Backward Recursive Linear Search - java

I am attempting to write a function that finds the last occurrence of a target in a vector by modifying a linear search function.
private int linearSearchRecursive(int[] input, int key,int index) {
if (index == 0) {
return -1;
}
if (input[index] == key) {
return index;
}
else
return linearSearchRecursive(input,key,--index);
}
I thought of a way to make it work by using a helper function...
public static int findLastOccurance(int[] items, int key){
return linearSearchRecursive(items, key, items.length - 1);
}
Or something of that nature, but was wondering if there was an easier way where I could use only one function but keep the recursiveness?

Not easier but only one function:
public class Test {
public static int findLastOccuranceRecursive(int[] input, int key, int... optionalIndex) {
if (optionalIndex.length == 0) {
optionalIndex = new int[] { input.length - 1 };
} else if (optionalIndex.length != 1) {
throw new IllegalArgumentException("size of optionalIndex must be 0 or 1");
}
if (optionalIndex[0] == 0) {
return -1;
}
if (input[optionalIndex[0]] == key) {
return optionalIndex[0];
} else {
optionalIndex[0]--;
return findLastOccuranceRecursive(input, key, optionalIndex);
}
}
public static int findLastOccuranceIterative(int[] items, int key) {
for (int i = items.length - 1; i >= 0; i--) {
if (items[i] == key) {
return i;
}
}
return -1;
}
public static void main(String[] args) {
int[] input = { 1, 1, 1, 2, 1, 2, 1, 1 };
int testRecursive = findLastOccuranceRecursive(input, 2);
int testIterative = findLastOccuranceIterative(input, 2);
System.out.println("testRecursive: " + testRecursive + " testIterative: " + testIterative);
}
}

Related

BubbleDown function(min heap) not working

I have generated a minheap to this file but I think something I have missed but I can't identify what are the things I have missed. I have missed something on --private void bubbleDown() { }-- section but I can't find what are the things missed by me.
private int default_size = 100; // how big the heap should be
private T[] array;
private int size;
public Heap() {
#SuppressWarnings("unchecked")
T[] tmp = (T[]) (new Comparable[default_size]);
array = tmp;
size = 0;
}
boolean isRoot(int index) { return (index == 0); }
int leftChild(int index) { return 2 * index + 1; }
int parent(int index) { return (index - 1) / 2; }
int rightChild(int index) { return 2 * index + 2; }
T myParent(int index) { return array[parent(index)]; }
T myLeftChild(int index) { return array[leftChild(index)]; }
T myRightChild(int index) { return array[rightChild(index)]; }
boolean hasLeftChild(int i) { return leftChild(i) < size-1; }
boolean hasRightChild(int i){ return rightChild(i) < size-1; }
private void swap(int a, int b) {
T tmp = array[a];
array[a] = array[b];
array[b] = tmp;
}
public boolean isEmpty() { return (size == 0); }
/* adding heap */
public void add(T value) {
if(size == default_size) throw new IllegalStateException("Full array");
array[size++] = value;
bubbleUp();
}
public void bubbleUp() {
if(size == 0) throw new IllegalStateException("Shape error");
int index = size - 1;
while(!isRoot(index)) {
if(myParent(index).compareTo(array[index]) <= 0) break;
/* else part */
swap(parent(index), index);
index = parent(index);
}
}
/* removing */
public T remove() {
if(isEmpty()) return null;
T res = array[0]; /* root */
array[0] = array[size-1];
size --;
bubbleDown();
return res;
}
// i think this section having wrong something
private void bubbleDown() {
int parent = 0;
int leftChild = 2*parent + 1;
int rightChild = 2*parent + 2;
int choice = compareAndPick(leftChild, rightChild);
while (choice != -1)
{
swap(choice, parent);
parent = choice;
choice = compareAndPick(2*choice+1, 2*choice+2);
}
}
private int compareAndPick(int leftChild, int rightChild)
{
if (leftChild >= default_size || array[leftChild] == null) return -1;
if (array[leftChild].compareTo(array[rightChild]) <= 0 || (array[rightChild] == null))
return leftChild;
return rightChild;
}
public void show() {
for(int i=0; i<size; i++)
System.out.print(array[i] + " ");
System.out.println("=======");
}
public static void main(String [] args) {
Heap<Integer> heap = new Heap<Integer>();
for(int i=0; i<10; i++) {
heap.add((Integer)(int)(Math.random() * 100));
heap.show();
}
System.out.println("You should see sorted numbers");
while(!heap.isEmpty()) {
System.out.print(heap.remove());
System.out.print(" ");
heap.show();
}
System.out.println();
}
}
this code used generics and min heap functions.. i need to identify what is the wrong thing did by me on bubbleDown() section
Explanation
The bubbleDown() method is not a different way to insert a node and move it to it's correct position in the Heap. When bubbleDown() is called it's job is to Heapify the Binary Tree from any state. So your attempt to write the method just by changing the condition from the bubbleUp() method isn't gonna help you.
Extra
Here is a video that can give you the idea of how bubbleDown is supposed to work.

Why do I keep getting stack overflow errors? Why does my function return at the first value? when start does != the last value

This is the question:
Write a recursive method that removes all consecutively occurring letters from a string of fixed size. E.g. “AAAbbCCCC” becomes “AbC”
My Code:
public static String NoRepeats(String n, int start) {
String x = "";
if(start == n.length()-1) {
return x;
}
if(n.charAt(start) == n.charAt(start+1)) {
return NoRepeats(n, start+1);
}
else {
x += n.charAt(start);
return NoRepeats(n,start+=1);
}
}
ok, so I wasn't sure why it would only return an empty string, So I fiddled around with the syntax.
FYI String n = "AAAABBBBCCCCDDDD"
In my recursive steps I couldn't use 'start ++ or start +1", it only worked when it was 'start +=1'. This will correct it.
This is my new code:
public static String NoRepeats(String n, int start) {
String x = "";
if(start == (n.length()-1)) {
x += n.charAt(start);
return x;
}
if(n.charAt(start) == n.charAt(start+1)) {
return NoRepeats(n, start+=1);
}
else {
x += n.charAt(start);
return x +NoRepeats(n,start+=1);
}
}
I was wondering why did the above returned empty string so I went and modify your codes to see how it's done.
String a = "";
String b = "";
try {
a = Tesst1.NoRepeats("AAAbbCCCC", 0, b);
} catch(Exception e) {
e.printStackTrace();
}
System.out.println(a);
}
public static String NoRepeats(String n, int start, String b) {
if(start == n.length()-1) {
return b += n.charAt(start - 1);
}
if(n.charAt(start) == n.charAt(start+1)) {
return NoRepeats(n, start+1, b);
}
else {
b += n.charAt(start);
return NoRepeats(n,start+1, b);
}
}
This should now yield AbC.
In your code x is local to function. So, with every call you lose the value of x. Also, there was little mistake in first statement.
In classic way, you could use the result of function:
public static String noRepeats(String n, int start) {
return (start == n.length() - 1) ? "" + n.charAt(start) :
(n.charAt(start) == n.charAt(start + 1)) ? noRepeats(n, start + 1) :
n.charAt(start) + noRepeats(n, start + 1);
public static void main(String[] args) {
System.out.println(noRepeats("AAAbbCCCC", 0));
}
Or need some buffer to accumulate new characters:
public static String noRepeats(String n) {
return noRepeats(n, new StringBuilder(), 0);
}
public static String noRepeats(String n, StringBuilder result, int start) {
if(start == n.length() - 1) {
return result.append(n.charAt(start)).toString();
}
if(n.charAt(start) == n.charAt(start + 1)) {
return noRepeats(n, result, start + 1);
}
else {
result.append(n.charAt(start));
return noRepeats(n, result, start + 1);
}
}
public static void main(String[] args) {
System.out.println(noRepeats("AAAbbCCCC"));
}

Time Complexity of the below Solution? Its already been asked, but i still didnt understand the exponential part! Kindly explain

The following code prints all strings of length k where the characters are in sorted order. It does this by generating all strings of length k and then checking if each is sorted. What is its runtime?
public static int numChars = 26;
public static void printSortedStrings(int remaining) {
printSortedStrings(remaining, "");
}
public static void printSortedStrings(int remaining, String prefix) {
if (remaining == 0) {
if (isInOrder(prefix)) {
System.out.println(prefix); // Printing the string
}
} else {
for (int i = 0; i < numChars; i++) {
char c = ithLetter(i);
printSortedStrings(remaining - 1, prefix + c);
}
}
}
public static boolean isInOrder(String s) {
for (int i = 1; i < s.length(); i++) {
int prev = ithLetter(s.charAt(i - 1));
int curr = ithLetter(s.charAt(i));
if (prev > curr) {
return false;
}
}
return true;
}
public static char ithLetter(int i) {
return (char) (((int) 'a') + i);
}
public static void main(String[] args) {
printSortedStrings(2);
}

Autocomplete byReverseWeightOrder comparator issue

I have been working on this problem for several hours now and I just cannot figure out what I am doing wrong here. Could anyone help point me in the right direction?
I was asked to write an Autocomplete program and I've completed everything except for this one method I cannot get working. Each term has: 1. String query and 2. long weight.
Here is the method:
public static Comparator<Term> byReverseWeightOrder() {
return new Comparator<Term>() { // LINE CAUSING PROBLEM
public int compare(Term t1, Term t2) {
if (t1.weight > t2.weight) { // LINE CAUSING PROBLEM
return -1;
} else if (t1.weight == t2.weight) {
return 0;
} else {
return 1;
}
}
};
}
My problem is that no matter how I mess with the method I always result in a NullPointerException(). Which, it points to this method (byReverseWeightOrder) as well as these two statements.
Arrays.sort(matches, Term.byReverseWeightOrder());
Term[] results = autocomplete.allMatches(prefix);
Here is the rest of the code if it can be found helpful:
Term
import java.util.Comparator;
public class Term implements Comparable<Term> {
public String query;
public long weight;
public Term(String query, long weight) {
if (query == null) {
throw new java.lang.NullPointerException("Query cannot be null");
}
if (weight < 0) {
throw new java.lang.IllegalArgumentException("Weight cannot be negative");
}
this.query = query;
this.weight = weight;
}
public static Comparator<Term> byReverseWeightOrder() {
return new Comparator<Term>() {
public int compare(Term t1, Term t2) {
if (t1.weight > t2.weight) {
return -1;
} else if (t1.weight == t2.weight) {
return 0;
} else {
return 1;
}
}
};
}
public static Comparator<Term> byPrefixOrder(int r) {
if (r < 0) {
throw new java.lang.IllegalArgumentException("Cannot order with negative number of characters");
}
final int ref = r;
return
new Comparator<Term>() {
public int compare(Term t1, Term t2) {
String q1 = t1.query;
String q2 = t2.query;
int min;
if (q1.length() < q2.length()) {
min = q1.length();
}
else {
min = q2.length();
}
if (min >= ref) {
return q1.substring(0, ref).compareTo(q2.substring(0, ref));
}
else if (q1.substring(0, min).compareTo(q2.substring(0, min)) == 0) {
if (q1.length() == min) {
return -1;
}
else {
return 1;
}
}
else {
return q1.substring(0, min).compareTo(q2.substring(0, min));
}
}
};
}
public int compareTo(Term that) {
String q1 = this.query;
String q2 = that.query;
return q1.compareTo(q2);
}
public long getWeight() {
return this.weight;
}
public String toString() {
return this.weight + "\t" + this.query;
}
}
BinarySearchDeluxe
import java.lang.*;
import java.util.*;
import java.util.Comparator;
public class BinarySearchDeluxe {
public static <Key> int firstIndexOf(Key[] a, Key key, Comparator<Key> comparator) {
if (a == null || key == null || comparator == null) {
throw new java.lang.NullPointerException();
}
if (a.length == 0) {
return -1;
}
int left = 0;
int right = a.length - 1;
while (left + 1 < right) {
int middle = left + (right - left)/2;
if (comparator.compare(key, a[middle]) <= 0) {
right = middle;
} else {
left = middle;
}
}
if (comparator.compare(key, a[left]) == 0) {
return left;
}
if (comparator.compare(key, a[right]) == 0) {
return right;
}
return -1;
}
public static <Key> int lastIndexOf(Key[] a, Key key, Comparator<Key> comparator) {
if (a == null || key == null || comparator == null) {
throw new java.lang.NullPointerException();
}
if (a == null || a.length == 0) {
return -1;
}
int left = 0;
int right = a.length - 1;
while (left + 1 < right) {
int middle = left + (right - left)/2;
if (comparator.compare(key, a[middle]) < 0) {
right = middle;
} else {
left = middle;
}
}
if (comparator.compare(key, a[right]) == 0) {
return right;
}
if (comparator.compare(key, a[left]) == 0) {
return left;
}
return -1;
}
}
AutoComplete
import java.util.Arrays;
import java.util.Scanner;
import java.io.File;
import java.io.IOException;
import java.util.Comparator;
public class Autocomplete {
public Term[] terms;
public Autocomplete(Term[] terms) {
if (terms == null) {
throw new java.lang.NullPointerException();
}
this.terms = terms.clone();
Arrays.sort(this.terms);
}
public Term[] allMatches(String prefix) {
if (prefix == null) {
throw new java.lang.NullPointerException();
}
Term theTerm = new Term(prefix, 0);
int start = BinarySearchDeluxe.firstIndexOf(terms, theTerm, Term.byPrefixOrder(prefix.length()));
int end = BinarySearchDeluxe.lastIndexOf(terms, theTerm, Term.byPrefixOrder(prefix.length()));
int count = start;
System.out.println("Start: " + start + " End: " + end);
if (start == -1 || end == -1) {
// System.out.println("PREFIX: " + prefix);
throw new java.lang.NullPointerException();
} // Needed?
Term[] matches = new Term[end - start + 1];
//matches = Arrays.copyOfRange(terms, start, end);
for (int i = 0; i < end - start; i++) {
matches[i] = this.terms[count];
count++;
}
Arrays.sort(matches, Term.byReverseWeightOrder());
System.out.println("Finished allmatches");
return matches;
}
public int numberOfMatches(String prefix) {
if (prefix == null) {
throw new java.lang.NullPointerException();
}
Term theTerm = new Term(prefix, 0);
int start = BinarySearchDeluxe.firstIndexOf(terms, theTerm, Term.byPrefixOrder(prefix.length()));
int end = BinarySearchDeluxe.lastIndexOf(terms, theTerm, Term.byPrefixOrder(prefix.length()));
System.out.println("Finished numberMatches");
return end - start + 1; // +1 needed?
}
public static void main(String[] args) throws IOException {
// Read the terms from the file
Scanner in = new Scanner(new File("wiktionary.txt"));
int N = in.nextInt(); // Number of terms in file
Term[] terms = new Term[N];
for (int i = 0; i < N; i++) {
long weight = in.nextLong(); // read the next weight
String query = in.nextLine(); // read the next query
terms[i] = new Term(query.replaceFirst("\t",""), weight); // construct the term
}
Scanner ip = new Scanner(System.in);
// TO DO: Data Validation Here
int k;
do {
System.out.println("Enter how many matching terms do you want to see:");
k = ip.nextInt();
} while (k < 1 || k > N);
Autocomplete autocomplete = new Autocomplete(terms);
// TO DO: Keep asking the user to enter the prefix and show results till user quits
boolean cont = true;
do {
// Read in queries from standard input and print out the top k matching terms
System.out.println("Enter the term you are searching for. Enter * to exit");
String prefix = ip.next();
if (prefix.equals("*")) {
cont = false;
break;
}
Term[] results = autocomplete.allMatches(prefix);
System.out.println(results.length);
for(int i = 0; i < Math.min(k,results.length); i++)
System.out.println(results[i].toString());
} while(cont);
System.out.println("Done!");
}
}
I apologize for the sloppy code, I have been pulling my hair out for awhile now and keep forgetting to clean it up.
Two examples:
Example 1:
int k = 2;
String prefix = "auto";
Enter how many matching terms do you want to see:
2
Enter the term you are searching for. Enter * to exit
auto
619695 automobile
424997 automatic
Example 2:
int k = 5;
String prefix = "the";
Enter how many matching terms do you want to see:
5
Enter the term you are searching for. Enter * to exit
the
5627187200 the
334039800 they
282026500 their
250991700 them
196120000 there

Recursive method checking whether a row of integers is descending: return true/false

I have to write a recursive method in Java that returns true if a row is descending and false it does not.
This is what I tried, but it doesn't work properly:
ArrayList<Integer> getallen = new ArrayList();
getallen.add(500);
getallen.add(400);
getallen.add(300);
getallen.add(200);
getallen.add(100);
getallen.add(0);
System.out.println(isDescending(getallen));
}
public static boolean isDescending(ArrayList<Integer> getallen) {
if (getallen.size() >= 2) {
if (getallen.get(0) < getallen.get(1)) {
return false;
} else if (getallen.size() > 0) {
getallen.remove(0);
return isDescending(getallen);
} else {
return true;
}
} else {
return false;
}
}
I think you have unnecessary cases if the size is less than 2 you can only assume true.
Try:
public static boolean isDescending(ArrayList<Integer> getallen) {
if (getallen.size() >= 2) {
if (getallen.get(0) < getallen.get(1)) {
return false;
} else {
getallen.remove(0);
return isDescending(getallen);
}
} else {
return true;
}
}
If I had to grade this, it would get a big fat X for
Having been fraudulently asked on stackoverflow
Being quite inefficient (try running this test on a list of a million elements, then realise that removing element 0 in an ArrayList causes all elements to shift down)
Instead consider:
public static boolean isDescending(List<Integer> getallen) {
return isDescending(getallen, 0);
}
public static boolean isDescending(List<Integer> getallen, int from) {
return from >= getallen.size() - 1
|| getallen.get(from) < getallen.get(from + 1)
&& isDescending(getallen, from + 1);
}
How about little bit more efficient approach with logarithmic recursion depth? Just as an exercise.
public static void main(String[] args) {
List<Integer> getallen = new ArrayList<Integer>();
getallen.add(500);
getallen.add(400);
getallen.add(300);
getallen.add(200);
getallen.add(100);
getallen.add(0);
System.out.println(isDescending(getallen));
}
public static boolean isDescending(List<Integer> getallen) {
return isDescending(getallen, 0, getallen.size());
}
private static boolean isDescending(List<Integer> getallen,
int start, int end) {
if (end - start <= 1)
return true;
if (end - start == 2) {
return getallen.get(start) > getallen.get(start + 1);
}
int middle = (start + end - 1) / 2 + 1;
return (getallen.get(middle - 1) > getallen.get(middle)) &&
isDescending(getallen, start, middle) &&
isDescending(getallen, middle, end);
}

Categories

Resources