I'm trying to understand when should I use which. I understand that they all assemble all the dependent classes, but how are they different from each other?
The terms are sometimes used interchangeably, but usually refers to:
Fat jar (also named Uber jar) - used to describe a jar that has all classes from dependent jars zipped directly inside it in the correct directory structure, and not in other jars. There is a good explanation here.
Shaded jar (or shaded classes) - usually refers to a process of changing classes bytecode to change packages names of the classes, and also modify were it is used in the jar. It is used to link classes to a specific version of other classes and avoid versions collisions. It can be created by Maven Shade Plugin. Shaded jar do not necessary contain all the dependencies needed.
The gradle shadow plugin can generate both fat jars and shaded jars, and same for the maven shaded plugin. I guess that is why people mix those terms.
Note: I have seen cases that refers to fat jar as a jar contains dependencies as a packed jars inside it.
There is no difference whatsoever. These terms are all synonyms of each other.
The term "uber-jar" may be more commonly used in documentations (take the maven-shade-plugin documentation for example) but "fat-jar" is also widely used.
Uber Jar, Fat Jar and Shadow Jar are synonyms.
All three tasks do the same thing - you can choose the term you personally prefer the most.
Related
I am reading Maven documentation and came across the name uber-jar.
What does an uber-jar mean and what are its features/advantages?
Über is the German word for above or over (it's actually cognate with the English over).
Hence, in this context, an uber-jar is an "over-jar", one level up from a simple JAR (a), defined as one that contains both your package and all its dependencies in one single JAR file. The name can be thought to come from the same stable as ultrageek, superman, hyperspace, and metadata, which all have similar meanings of "beyond the normal".
The advantage is that you can distribute your uber-jar and not care at all whether or not dependencies are installed at the destination, as your uber-jar actually has no dependencies.
All the dependencies of your own stuff within the uber-jar are also within that uber-jar. As are all dependencies of those dependencies. And so on.
(a) I probably shouldn't have to explain what a JAR is to a Java developer but I'll include it for completeness. It's a Java archive, basically a single file that typically contains a number of Java class files along with associated metadata and resources.
ubar jar is also known as fat jar i.e. jar with dependencies.
There are three common methods for constructing an uber jar:
Unshaded: Unpack all JAR files, then repack them into a single JAR.
Works with Java's default class loader. Tools maven-assembly-plugin
Shaded: Same as unshaded, but rename (i.e., "shade") all packages of all dependencies. Works with Java's default class loader. Avoids some (not all) dependency version clashes. Tools maven-shade-plugin
JAR of JARs: The final JAR file contains the other JAR files embedded within. Avoids dependency version clashes. All resource files are preserved. Tools: Eclipse JAR File Exporter
for more
Paxdiablo's definition is really good.
In addition, please consider delivering an uber-jar is sometimes quite useful, if you really want to distribute a software and don't want customer to download dependencies by themselves. As a draw back, if their own policy don't allow usage of some library, or if they have to bind some extra-components (slf4j, system compliant libs, arch specialiez libs, ...) this will probably increase difficulties for them.
You can perform that :
basically with maven-assembly-plugin
a bit more further with maven-shade-plugin
A cleaner solution is to provide their library separately; maven-shade-plugin has preconfigured descriptor for that. This is not more complicated to do (with maven and its plugin).
Finally, a really good solution is to use an OSGI Bundle. There is plenty of good tutorials on that :)
For further configuration, please read those topics :
Should you provide dependent libraries in client jar?
Best practices in building and deploying Clojure applications: good tutorials?
The different names are just ways of packaging java apps.
Skinny – Contains ONLY the bits you literally type into your code editor, and NOTHING else.
Thin – Contains all of the above PLUS the app’s direct dependencies of your app (db drivers, utility libraries, etc).
Hollow – The inverse of Thin – Contains only the bits needed to run your app but does NOT contain the app itself. Basically a pre-packaged “app server” to which you can later deploy your app, in the same style as traditional Java EE app servers, but with important differences.
Fat/Uber – Contains the bit you literally write yourself PLUS the direct dependencies of your app PLUS the bits needed to run your app “on its own”.
Source: Article from Dzone
Reposted from: https://stackoverflow.com/a/57592130/9470346
A self-contained, executable Java archive. In the case of WildFly Swarm uberjars, it is a single .jar file containing your application, the portions of WildFly required to support it, an internal Maven repository of dependencies, plus a shim to bootstrap it all. see this
According to uber-JAR Documentation Approaches:
There are three common methods for constructing an uber-JAR:
Unshaded Unpack all JAR files, then repack them into a single JAR.
Tools: Maven Assembly Plugin, Classworlds Uberjar
Shaded Same as unshaded, but rename (i.e., "shade") all packages of all dependencies.
Tools: Maven Shade Plugin
JAR of JARs The final JAR file contains the other JAR files embedded within.
Tools: Eclipse JAR File Exporter, One-JAR.
For Java Developers who use SpringBoot, ÜBER/FAT JAR is normally the final result of the package phase of maven (or build task if you use gradle).
Inside the Fat JAR one can find a META-INF directory inside which the MANIFEST.MF file lives with all the info regarding the Main class. More importantly, at the same level of META-INF directory you find the BOOT-INF directory inside which the directory lib lives and contains all the .jar files that are the dependencies of your application.
I am reading Maven documentation and came across the name uber-jar.
What does an uber-jar mean and what are its features/advantages?
Über is the German word for above or over (it's actually cognate with the English over).
Hence, in this context, an uber-jar is an "over-jar", one level up from a simple JAR (a), defined as one that contains both your package and all its dependencies in one single JAR file. The name can be thought to come from the same stable as ultrageek, superman, hyperspace, and metadata, which all have similar meanings of "beyond the normal".
The advantage is that you can distribute your uber-jar and not care at all whether or not dependencies are installed at the destination, as your uber-jar actually has no dependencies.
All the dependencies of your own stuff within the uber-jar are also within that uber-jar. As are all dependencies of those dependencies. And so on.
(a) I probably shouldn't have to explain what a JAR is to a Java developer but I'll include it for completeness. It's a Java archive, basically a single file that typically contains a number of Java class files along with associated metadata and resources.
ubar jar is also known as fat jar i.e. jar with dependencies.
There are three common methods for constructing an uber jar:
Unshaded: Unpack all JAR files, then repack them into a single JAR.
Works with Java's default class loader. Tools maven-assembly-plugin
Shaded: Same as unshaded, but rename (i.e., "shade") all packages of all dependencies. Works with Java's default class loader. Avoids some (not all) dependency version clashes. Tools maven-shade-plugin
JAR of JARs: The final JAR file contains the other JAR files embedded within. Avoids dependency version clashes. All resource files are preserved. Tools: Eclipse JAR File Exporter
for more
Paxdiablo's definition is really good.
In addition, please consider delivering an uber-jar is sometimes quite useful, if you really want to distribute a software and don't want customer to download dependencies by themselves. As a draw back, if their own policy don't allow usage of some library, or if they have to bind some extra-components (slf4j, system compliant libs, arch specialiez libs, ...) this will probably increase difficulties for them.
You can perform that :
basically with maven-assembly-plugin
a bit more further with maven-shade-plugin
A cleaner solution is to provide their library separately; maven-shade-plugin has preconfigured descriptor for that. This is not more complicated to do (with maven and its plugin).
Finally, a really good solution is to use an OSGI Bundle. There is plenty of good tutorials on that :)
For further configuration, please read those topics :
Should you provide dependent libraries in client jar?
Best practices in building and deploying Clojure applications: good tutorials?
The different names are just ways of packaging java apps.
Skinny – Contains ONLY the bits you literally type into your code editor, and NOTHING else.
Thin – Contains all of the above PLUS the app’s direct dependencies of your app (db drivers, utility libraries, etc).
Hollow – The inverse of Thin – Contains only the bits needed to run your app but does NOT contain the app itself. Basically a pre-packaged “app server” to which you can later deploy your app, in the same style as traditional Java EE app servers, but with important differences.
Fat/Uber – Contains the bit you literally write yourself PLUS the direct dependencies of your app PLUS the bits needed to run your app “on its own”.
Source: Article from Dzone
Reposted from: https://stackoverflow.com/a/57592130/9470346
A self-contained, executable Java archive. In the case of WildFly Swarm uberjars, it is a single .jar file containing your application, the portions of WildFly required to support it, an internal Maven repository of dependencies, plus a shim to bootstrap it all. see this
According to uber-JAR Documentation Approaches:
There are three common methods for constructing an uber-JAR:
Unshaded Unpack all JAR files, then repack them into a single JAR.
Tools: Maven Assembly Plugin, Classworlds Uberjar
Shaded Same as unshaded, but rename (i.e., "shade") all packages of all dependencies.
Tools: Maven Shade Plugin
JAR of JARs The final JAR file contains the other JAR files embedded within.
Tools: Eclipse JAR File Exporter, One-JAR.
For Java Developers who use SpringBoot, ÜBER/FAT JAR is normally the final result of the package phase of maven (or build task if you use gradle).
Inside the Fat JAR one can find a META-INF directory inside which the MANIFEST.MF file lives with all the info regarding the Main class. More importantly, at the same level of META-INF directory you find the BOOT-INF directory inside which the directory lib lives and contains all the .jar files that are the dependencies of your application.
This question already has answers here:
What is an uber jar?
(7 answers)
Closed 4 years ago.
Can you please help explain what is a shaded jar and how is the maven-shade-plugin useful? Also what is an uber jar.
I'll explain what an uber JAR is first because this underpins the shading explanation.
Uber JAR
An uber JAR is a JAR which contains the contents of multiple JARs (or, less commonly, multiple other JARs themselves)
Your application will almost certainly use other packages and these packages might be provided as JARs. When using Maven these dependencies would be expressed as follows:
<dependency>
<groupId>...</groupId>
<artifactId>...</artifactId>
<version>...</version>
</dependency>
At runtime your application will expect to find the classes contained in this JAR on its classpath.
Rather than shipping each of these dependent JARs along with your application, you could create an uber JAR which contains all of the classes etc from these dependent JARs and then simply run your application from this uber JAR.
Shading
Shading provides a way of creating an uber JAR and renaming the packages which that uber JAR contains. If your uber JAR is likely to be used as a dependency in another application then there's a risk that the versions of the dependent classes in the uber JAR might clash with versions of those same dependencies in this other application. Shading helps to avoid any such issue by renaming the packages within the uber JAR.
For example:
You create an uber JAR which contains v1.0.0 of the Foo library.
Someone else uses your uber JAR in their application, Bar
The Bar application has its own dependency on Foo but on v1.2.0 of that library.
Now, if there is any clash between versions 1.0.0 and 1.2.0 of Foo we may have a problem because the owner of Bar cannot rely on which one will be loaded so either their code will misbehave or your code - when running within their application - will misbehave.
Shading helps to avoid issues such as this and also allows the provider of Foo to be explicit about the versions of the dependent libraries it uses.
The maven-shade-plugin allows you to (a) create an uber JAR and (b) to shade its contents.
Summary
Creating an uber JAR is a useful technique for simplifying your deployment process.
Shading is an extension to the uber JAR idea which is typically limited to use cases where
The JAR is a library to be used inside another application/library
The authors of the JAR want to be sure that the dependencies used by the JAR are in their control
The authors of the JAR want to avoid 'version clash' issues for any applications/libraries using the JAR
I have a proprietary dependency that I use in my project that I can not refuse. It was built in one big fat jar with all dependent packages collected inside. By all I mean even common ones like slf4j-api, apache-commons, javax packages, etc.
Using it together with my own list of declared dependecies is risky because there's always a race in classloader on which class will be loaded first - mine or outdated class inside fat jar.
I was wondering is there a way around this problem? How to treat such fat jars? I'm using maven for dependency management.
In Maven, the order in which you define dependencies in your POM is significant.
If you list them in the correct order, they should be added to the jar in that order,
and whichever class is higher in the file, that's the one that will get loaded first.
If you will compose your runtime classpath out of multiple jars,
then again, it's a matter of putting the jars in the right order.
If you know that some functionalities of the fat jar will work when you exclude some fo their dependencies or you want to include them yourself, you can try this:
Make a maven project that depends on the fat jar only
Use maven-shade-plugin, in particular it's relocation feature to exclude packages you don't want, or to just relocate all the jar's classes into another package, and thus move them out of the way.
Use the project's artifact instead of fat propietary jar in your other project.
I think that there's another way. I can wrap this library jar in its own custom classloader
URLClassLoader c1 = new URLClassLoader(new Url[] { new URL("file:lib/fatJarDep.jar"});
and create a factory that will instantiate classes of this library using this isolated classloader
Class.forName("className", true, c1);
If the jar has all dependency class extracted inside you can't exclude them from classloading, so same dependecy in your project may conflict.
You should edit the fat jar and manually remove the classes to make a light version, then install it in your repo and refer to it in your pom.
I guess this is a two-part question. I am trying to write my own Ant task (MyFirstTask) that can be used in other project's build.xml buildfiles. To do this, I need to compile and package my Ant task inside its own JAR. Because this Ant task that I have written is fairly complicated, it has about 20 dependencies (other JAR files), such as using XStream for OX-mapping, Guice for DI, etc.
I am currently writing the package task in the build.xml file inside the MyFirstTask project (the buildfile that will package myfirsttask.jar, which is the reusable Ant task).
I am suddenly realizing that I don't fully understand the intention of a Java JAR. Is it that a JAR should not contain dependencies, and leave it to the runtime configuration (the app container, the runtime environment, etc.) to supply it with the dependencies it needs? I would assume if this is the case, an executable JAR is an exception to the rule, yes?
Or, is it the intention for Java JARs to also include their dependencies?
Either way, I don't want to be forcing my users to be copying-n-pasting 25+ JARs into their Ant libs; that's just cruel. I like the way WAR files are set up, where the classpath for dependencies is defined under the classes/ directory.
I guess, ultimately, I'd like my JAR structure to look like:
myfirsttask.jar/
com/ --> the root package of my compiled binaries
config/ --> config files, XML, XSD, etc.
classes/ --> all dependencies, guice-3.0.jar, xstream-1.4.3.jar, etc.
META-INF/
MANIFEST.MF
I assume that in order to accomplish this (and get the runtime classpath to also look into the classes/ directory), I'll need to modify the MANIFEST.MF somehow (I know there's a manifest attribute called ClassPath, I believe?). I'm just having a tough time putting everything together, and have a looming/lingering question about the very intent of JARs to begin with.
Can someone please confirm whether Oracle intends for JARs to contain their dependencies or not? And, either way, what I would have to do in the manifest (or anywhere else) to make sure that, at runtime, the classpath can find the dependencies stored under the classes/ directory? Thanks in advance!
The term 'JAR file' can mean at least two things, or rather, has at least two facets to its meaning. Most basically, it means a container format: basically, a ZIP file with a META-INF directory. More refinedly, it means this container used as a way to package class files.
In the sense of being a container, there is no intent with respect to contents; the file could contain class files, other JARs (in either sense!), etc. But in the sense of being a packaging of code, i believe the intent for JAR files proper is for them not to contain any dependencies.
If you have a read of the JAR File Specification, you'll find there are several allusions to the storage of class files, but nothing about storing other JAR files. Correspondingly, if you look at the implementation of the JAR file classloader in the JRE, it can't do anything useful with nested JARs.
Furthermore, the JAR specification does detail a mechanism for dealing with non-nested dependencies: the Class-Path attribute. This lets a JAR file make relative references to other JAR files in the filesystem.
Now, in-the-sense-of-a-packaging JAR files are not the only use of in-the-sense-of-a-container JAR files. WAR, EAR, and RAR files (and more besides) are all JAR files used for particular purposes. Each of those is capable of containing other JARs: WARs can contain in-the-sense-of-a-packaging JAR files, and EARs can contain those and also WARs. However, those are quite different beasts than in-the-sense-of-a-packaging JAR files. It's worth noting that special classloaders, that are not in the Java standard library, are needed to make use of them.
The way that WARs etc can collect many JAR files together is indeed very useful, and it's a real shame there's no generic mechanism for doing this in Java outside of Java EE. It would be great to have an 'application archive' or 'meta-archive' format that simply bundled some JARs.
So, you're left with this problem of users needing 25 JARs in order to use your plugin. You have roughly two options.
First, you accept the pain, and distribute your plugin as a zip full of JARs, which users will have to unpack.
Secondly, you join the 21st century, and use a build tool and distribution mechanism which handles dependencies automatically: in practice, that means using Gradle, or Maven, or some other tool (such as Ant) in concert with Ivy, to obtain dependencies from Maven Central, and then then releasing your code along with a POM file which lists those dependencies. Users can then download your JAR and your POM, and have their own build tool obtain the dependencies.
If you do go the second route, it might be prudent to also release a zip of the dependencies, for the benefit of users who are not using automatic dependency management.
The intent (AFAIU) is for JAR files to behave like native code shared object files (.so on Unix, .dll on Windows). Generally, an application will install several shared object files as siblings, plus an executable with which to launch them.
An executable JAR is more like a standalone executable, and so it is more common to include all dependencies (similar to the way a statically-linked native code executable contains all its dependent objects directly).
Unfortunately, the default ClassLoader is not able to load classes from nested JARs. It is possible to write a ClassLoader that does. Or you can use one someone else has written. From the description of your problem, it sounds like Jar Jar Links is exactly what you're looking for.
Is it correct or incorrect for a Java JAR to contain its own dependencies?
There are use cases where it is correct for a JAR file to contain its own
dependencies. If you would like to support users who do not use modern
dependency management, you may want to provide a JAR file containing your Ant
task code as well as all dependencies. The more powerful, flexible, and modular
approach is to publish versioned JAR files to the Maven repository that
only contain your project code.
1) JAR file containing your project code and all dependencies
Pros
Easy to download and the only setup for end users is including a
<taskdef> in their Ant build files
No setup required to publish Maven artificats
Example Ant target to build JAR
<target name="jar" depends="compile"
description="Creates a standalone JAR of all class files and dependencies.">
<jar destfile="${my.ant.task.jar.file}" update="true">
<fileset dir="${build.classes.dir}" />
<zipfileset src="${lib.dir}/javax.inject.jar" />
<zipfileset src="${lib.dir}/guice-3.0.jar" />
<zipfileset src="${lib.dir}/guice-multibindings-3.0.jar" />
<zipfileset src="${lib.dir}/guice-assistedinject-3.0.jar" />
</jar>
</target>
Cons
If end users of your Ant task already have some or all of the dependencies
included in their projects, then they will end up with redundant copies of the
dependencies
The JAR file could be very large
2) JAR file containing only your project code published to Maven Repository
Pros
Users may fetch any version of your Ant task that you have published to
the Maven repository, which provides more flexibility in releasing new
versions of your task while allowing existing users to continue using previous
versions to avoid possible regressions
Avoids duplicate copies of common dependencies (except where different versions of a dependency cause errors)
JAR file will be small
Cons
Need to learn about the following:
Maven Repository
Publishing Maven Artifacts - see
Ant + Ivy specific preparations and procedures
Apache Ivy - Dependency manager integrated with Apache Ant
For reference, the Java™ Tutorials provide a good summary of JAR files.
Lesson: Packaging Programs in JAR Files
The Java™ Archive (JAR) file format enables you to bundle multiple files
into a single archive file. Typically a JAR file contains the class files and
auxiliary resources associated with... applications.
The JAR file format provides many benefits:
Security: You can digitally sign the contents of a JAR file...
Decreased download time: If your applet is bundled in a JAR...
Compression: The JAR format allows you to compress your files for efficient
storage.
Packaging for extensions: The extensions framework provides a means by
which you can add functionality to the Java core platform, and the JAR file
format defines the packaging for extensions...
Package Sealing: Packages stored in JAR files can be optionally sealed so
that the package can enforce version consistency. Sealing a package within a
JAR file means that all classes defined in that package must be found in the
same JAR file.
Package Versioning: A JAR file can hold data about the files it contains,
such as vendor and version information.
Portability: The mechanism for handling JAR files is a standard part of the
Java platform's core API.
"Jar Jar Links" is only good for a standalone applications. But not for Ant.
If your project has the same dependencies and they are upgraded to newer versions later on, like xstream-*.jar, then there will be a conflict, and the wrong version may be picked up. In the worst case there will be MethodNotFoundException. That's why it is a bad practice to include dependencies in a single jar.
What's a problem with "I don't want to be forcing my users to be copying-n-pasting 25+ JARs"?
That's the easiest solution. And the best, because you will avoid problems in the future.
Now, when you see the inconveniences of Ant, you might want to compare it to Gradle. With Gradle you get tasks a bit similar to Ant and you don't need to provide any dependency jars. All dependencies for you will resolve Gradle. And like in Ant you still can create your tasks.
Some java application vendors use the following scenario to distribute their application which depend on other jars, it reminds of static linking. At the stage of building the jar all dependencies (being also jars) are unpacked. When building the final jar, they include both their freshly compiled classes and the classes extracted from dependencies.
Possible issues:
Applications cannot reuse the libraries as they are contained in the app. Usual static linking issue.
The licenses of the repacked libraries must be respected. Usually it will be ok to repack them, but sometimes additional care must be paid to their license files, which may happen to be inside their jars.
AFAIK it's not possible to have jars inside the jar or it will be impossible to specify a classpath for them. Hence the repacking procedure.