Finding a Prime Numbers - java

I have an array of length N=10^5 For each index 1<=i<=n I have to calculate the difference between A[j]-A[i] and (j-i) is prime and j>i
Here is my code:
for(int i=1;i<=n;i++){
for(int j=0;j<prime.size();j++){
int x = prime.get(j);
if(x+i>n) break;
ans+= A[x+i]-A[i];
}
}
How should i make this work even faster ? I think the time complexity is O(N*prime.size)

First, I will rephrase your question so that it states what I believe you want to achieve. You are probably looking for the sum of the differences of the form A[j]-A[i], where (j-i) is a "positive" prime and 1<=i<j<=N. With this statement in mind...
We count the number of times A[k] is added to the sum (denoted by p) and the number of times A[k] is subtracted from the sum (denoted by m). Well, m is equal to the number of primes in the interval [1,N-k], while p is equal to the number of primes in the interval [1,k-1]. If you don't believe me, simulate step-by-step what your code does. Then you can do:
S = 0
for k = 1 to N do
S = S + (p(k) - m(k)) * A[k]
endfor
Now, we need to find a way to determine p and m efficiently for each k in the interval [1,N]. I see you have already constructed what seems to be an ordered list of primes. So, to answer a query of the form 'how many primes in the interval [1,t]?' you could perform a binary search on that list for t. This would get the complexity down to O(N*log(prime.size)).
As an alternative, you can pre-compute the answers to the queries of the form 'how many primes in the interval [1,t]?'. You need an extra array nrPrimesLessThan of size N to keep the results, doing something like this to compute its values:
count = 0
for i = 1 to N do
if i < prime.get(count) then
nrPrimesLessThan[i] = count
else
count = count + 1
nrPrimesLessThan[i] = count
endif
endfor
The pre-computation part takes O(N) steps, but now one query takes O(1) steps, thus the calculating the sum takes O(N) steps. Overall, linear time in N.

Judging from your code example, you want to sum the differences of all value pairs in the array for which the difference of the indices is prime. You've got already an array of primes.
The diagram below shows how the elements get subtracted and added:
0 1 2 3 4 5 6 7 8 9
- + + + + 0
- + + + + 1
- + + + + 2
- + + + 3
- + + + 4
- + + 5
- + + 6
- + 7
- 8
- 9
A + means an element is added to the overall sum. A - means the element is subtracted from the sum. This is not a single subtraction; the subtraction happens for each addition to its left, so A[0] is subtracted 4 times. It is never added.
On the other hand, A[9] is never subtracted, but added four times. In general, each element is subtracted as many times as there are plusses in a row and it is added as many times as there are plusses in a columns. There is a symmetry here:
add[i] = sub[N - i - 1]
for zero-based indices. What is the value of add[i]? It is the number of primes that are smaller or equal to i.
Here's a code example where the add array is called m:
int psum2(const int A[], int n)
{
int sum = 0;
int m[n];
int j = 0;
int k = 0;
for (int i = 0; i < n; i++) {
if (i == prime[j]) {
k++;
j++;
}
m[i] = k;
}
for (int i = 0; i < n; i++) {
sum += (m[i] - m[n - i - 1]) * A[i];
}
return sum;
}
The array m is always the same and can be precalculated if you need to perform the sum more often. The algorithm is O(n).
The problem is also unrelated to primes at its core. The method above works for all conditional sums of differences where the difference of the indices must be conteined in a certain set of numbers.

Related

Calculate all possible sums in an array from its sub arrays

I have an array of numbers, now I have to find sum of elements by generating all the possible subarrays of the given array and applying some conditions.
The condition is for each subarray get the minimum and also find the total of elements in it and multiply both (minimum * total). Finally, add all these multiplied values for all subarrays.
Here is the problem statement:
Find the sum of all possible sub-arrays using the below formula:
Sum(left, right) = (min of arr[i]) * (∑ arr[i]), where i ranges from
left to right.
Example:
Array = [2,3,2,1]
The sub arrays are: [start_index, end_index]
[0,0] subarray = [2], min is 2 and total of items = 2. min * total = 2*2=4
[0,1] subarray = [2,3], min is 2 and total of items = 5. min * total = 2*5=10
[0,2] subarray = [2,3,2], min is 2 and total of items = 7. min * total = 2*7=14
[0,3] subarray = [2,3,2,1], min is 1 and total of items = 8. min * total = 1*8=8
[1,1] subarray = [3], min is 3 and total of items = 3. min * total = 3*3 = 9
[1,2] subarray = [3,2], min is 2 and total of items = 5. min * total = 2*5 = 10
[1,3] subarray = [3,2,1], min is 1 and total of items = 6. min * total = 1*6 = 6
[2,2] subarray = [2], min is 2 and total of items = 2. min * total = 2*2 = 4
[2,3] subarray = [2,1], min is 1 and total of items = 3. min * total = 1*3 = 3
[3,3] subarray = [1], min is 1 and total of items = 1. min * total = 1*1 = 1
Total = 4 + 10 + 14 + 8 + 9 + 10+ 6 + 4 + 3 + 1 = 69
So the answer is 69 in this case.
Constraints:
Each array element is in range 1 to 10^9. Array size 1 to 10^5. Return response in modulo 10^9+7
This is the code I tried.
public static int process(List<Integer> list) {
int n = list.size();
int mod = 7 + 1000_000_000;
long result = 0;
for (int i = 0; i < n; i++) {
long total = 0;
int min = list.get(i);
for (int j = i; j < n; j++) {
int p = list.get(j);
total = (total + p) % mod;
min = Math.min(min, p);
result = (result + (min * total) % mod) % mod;
}
}
return (int) result;
}
I want to reduce the time complexity of this algorithm?
What can be a better approach to solve this task?
Update:
David Eisenstat has given a great answer, but Im finding it to difficult to understand and come with a Java program, can someone provide a java solution for the approach or provide a pseudo code so i can come up with a program.
As user1984 observes, we can't achieve o(n²) by doing constant work for each sub-array. Here's how we get to O(n).
The sub-array minimum is the hardest factor to deal with, so we factor it out. Assume that the elements are pairwise distinct to avoid double counting in the math below (the code won't change). Letting A range over sub-arrays and x over elements,
sum_{A} [(sum_{y in A} y) (min A)] =
sum_{x} [x sum_{A such that min(A) = x} (sum_{y in A} y)].
Focusing on sum_{A | min(A) = x} (sum_{y in A} y) first, the picture is that we have a sub-array like
a b x c d e
where the element to the left of a (if it exists) is less than x, the element to the right of e (if it exists) is less than x, and all of the elements shown are greater than x. We want to sum over all sub-sub-arrays containing x.
a b x
b x
x
a b x c
b x c
x c
a b x c d
b x c d
x c d
a b x c d e
b x c d e
x c d e
We still don't have time to sum over these sub-sub-arrays, but fortunately there's a pattern. Here are the number of times each element appears in a sub-sub-array.
a: 4 = 1 * 4 appearances
b: 8 = 2 * 4 appearances
x: 12 = 3 * 4 appearances
c: 9 = 3 * 3 appearances
d: 6 = 3 * 2 appearances
e: 3 = 3 * 1 appearances
This insight reduces the processing time for one sub-array to O(n), but there are still n sub-arrays, so we need two more ideas.
Now is the right time to figure out what the sub-arrays look like. The first sub-array is the whole array. We split this array at the minimum element and recursively investigate the left sub-array and the right separately.
This recursive structure is captured by the labeled binary tree where
The in-order traversal is the array elements in order;
Every node has a label less than its children. (I'm still assuming distinct elements. In practice what we can do is to declare the array index to be a tiebreaker.)
This is called a treap, and it can be constructed in linear time by an algorithm with a family resemblance to precedence parsing. For the array [3,1,4,5,9,2,6], for example, see below.
1
/ \
3 2
/ \
4 6
\
5
\
9
The final piece is being able to aggregate the sum patterns above. Specifically, we want to implement an API that might look like this in C++:
class ArraySummary {
public:
// Constructs an object with underlying array [x].
ArraySummary(int x);
// Returns an object representing the concatenation of the underlying arrays.
ArraySummary Concatenate(ArraySummary that);
// Returns the sum over i of (i+1)*array[i].
int WeirdSum();
};
The point of this interface is that we don't actually need to store the whole array to implement WeirdSum(). If we store
The length length of the underlying array,
The usual sum sum of the underlying array,
The weird sum weird_sum of the underlying array;
then we can implement the constructor as
length = 1;
sum = x;
weird_sum = x;
and Concatenate() as
length = length1 + length2;
sum = sum1 + sum2;
weird_sum = weird_sum1 + weird_sum2 + length1 * sum2;
We need two of these, one in each direction. Then it's just a depth-first traversal (actually if you implement precedence parsing, it's just bottom-up).
Your current solution has time complexity O(n^2), assuming that list.get is O(1). There are exactly 1 + 2 + ... + n-1 + n operations which can be expressed as n * (n + 1)/2, hence O(n^2).
Interestingly, n * (n + 1)/2 is the number of sub arrays that you can get from an array of length n, as defined in your question and evident from your code.
This implies that you are doing one operation per sub array and this is the requird minimum operations for this task, since you need to look at least once at each sub array.
My conclusion is that it isn't possible to reduce the time complexity of this task, unless there is some mathematical formula that helps to do so.
This doesn't necessary mean that there aren't ways to optimize the code, but that would need testing and may be language specific. Regardless, it wouldn't change the time complexity in terms of n where n is the length of the input array.
Appreciate any input on my logic. I'm learning myself.
The answer provided by David Eisenstat is very efficient with complexity of O(n).
I would like to share another approach, that although it has time complexity of O(n^2), it may be more simple and may be easier for some (me included) to fully understand.
Algorithm
initiate two dimensional array of size matrix[n][n], each cell will hold pair of Integers <sum, min>. we will denote for each Matrix[i, j] the first element of the pair as Matrix[i, j].sum and the second as Matrix[i, j].min
Initiate the diagonal of the matrix as follows:
for i in [0, n-1]:
Matrix[i][i] = <arr[i], arr[i]>
for i in [0, n-1]:
for j in[i, n-1]:
Matrix[i, j] = <
Matrix[i - 1, j].sum + arr[i, j],
Min(Matrix[i - 1, j].min, arr[i, j])
>
Calculate the result:
result = 0
for i in [0, n-1]:
for j in[i, n-1]:
result += Matrix[i, j].sum * Matrix[i, j].min
Time Complexity Analysis
Step 1: initiating two dimensional array ofsize [n,n] will take in theory O(n^2) as it may require to initiate all indices to 0, but if we skip the initialization of each cell and just allocate the memory this could take O(1)
Step 2 : Here we iterate from 0 to n-1 doing constant work each iteration and therefore the time complexity is O(n)
Step 3: Here we iterate over half of the matrix cells(all that are right of the diagonal), doing constant work each iteration, and therefore the time complexity is O((n - 1) + (n - 2) + .... + (1) + (0)) = O(n^2)
Step 4: Similar analysis to step 3, O(n^2)
In total we get O(n^2)
Explanation for solution
This is simple example of Dynamic programming approach.
Let's define sub[i, j] as the subarray between index i and j while 0 =< i, j <= n-1
Then:
Matrix[i, j].sum = sum x in sub[i, j]
Matrix[i, j].min = min x in sub[i, j]
Why?
for sub[i,i] it's obvious that:
sum x in sub[i, i] = arr[i]
min x in sub[i, i] = arr[i]
Just like we calculate in step 2.
Convince yourself that:
sum sub[i,j] = sum sub[i-1,j] + arr[i, j]
min sub[i,j] = Min(min sub[i-1,j], arr[i, j])
This explains step 3.
In Step 4 we just sums up everything to get the required result.
It can be with the O(n) solution.
Intuition
First of all, we want to achieve all subarrays like this.
a1 a2 a3 min b1 b2 b3 where min is minimum. We will use a monotonic increasing stack to achieve it. In every iteration, if the stack's top value is greater than the next element, we will pop the stack and calculate the sum until the condition is not met.
Secondly, we want to figure out how to calculate the total sum if we have an a1 a2 a3 min b1 b2 b3 subarray. Here, we will use a prefix of prefix sum.
Prefix Sum
At first, we need the prefix sum. Assume that p indicates prefix sum, we want to achieve p1 p2 p3 p4 p5 p6 p7. Our prefix sum will be like this;
p1: a1
p2: a1 + a2
p3: a1 + a2 + a3
.
p6 : a1 + a2 + a3 + min + b1 + b2
p7: a1 + a2 + a3 + min + b1 + b2 + b3
Within prefix sum now we can calculate the sum of between two indexes. The sum of (start, end] is pend - pstart. If start: 1 and end: 3 that means p3 - p1 = (a1 + a2 + a3) - (a1) = a2 + a3.
Prefix of Prefix Sum
How can we calculate all possible subarray sums that include our min value?
We separate this calculation to the left side and right side.
The left side included min will be a1 a2 a3 min.
The right side included min will be min b1 b2 b3.
For example, some of the possible sums can be:
a1 + a2 + a3 + min
a1 + a2 + a3 + min + b1
a3 + min + b1 + b2 + b3
min + b1 + b2 + b3
We need to find all the [bj, ai] sums. Where i means all the left side indexes and j means all the right side indexes. Now We need to use the prefix of prefix sum. It will give us all possible sums between two indexes. Let's say P. It will be sum(Pj) - sum(Pi).
Now, how do we calculate our sum(Pj) - sum(Pi)?
So Pj is P7 - P4. It is the right side possible sum.
Same way Pi is P4 - P1. It is the left side possible sum.
How many combinations for sum(Pj) are there?
leftSize * (P7 - P4). Same way for sum(Pi) it will be rightSize * (P4 - P1).
Final equation to calculate subarray [a1 a2 a3 min b1 b2 b3] is: min * ((leftSize * (P7 - P4)) - (rightSize * (P4 - P1))).
Algorithm
public static int process(List<Integer> list) {
int n = list.size();
int mod = (int) 1e9 + 7;
int[] preSum = new int[n + 2];
Deque<Integer> stack = new ArrayDeque<>();
int pre = 0;
int result = 0;
for (int i = 0; i <= n; i++) {
int num = i < n ? list.get(i) : 0;
// current prefix sum
pre = (pre + num) % mod;
// prefix of prefix sum array
preSum[i + 1] = (preSum[i] + pre) % mod;
while (!stack.isEmpty() && list.get(stack.peek()) > num) {
int mid = stack.pop();
int left = stack.isEmpty() ? -1 : stack.peek();
int lSize = mid - left;
int rSize = i - mid;
long lSum = left < 0 ? preSum[mid] : preSum[mid] - preSum[left];
long rSum = preSum[i] - preSum[mid];
result = (int) (result + (list.get(mid) * ((rSum * lSize - lSum * rSize) % mod)) % mod) % mod;
}
stack.push(i);
}
return (result + mod) % mod;
}
Time complexity: O(n)
Space complexity: O(n)
References
Thanks to #lee215 for one pass solution.
Thanks to #forAc for the explanation of the final equation.
https://leetcode.com/problems/sum-of-total-strength-of-wizards/discuss/2061985/JavaC%2B%2BPython-One-Pass-Solution

how many times will this loop execute

I was just wondering how many times a nested loop like this would run
int sum = 0;
for(int i = 0; i < total; i++) {
for(int j = i + 1; j < total; j++) {
for(int k = j; k < total; k++) {
sum++;
}
}
}
System.out.println(sum);
I can easily see the output of sum, but I would like to be able to mathematically calculate the total of sum with any number for total.
TL;DR
The loop will be executed for ((total ^ 3) - total) / 6 times and hence that will be the value of sum at the end of the loop.
int sum = 0;
for(int i = 0; i < total; i++) {
for(int j = i + 1; j < total; j++) {
for(int k = j; k < total; k++) {
sum++;
}
}
}
It is easy to see that the outer loop runs for a total times. The second loop is the trickier one
Let's try to work this out
i = 0, j runs from 1..total - 1
i = 1, j runs from 2..total - 1
i = 2, j runs from 3..total - 1
...
i = total - 2, j runs from total - 1 ..total - 1 (will only run once)
i = total - 1, inner loop does not execute as the loop termination condition is true.
The third loop is dependent on the second inner loop - k runs from j..total - 1
Let us take total as 6
j runs from 1..5 -> k runs for 5 times (j = 1) + 4 times(j = 2) + 3 times(j = 3)+ 2 times(j = 4) + 1 time(j = 4)
(Showing a minified version for others)
2..5 -> 4+3+2+1
3..5 3+2+1
4..5 2+1
5..5 1
Which is
1 + 2 + 3 + 4 + 5+
1 + 2 + 3 + 4 +
1 + 2 + 3 +
1 + 2 +
1
Generally,
1 + 2 + 3 + .. n +
1 + 2 + 3 +..n - 1+
1 + 2 + 3 +..n - 2+
1 + 2 + 3 +
1 + 2 +
1
This boils down to the sum
n * (n - 1)) / 2
For all values of n ranging from 1 to total
This can be verified with the below
int res = 0;
for (int i = 1; i <= total; i++) {
res += (i * (i - 1))/2;
}
res will be equal to your sum.
Mathematically, the above is
((total ^ 3) - total) / 6
Derivation:
References:
Sums of the First n Natural Numbers
Sum of the Squares of the First n Natural Numbers
The first iteration of the middle loop adds
total-1 + total-2 + ... + 1
to the sum.
The second iteration of the middle loop adds
total-2 + total - 3 + ... + 1
to the sum
The last iteration of the middle loop adds
1
to the sum.
If you sum all of these terms, you get
(total - 1) * 1 + (total - 2) * 2 + (total - 3) * 3 + ... + 2 * (total - 2) + 1 * (total - 1)
It's been a while since I studied math, so I don't remember if there's a simpler formula for this expression.
For example, if total is 10, you get:
9 * 1 + 8 * 2 + 7 * 3 + 6 * 4 + 5 * 5 + 4 * 6 + 3 * 7 + 2 * 8 + 1 * 9 =
9 + 16 + 21 + 24 + 25 + 24 + 21 + 16 + 9 =
165
It needs only a little bit knowledge of programming.Actually logic that is running behind is only computational kind of thing.
let's say:
total=10,sum=0
- when i is 0:
That time j is initialised with 1(i+1) and k as well. So k will lead us to execute the loop 9 times and and as j is incremented ,it will lead us to execute sum statement 8 times and 7 times and further 6 times till 1 time. (9+8+7+6+5+4+3+2+1=45 times.)
- when i is 1:
That time j is initialised with 2 and k as well.So sum statement is going to execute 8 times and then 7 times and then 6 times till 1.
(8+7+6+5+4+3+2+1=36 times).
- when i is 2:
Same thing happens repeatedly but starting with difference number ,so this time (7+6+5+4+3+2+1=28)
So this sequence continues until there is significance of occuring the condition with trueness.
This happens till i is 9.
So the final answer is 1+3+6+10+15+21+28+36+45=165.
The equation is like below
and the k is equal to total :
outermost loop runs 'total' number of times.
for each outer loop , middle loop runs 'total-i' times.
i.e total * total+total * (total-1)+total * (total-2)....total * 1
= total*(total+total-1+total-2...1)
= total*(1+2+3....total)
= total*(sum of first 'total' natural numbers)
= total*(total*(total+1)/2)
now the innermost loop also runs 'total-j' times for each middle loop
i.e
total*(total*(total+1)/2)*(total+(total-1)+(total-2)....+1)
= total*(total*(total+1)/2)*(1+2+3....+total)
= total*(total*(total+1)/2)* (sum of first 'total' natural numbers)
= total*(total*(total+1)/2) * (total*(total+1)/2)..
So finally you will get something close to
total * (total*(total+1)/2) * (total*(total+1)/2).
Sorry there's a correction as #andreas mentioned innermost and middle loops run only till total-i-1 times
in which case it will be the sum of first (total-1) no.s which should be (total-1)*total/2 so the final output should be
total * (total*(total-1)/2) * (total*(total-1)/2) .
As we know, the sum of an arithmetic progression is:
The inner-most loop will loop for
times, which is a function to j.
You sum it up and get a function to i, aka:
You sum it up again and get a function to total, aka:
For Mathematica users, the result is:
f[x_]:=Sum[Sum[x-j,{j,i+1,x-1}],{i,0,x-1}]
From here, we can see it more clearly, and the FINAL result is:
where x is total.
That function will loop (total/6)*(total*total - 1) times
The snippet bellow just verifies that
var total = 100
var sum = 0;
for(var i = 0; i < total; i++) {
for(var j = i + 1; j < total; j++) {
for(var k = j; k < total; k++) {
sum++;
}
}
}
function calc(n) {
return n*(n-1)*(n+1)/6
}
console.log("sum: "+sum)
console.log("calc: "+calc(total))
If we run this loop 100 times and generate a data set, then graph it, we get this:
Now, this graph is clearly a cubic. So we can do a solve using the cubic equation of ax^3+bx^2+cx+d.
Using 4 points, the values of them all are:
So the full equation is
y=x^3/6-x/6
y=x(x^2/6-1/6)
y=(x/6)(x^2-1)
Interactive Graph:
<iframe src="https://www.desmos.com/calculator/61whd83djd?embed" width="500px" height="500px" style="border: 1px solid #ccc" frameborder=0></iframe>
A simple loop like this:
for (i = a; i < b; i ++) {
....
}
runs b-a iterations (i takes the values: a, a+1, a+2... b-2, b-1) if a < b and 0 iterations otherwise. We will assume below that a < b always.
Its number of iterations can be compute using the simple maths formula:
Applying the formula to your code
We start with the innermost loop:
for(int k = j; k < t; k++) {
sum++;
}
Its number of iterations is:
Using the formula above, the value of U is (t-1)-j+1 which means:
U = t - j
Adding the middle loop
Adding the middle loop, the number of iterations becomes:
The terms of the second sum are t-(i+1), t-(i+2), ... t-(t-2), t-(t-1).
By solving the parentheses and putting them in the reverse order they can be written as:
1, 2, ... t-i-2, t-i-1.
Let p = t - j. The second sum now becomes:
It is the sum of the first t-i-1 natural numbers and its value is:
Adding the outer loop
Adding the outer loop the sum becomes:
On the last sum, the expression (t - i) starts with t (when i = 0), continues with t-1 (when i = 1) and it keeps decreasing until it reaches 1 (when i = t - 1). By replacing q = t - i, the last sum becomes:
The last expression subtracts the sum of the first n natural numbers from the sum of the first n square numbers. Its value is:
Now it's easy to simplify the expression:
The final answer
The number of iterations of the posted code is:

Running Time of this Simple Program - Time Complexity

I am trying to figure out what the time complexity of this simple program is, but I can't seem to understand what would be the best way to do this.
I have written down the time complexity side by side for each line
1 public int fnA (int n) {
2 int sum = 0; O(1)
3 for (int i = 0; i < n; i++) { O(n)
4 int j = i; O(n)
5 int product = 1; O(1)
6
7 while (j > 1) { O(n)
8 product ∗= j; O(log n)
9 j = j / 2; O(log n)
10 }
11 sum += product; O(1)
12 }
13 return sum; O(1)
14 }
Am I correct to assume these running times and that the final running time is: O(n)
If not, would somebody be able to explain where it is I am going wrong?
Overall:
1 + n + n + 1 + n + logn + logn + 1 + 1
= 3n + 2logn + 4
Final: O(n)
Time complexity for that algorithm is O(NlogN).
The for loop is executed N times (from 0 to N).
The while loop is executed logN times since your are dividing the number to half each time.
Since your are executing the while inside the for, your are executing a logN operation N times, from there it is the O(NlogN).
All remaining operations (assign, multiplication, division, sum) you can assume that takes O(1)
The crux of the above program is the while loop and it is the defining factor and rest of the lines will not have complexity more than O(n) and assuming that arithmetic operations will run in O(1) time.
while (j > 1) {
product ∗= j;
j = j / 2;
}
The above loop will have a run time of O(log(j)) and j is varying from 1 to n, so its the series...
-> O(log(1) + log(2) + log(3) + log(4).....log(n))
-> O(log(1*2*3*4...*n))
-> O(log(n!))
and O(log(n!)) is equal to O(n log(n))
For the proof for above refer this
No for every i, there is logn loop running and hence for n elements the total complexity is nlogn.
Since you know that the following loop takes logn .
while (j > 1) {
product ∗= j;
j = j / 2;
}
Now this particular loop is executed for every i. And so this will be executed n times. So it becomes nlogn.
To start with, you could count all operations. For example:
1 public int fnA (int n) {
2 int sum = 0; 1
3 for (int i = 0; i < n; i++) {
4 int j = i; n
5 int product = 1; n
6
7 while (j > 1) {
8 product ∗= j; ?
9 j = j / 2; ?
10 }
11 sum += product; n
12 }
13 return sum; 1
14 }
Now we could do the counting: which sums up to: 2 + 3n + nlog(n)
In a lot of programs the counting is more complex and usually has one outstanding higher order term, for example: 2+3n+2n2. When talking about performance we really care about when n is large, because when n is small, the sum is small anyway. When n is large, higher order term drawf the rest, so in this example 2n2 is really the term that matters. So that's the concept of tilde approximation.
With that in mind, usually one could quickly identify the portion of code that gets executed most often and use its count to represent overall time complexity. In example given by OP, it would look like this:
for (int i = 0; i < n; i++) {
for (int j = i; j > 1; j /= 2)
product *= j;
}
which gives ∑log2n. Usually the counting involves discrete mathamatics, one trick I have learned is to just replace with it integral and do caculus: ∫ log2n = nlog(n)

Adding all numbers from 1 to N which have number of set bits as 2

I have a question where I have to add numbers from 1 to N which have their set bits as 2. Like for N = 5 we should get value 8, as number 3 and 5 have 2 bits set to one. I am implementing the same in java. I am getting the o/p correct for int value but when it comes to the long values, either it's taking a lot of time or freezing, and when I submit the same on code judge sites, it's giving run time exceeded message. Please guide me how may I optimise my code to run it faster, thanks :)
public static void main(String[] args)
{
long n = 1000000L;
long sum = 0;
long start = System.currentTimeMillis();
for(long i = 1L ; i <= n ; i++)
{
if(Long.bitCount(i) == 2)
{
sum += i;
}
}
long end = System.currentTimeMillis();
System.out.println(sum);
System.out.println("time="+(end-start));
}
As #hbejgel notes, there is no point in looping over all numbers and checking their bit count. You can simply construct numbers with 2 bits and add them up.
You can construct a number with 2 bits by picking two different bit positions in the long, the "higher" bit and the "lower" bit":
long i = (1 << higher) + (1 << lower);
So, you can simply loop over all such numbers, until the value you have constructed exceeds your limit:
long sum = 0;
outer: for (int higher = 1; higher < 63; ++higher) {
for (int lower = 0; lower < higher; ++lower) {
long i = (1 << higher) + (1 << lower);
if (i <= n) {
sum += i;
}
if (i >= n) break outer;
}
}
Let's say we know the closest number, x, equal to or lower than N with 2 set bits, then we can use the formula for power series to quickly sum all positions of the two set bits, for example, if x = b11000, we sum
4*2^0 + S(4)
+ 3*2^1 + S(4) - S(1)
+ 2*2^2 + S(4) - S(2)
+ x
where S(n) = 2 * (1 - 2^n) / (1 - 2) 
= 2 + 2^2 + 2^3 ... + 2^n
With numbers encoded 2 out of 5, exactly two bits are set in every one-digit number. The sum is 45, with the exception of N×(N-1)/2 for 0≤N<9.
I think the question is supposed to discover the pattern.
Fast forward. Given a number N, you can tell the largest number
should count by bitmask from the first two bits are set. So you have
a smaller number M
Skip to next counted number Given any number with two bit set, next
largest number is the shift the second bit by one, until underflow.
Skip to next order When underflow happens on set two, shift the
highest bit by one and also the bit on it's right.
You don't really need a loop on N, but the bits it have.
Next question: can you answer a large number? which N >100,000,000
Next Next question: can you answer the same question for X bits when X>2

sum of absolute matrix

Here is a question from previous HackerEarth Challenge -
Roy has a matrix of size NxN. Rows and Columns are numbered from 0 to N-1.
jth column of ith row contains absolute difference between i and j.
In other words, Matrix[i][j] = abs(i-j) where 0 ≤ i, j < N.
Your task is to find sum of this matrix i.e.
sum = 0
for i=0 to N-1
for j=0 to N-1
sum += Matrix[i][j]
and here is my solution to this problem -
public static long getSum(int num, long acc) {
if (num == 1)
return acc;
long sum = 0;
for (int i = 0; i < num; i++) {
sum += i;
}
sum = sum * 2;
return getSum(num - 1, acc + sum);
}
But this function fails for large number like say anything greater than 4500. I get Stack Over Flow Error.
Here I have tried two things basically to keep the code optimized -
use tail recursion, and
keep running time of this function of order 'n'
So please tell me if I have achieved the two things here correctly. If yes what else can I do to optimize this code. Thanks for your help.
The matrix has very simple structure (I draw only top right half, bottom left is the same, mirrored)
0 1 2 3 4 5 ...
. 0 1 2 3 4 ...
. . 0 1 2 3 ...
. . . 0 1 2 ...
. . . . 0 1 ...
. . . . . 0 ...
It is clear that Kth row contains arithmetic progression 0..(N - K - 1), so it's sum is
Sk = (N - K - 1) * (N - K) / 2
and overall sum is (O(N) solution)
S = 2 * Sum[k = 0..N-1] (Sk)
Moreover, while sum of every row is 'triangular' number, sum of triangular numbers is 'Tetrahedral number', and there is closed formula, that leads to O(1) solution
S = 2 * ((N-1)*N*(N+1)/6) = N*(N+1)*(N-1)/3
Example: for N=4 S = 3*4*5/3 = 20
Tail recursion
Tail recursion does not protect you from stack overflow in Java. Some other languages can recognise tail-calls and optimize them during compilation so they do not extend the stack.
...tail call optimization is hard to do in the JVM because of the security model and the need to always have a stack trace available.
(From Does the JVM prevent tail call optimizations?)
It is however easy to replace tail recursions with a loop:
public static long getSum(int num, long acc) {
while (num > 1) {
long sum = 0;
for (int i = 0; i < num; i++) {
sum += i;
}
sum = sum * 2;
//set up values for next loop
num--;
acc += sum;
}
return acc;
}
Big-O
keep running time of this function of order 'n'
You have not achieved this. It is clear to see there are 2 nested loops over num, and num is decreasing, I think this makes it O(n log n)

Categories

Resources