0.
I was looking for the solution in C# and stumbled up on this. It was enough to get the job done. Here is the solution in C# translated from the java with variables renamed and an additional fitness function for finding the solution of two x,y equations xy=6 and x+y = 5. Also included is finding the square root of .3 :
using System;
namespace BatAlgorithmC
namespace BatAlgorithmC
{
class Program
{
static void Main(string[] args)
{
// Mybat x = new Mybat(100, 1000, 0.5, 0.5, 5, Mybat.sphere);
// Mybat x = new Mybat(1000, 1000, 0.5, 0.5, 1, Mybat.squareRoot);
Mybat x = new Mybat(1000, 1000, 0.5, 0.5, 2, Mybat.RootOfXYEquations);
Console.WriteLine("Hit any key to continue.");
Console.ReadLine();
}
}
public class Mybat
{
/**
* #param args the command line arguments
*/
public int _numberOfBats, _generations, Qmin, Qmax, N_iter, _dimension;
public double _volume, _pulseRate, min, max, fnew, fmin;
public double[][] _lowerBound, _upperBound, _velocity, _solution, S;
public double[] _fitness, _tempSolution, _bestSolution, Q;
public Random random;
//public static void main(String[] args) {
// Mybat x = new Mybat(20,1000,0.5,0.5,5, Mybat.sphere);
//}
public static void initJagged(double[][] array, int n, int d)
{
for (int i = 0; i < n; i++) array[i] = new double[d];
}
public Mybat(
int bats,
int generations,
double loud,
double pulse,
int dimension,
Func<double[], int, double> function
)
{
//initialization of variables
_numberOfBats = bats;
_generations = generations;
_volume = loud;
_pulseRate = pulse;
_dimension = dimension;
Random random = new Random();
//plan to change later and added as parameter
min = -15;
max = 15;
fmin = 0;
//decleration for the bounds
_lowerBound = new double[1][];
_upperBound = new double[1][];
Q = new double[_numberOfBats]; // frequency
_velocity = new double[_numberOfBats][]; //velocity
initJagged(_velocity, _numberOfBats, _dimension);
initJagged(_lowerBound, 1, _dimension);
initJagged(_upperBound, 1, _dimension);
//initialize solution array
_solution = new double[_numberOfBats][];
S = new double[_numberOfBats][];
_fitness = new double[_numberOfBats]; // fitness container
_bestSolution = new double[_dimension];
_tempSolution = new double[_dimension]; //temporary holder for a row in array _solution
initJagged(_solution, _numberOfBats, _dimension);
initJagged(S, _numberOfBats, _dimension);
for (int i = 0; i < _numberOfBats; i++)
{
// for minimal coding : added initialize Q[]array with '0' as element
Q[i] = 0;
for (int x = 0; x < _dimension; x++)
{
// for minimal coding : added initialize _velocity[][] array with '0' as element
_velocity[i][x] = 0;
//find random double values from LB to UB
_solution[i][x] = (random.NextDouble()*(max - min)) + min;
_tempSolution[x] = _solution[i][x];
//Console.WriteLine("sol["+i+"]["+x+"] = "+_solution[i][x]); //test line
//Console.WriteLine(rand.nextDouble()); //test line
}
_fitness[i] = function(_tempSolution, _dimension);
//initialize best and the fmin
if (i == 0 || fmin > _fitness[i])
{
fmin = _fitness[i];
for (int x = 0; x < _dimension; x++)
{
_bestSolution[x] = _solution[i][x];
}
}
Console.WriteLine("fitness[" + i + "]" + _fitness[i]); //test
}
Console.WriteLine("fmin = " + fmin); //test
// special note to these variables (below)
// change if required for maximum effectivity
Qmin = 0;
Qmax = 2;
N_iter = 1; //number of function evaluation
// bat proper
for (int loop = 0; loop < N_iter; loop++)
{
// loop over all bats/solutions
for (int nextBat = 0; nextBat < _numberOfBats; nextBat++)
{
Q[nextBat] = Qmin + ((Qmin - Qmax)*random.NextDouble());
// loop for velocity
for (int vel = 0; vel < _dimension; vel++)
{
_velocity[nextBat][vel] = _velocity[nextBat][vel] +
((_solution[nextBat][vel] - _bestSolution[vel])*Q[nextBat]);
}
//new solutions
for (int nextDimension = 0; nextDimension < _dimension; nextDimension++)
{
S[nextBat][nextDimension] = _solution[nextBat][nextDimension] +
_velocity[nextBat][nextDimension];
}
/**
* RESERVED SPOT for the QUESTIONABLE AREA ON THE
* MATLAB CODE (i think it is not needed for the java equivalent)
*/
// pulse rate
if (random.NextDouble() > _pulseRate)
{
for (int nextDimension = 0; nextDimension < _dimension; nextDimension++)
{
S[nextBat][nextDimension] = _bestSolution[nextDimension] + (0.001*random.NextGaussian());
}
}
//putting current row of _solution to a temp array
for (int nextDimension = 0; nextDimension < _dimension; nextDimension++)
{
_tempSolution[nextDimension] = S[nextBat][nextDimension];
}
fnew = function(_tempSolution, _dimension);
// update if solution is improved, and not too loud
if ((fnew <= _fitness[nextBat]) && (random.NextDouble() < _volume))
{
for (int x = 0; x < _dimension; x++)
{
_solution[nextBat][x] = S[nextBat][x];
_fitness[nextBat] = fnew;
}
}
//update current best solution
if (fnew <= fmin)
{
for (int nextDimension = 0; nextDimension < _dimension; nextDimension++)
{
_bestSolution[nextDimension] = S[nextBat][nextDimension];
fmin = fnew;
}
}
}
}
Console.WriteLine(" ");
Console.WriteLine("new fitness");
for (int i = 0; i < _numberOfBats; i++)
{
Console.WriteLine("fitness[" + i + "]" + _fitness[i]);
}
for (int nextDimension = 0; nextDimension < _dimension; nextDimension++)
{
Console.WriteLine("best[" + nextDimension + "]" + _bestSolution[nextDimension]);
}
Console.WriteLine("Fmin = " + fmin);
}
//possible that this function is not needed in java
public void set_bounds(int x, double L, double U)
{
//double temp_Lb[x];
//double temp_Ub[x];
for (int i = 0; i < x; i++)
{
_lowerBound[0][i] = L;
_upperBound[0][i] = U;
}
}
public static double sphere(double[] value, int d)
{
// sphere function where fmin is at 0
double result = 0;
for (int i = 0; i < d; i++)
{
result += (value[i]*value[i]);
}
return result;
}
public static double squareRoot(double[] value, int d)
{
// find the square root of .3
double result = 0;
for (int i = 0; i < d; i++)
{
result += Math.Abs(.3 - (value[i]*value[i]));
}
return result;
}
public static double RootOfXYEquations(double[] value, int d)
{
// solve for x and y xy = 6 and x+y = 5
double result = 0;
result += Math.Abs(5 - (value[0] + value[1]));
result += Math.Abs(6 - (value[0] * value[1]));
return result;
}
}
static class MathExtensiionns
{
public static double NextGaussian(this Random rand)
{
double u1 = rand.NextDouble(); //these are uniform(0,1) random doubles
double u2 = rand.NextDouble();
double mean = 0, stdDev = 1;
double randStdNormal = Math.Sqrt(-2.0 * Math.Log(u1)) *
Math.Sin(2.0 * Math.PI * u2); //random normal(0,1)
double randNormal =
mean + stdDev * randStdNormal; //random normal(mean,stdDev^2)
return randNormal;
}
}
}
this will be my first time here at stack overflow so i will say sorry beforehand if my response will be a bit ambiguous and has many problems. i just hope that this answer of mine will help future visitors on this thread who wants to study bat algo via java.
anyway, i did look at your code since i am studying bat algorithm at the moment.
tried running it and it does gives far off results compared to the matlab version.
what i noticed is that you just "literally" tried to convert the matlab code without fully understanding each matlab lines. i wanted to point out all of the stuff you missed but i am feeling lazy right now so i will just leave my version of bat algorithm in java.
NOTE: i just made a running bat algorithm in java. not an efficient, fully debugged, matlab's java-equivalent bat algorithm.
import java.util.Random;
public class Mybat {
/**
* #param args the command line arguments
*/
public int n, N_gen, Qmin, Qmax, N_iter, d;
public double A,r,min,max,fnew,fmin;
public double Lb[][],Ub[][],Q[],v[][],Sol[][],S[][],fitness[],temp[],best[];
public Random random;
public static void main(String[] args) {
Mybat x = new Mybat(20,1000,0.5,0.5,5);
}
public Mybat(
int bats,
int generations,
double loud,
double pulse,
int dimension
){
//initialization of variables
n=bats;
N_gen = generations;
A = loud;
r = pulse;
d = dimension;
Random rand = new Random();
//plan to change later and added as parameter
min = -15;
max = 15;
fmin = 0;
//decleration for the bounds
Lb = new double[1][d];
Ub = new double[1][d];
Q = new double[n]; // frequency
v = new double[n][d]; //velocity
//initialize solution array
Sol = new double[n][d];
S = new double[n][d];
fitness = new double[n]; // fitness container
best =new double[d];
temp = new double[d]; //temporary holder for a row in array Sol
for(int i=0;i<n;i++){
// for minimal coding : added initialize Q[]array with '0' as element
Q[i] = 0;
for(int x=0;x<d;x++){
// for minimal coding : added initialize v[][] array with '0' as element
v[i][x] = 0;
//find random double values from LB to UB
Sol[i][x]= (rand.nextDouble()*(max - min)) + min;
temp[x] = Sol[i][x];
//System.out.println("sol["+i+"]["+x+"] = "+Sol[i][x]); //test line
//System.out.println(rand.nextDouble()); //test line
}
fitness[i] = function(temp);
//initialize best and the fmin
if(i==0 || fmin > fitness[i]){
fmin = fitness[i];
for(int x=0;x<d;x++){
best[x] = Sol[i][x];
}
}
System.out.println("fitness["+i+"]"+fitness[i]); //test
}
System.out.println("fmin = "+fmin); //test
// special note to these variables (below)
// change if required for maximum effectivity
Qmin = 0;
Qmax = 2;
N_iter = 1; //number of function evaluation
// bat proper
for(int loop=0;loop<N_iter;loop++){
// loop over all bats/solutions
for(int i=0;i<n;i++){
Q[i] = Qmin+((Qmin-Qmax)*rand.nextDouble());
// loop for velocity
for(int vel=0;vel<d;vel++){
v[i][vel] = v[i][vel]+((Sol[i][vel]-best[vel])*Q[i]);
}
//new solutions
for(int x=0;x<d;x++){
S[i][x] = Sol[i][x] + v[i][x];
}
/**
* RESERVED SPOT for the QUESTIONABLE AREA ON THE
* MATLAB CODE (i think it is not needed for the java equivalent)
*/
// pulse rate
if(rand.nextDouble()>r){
for(int x=0;x<d;x++){
S[i][x] = best[x]+(0.001*rand.nextGaussian());
}
}
//putting current row of Sol to a temp array
for(int x=0;x<d;x++){
temp[x] = S[i][x];
}
fnew = function(temp);
// update if solution is improved, and not too loud
if((fnew<=fitness[i]) && (rand.nextDouble()<A)){
for(int x=0;x<d;x++){
Sol[i][x] = S[i][x];
fitness[i] = fnew;
}
}
//update current best solution
if(fnew<=fmin){
for(int x=0;x<d;x++){
best[x] = S[i][x];
fmin = fnew;
}
}
}
}
System.out.println(" ");
System.out.println("new fitness");
for(int i=0;i<n;i++){
System.out.println("fitness["+i+"]"+fitness[i]);
}
System.out.println("Fmin = "+fmin);
}
//possible that this function is not needed in java
public void set_bounds(int x, double L, double U){
//double temp_Lb[x];
//double temp_Ub[x];
for(int i=0; i<x; i++){
Lb[0][i] = L;
Ub[0][i] = U;
}
}
public double function(double value[]){
// sphere function where fmin is at 0
double result = 0;
for(int i=0;i<d;i++){
result += (value[i]*value[i]);
}
return result;
}
}
I am trying to implement in java Matlab's function "filter" in Java.
Y = FILTER(B,A,X)
It says that : The filter is a "Direct Form II Transposed" implementation of the standard difference equation:
a(1)*y(n) = b(1)*x(n) + b(2)*x(n-1) + ... + b(nb+1)*x(n-nb)
- a(2)*y(n-1) - ... - a(na+1)*y(n-na)
Can somebody help me with that as I don't really understand the above formula. Can somebody show me an example of the above formula using these parameters:
e.g. filter([1 -1],[1 -hpf_pole],S')
where hpf_pole = 0.98
S =
-3.26368263029463 0.598694437762099 0.925551549649237
-3.15561902947223 0.00249461257261130 2.35703360665011
-2.89398994439634 1.98384531062216 3.67478741307554
You can read about Direct Form II Transposed. But it's useful to read more about Direct Forms and Implementation of discrete transfer functions in general to know why it's useful and when to use it.
OK I implemented something in Java that looks like it is doing the job:
public void filter(){
double hpfPole = 0.98;
double[] b = new double[]{1,-1};
double[] a = new double[]{1, -hpfPole};
double[] x = new double[]{-7.3416, -7.3416, -7.3416};
double[] y = new double[x.length];
for (int n = 0; n < y.length; n++) {
if(n-1 < 0){
y[n] = b[0]*x[n];
}else{
y[n]= b[0]*x[n]+b[1]*x[n-1]-a[1]*y[n-1];
}
}
}
Input: -7.3416, -7.3416, -7.3416
Output: -7.3416, -7.194768, -7.05087264
More generally it would be something like:
public double[] filter(double[] b, double[] a, double[] x) {
int nx = x.length;
int na = a.length;
int nb = b.length;
double[] y = new double[nx];
for (int k = 0; k < nx; k++) {
y[k] = 0;
for (int i = 0; i < nb; i++) {
if (k - i >= 0 && k - i < nx) {
y[k] += b[i] * x[k - i];
}
}
for (int i = 1; i < na; i++) {
if (k - i >= 0 && k - i < nx) {
y[k] -= a[i] * y[k - i];
}
}
if (Math.abs(a[0] - 1) > 1.e-9) {
y[k] /= a[0];
}
}
return y;
}