Convert HMAC function from Java to JavaScript - java

I am tying to implement an HMAC function in NodeJS using this Java function as a reference:
private static String printMacAsBase64(byte[] macKey, String counter) throws Exception {
// import AES 128 MAC_KEY
SecretKeySpec signingKey = new SecretKeySpec(macKey, "AES");
// create new HMAC object with SHA-256 as the hashing algorithm
Mac mac = Mac.getInstance("HmacSHA256");
mac.init(signingKey);
// integer -> string -> bytes -> encrypted bytes
byte[] counterMac = mac.doFinal(counter.getBytes("UTF-8"));
// base 64 encoded string
return DatatypeConverter.printBase64Binary(counterMac);
}
From this I get HMAC of Qze5cHfTOjNqwmSSEOd9nEISOobheV833AncGJLin9Y=
I am getting a different value for the HMAC when passing the same counter and key through the HMAC algorithm in node. Here is my code to generate the hmac.
var decryptedMacKey = 'VJ/V173QE+4CrVvMQ2JqFg==';
var counter = 1;
var hash = crypto
.createHmac('SHA256',decryptedMacKey)
.update(new Buffer(counter.toString(),'utf8'),'utf8')
.digest('base64');
When I run this I get a MAC of nW5MKXhnGmgpYwV0qmQtkNBDrCbqQWQSkk02fiQBsGU=
I was unable to find any equivalent to the SecretKeySpec class in javascript so that may be the missing link.
I was also able to generate the same value as my program using this
https://quickhash.com/ by selecting the algorithm Sha-256 and entering the decrypted mac key and counter.

You forgot to decode the decryptedMacKey from a Base 64 representation:
var hash = crypto.createHmac('SHA256', new Buffer(decryptedMacKey, 'base64'))
.update(new Buffer(counter.toString(),'utf8'),'utf8')
.digest('base64');
gives:
'Qze5cHfTOjNqwmSSEOd9nEISOobheV833AncGJLin9Y='

Related

AES Encryption in android and decryption in nodejs

I was trying encryption in android and decryption in nodejs server. I generated an AES 128bit key and encrypt it using AES algorithm and then encrypt this generated key using RSA algorithm. Then send both to the server. But while decrypting on the server side, I think the RSA decryption works fine but have a problem in AES decryption.
I'm not getting the string in server side that I encrypted on the client side.
This is the code for the encryption on android side:
String encryptedSecretKey;
String cipherTextString;
// 1. generate secret key using AES
KeyGenerator keyGenerator = null;
keyGenerator = KeyGenerator.getInstance("AES");
keyGenerator.init(128);
// 2. get string which needs to be encrypted
String text = "This is the message to be encrypted";
// 3. encrypt string using secret key
byte[] raw = secretKey.getEncoded();
SecretKeySpec skeySpec = new SecretKeySpec(raw, "AES");
Cipher cipher = Cipher.getInstance("AES/CBC/PKCS5Padding");
cipher.init(Cipher.ENCRYPT_MODE, skeySpec);
cipherTextString = Base64.encodeToString(cipher.doFinal(text.getBytes(Charset.forName("UTF-8"))), Base64.DEFAULT);
// 4. get public key
X509EncodedKeySpec publicSpec = new X509EncodedKeySpec(Base64.decode(publicKeyString, Base64.DEFAULT));
KeyFactory keyFactory = KeyFactory.getInstance("RSA");
PublicKey publicKey = keyFactory.generatePublic(publicSpec);
// 5. encrypt secret key using public key
Cipher cipher2 = Cipher.getInstance("RSA/ECB/OAEPWithSHA1AndMGF1Padding");
cipher2.init(Cipher.ENCRYPT_MODE, publicKey);
encryptedSecretKey = Base64.encodeToString(cipher2.doFinal(secretKey.getEncoded()), Base64.DEFAULT);
Then send this to the server side.
The code for server side is given below:
var encryptedMessage = req.body.cipherText;
var encryptedAesKey = req.body.secretKey;
//printing those values
console.log("\nEncryptedMessage: \n" + encryptedMessage);
console.log("\nEncrypted key: \n" + encryptedAesKey);
var privateKey = fs.readFileSync('././Keys/privkey_server.pem', "utf8");
var bufferForAesKey = new Buffer(encryptedAesKey, "base64");
var obj = {
key: privateKey
// , padding: constants.RSA_PKCS1_PADDING
// , padding: constants.RSA/ECB/OAEPWithSHA-1
};
var decryptedAes = crypto.privateDecrypt(obj, bufferForAesKey);
console.log("Decrypted AES: " + decryptedAes);
var decryptedAesKeyString = decryptedAes.toString("base64");
console.log("Decrypted AES Key: " + decryptedAesKeyString);
var bufferForAES = new Buffer(decryptedAes, "base64");
//decrypting using AES
var bufferForEncryptedMsg = new Buffer(encryptedMessage, "base64");
var decipher = crypto.createDecipher('aes-128-cbc',bufferForAES);
decipher.setAutoPadding(false);
var dec = decipher.update(bufferForEncryptedMsg,"base64", "utf8");
dec += decipher.final("utf8");
console.log(dec);
Here the final result 'dec' is not giving the correct result but the intermediate results are same in client and server. That means, RSA works fine but have problem in AES.
The output is given below:
EncryptedMessage:
SfosHg+cTrQXYUdF0FuqCJMHgfcP13ckp2L0B9QqOcl8UtWnnl8fLi5lxgR2SKOj
Encrypted key:
C/pa52PZda3xShrPXkHZx8OL6sW4JBEhG/ggNAoHhSVXIGt+iDq/B1ByG5yStBGF3GFJRQT0aGsG
+bZJydP7j9gTivmt99H/bxiZan4CHZnqfGKG1dJCI7ILAYZMCw7JhIcRC8qHMM4LMdF+rxRhENDe
alUfnsLWpcrX9J6fKejJ7EWnWQ1VadKqCDmrJ5xw0lBbsOpwN/vY09+VhF4WkOz8Y3cQGk+FVdz5
tr4L9/jgXlTZdOC2KVBLSH+9pvtHwMWFKKoDSAzvkil4htBjbWTqlBuEINC4I/J/4P3RX2riT5Pv
xHQi/Dv7vdBlo9AEdvWe3Ek8oBleIpmIQHXwQWknPOYghhBAVmACG/tbEQcAtbcmRLruT/XzjPJt
HNBt2HeG9JHYKNoHC3kOuJdnlGe8mv8k0Nzwj04RhEGKSmPIiu/oDgYwS0l96KIlS2ELqBlS5O0L
AJ+RBG7m0WwC9dfrufsuwu0+SPUmg5/ElXRmA3T81lXtQqQbGg8G6r/bAVFGduy4a49s/VWoylx+
/sI079IwyY0IOfwQTVGZRyDC5O1ZBjoYv2+TRo3bjG8GXNQoybkmWkhgotcqVD9mXO67D2NBsFPT
EJnw+1ApSqR7ggIAF+qsMxejFKBICBL/4J8FP4+obA07J1pWiciTRKX+G130qzIBKM08Zdaf/50=
Decrypted AES: %Kp[ϪS�/�W l��9ӊ˽��~��
B�A�
Decrypted AES Key: JUtwW8+qU6Mv/FcgbMbkOdOKy72pun4B490KQrRB4QQ=
T�Ϝ��u��q�
���w�p���u`�̗r[`H0[tW��=��~i-�W
Here the Decrypted AES key is same as the key that we generate in android. But the final output is not giving the desired result. Is there any error in my code??
Neardupe Decrypting strings from node.js in Java? which is the same thing in the opposite direction.
[In Java] I generated an AES 128bit key and encrypt [with] it using AES algorithm and then encrypt this generated key using RSA algorithm.
No you didn't. Your Java code instantiates a KeyGenerator for AES-128, but doesn't use it to generate any key. The key you actually used (and as you say the server correctly decrypted from RSA-OAEP) is 32 bytes, corresponding to AES-256.
But your main problem is that createDecipher takes a password NOT the key. Per the doc
crypto.createDecipher(algorithm, password[, options])
The implementation of crypto.createDecipher() derives keys using the OpenSSL function EVP_BytesToKey with the digest algorithm set to MD5, one iteration, and no salt.
You passed what is actually a key as a password; this results in nodejs using a key that is completely different from the one used in Java and thus getting completely wrong results. You should instead use createDecipheriv which does take the key, and IV (Initialization Vector).
And that is your other problem. To decrypt you must use the same IV as encrypt did, normally by including the IV with the ciphertext sent from the sender to receiver, but you don't. As a result the following (simplified) code cannot decrypt the first 16 bytes of your data, but does the rest.
const crypto = require('crypto');
msg = Buffer.from('SfosHg+cTrQXYUdF0FuqCJMHgfcP13ckp2L0B9QqOcl8UtWnnl8fLi5lxgR2SKOj','base64');
aeskey = Buffer.from('JUtwW8+qU6Mv/FcgbMbkOdOKy72pun4B490KQrRB4QQ=','base64');
dec = crypto.createDecipheriv('aes-256-cbc',aeskey,Buffer.alloc(16)/*this should be the IV*/);
console.log(dec.update(msg,'','latin1')+dec.final('latin1'));
// I used latin1 instead of utf8 because the garbaged first block
// isn't valid UTF-8, and the rest is ASCII which works as either.
->
Y;øï«*M2WÚâeage to be encrypted
// some garbaged chars are control chars and Stack (or browser?)
// may not display them but there really are 16 in total
As an aside, the statement in the doc that 'Initialization vectors [must] be unpredictable and unique ... [but not secret]' is correct for CBC mode, but not some other modes supported by OpenSSL (thus nodejs) and Java. However, that's not a programming Q and thus offtopic here; it belongs on crypto.SX or possibly security.SX where it has already been answered many times.

How to convert Mac to string?

How do I convert the MAC data type to String? I am able to use base64 to encode the SecretKey data type into a String but this doesn't work for MAC.
// Generate a secret MAC key
KeyGenerator kg = KeyGenerator.getInstance("HmacSHA1");
SecretKey key = kg.generateKey();
String encodedkey=Base64.getEncoder().encodeToString(key.getEncoded());
// Create and initialize a MAC with the key
Mac mac = Mac.getInstance("HmacSHA1");
mac.init(key);
// Print the key
System.out.println("Key:" + encodedkey);
// Print out the resulting MAC
System.out.println("MAC:" + mac);
My output
Key:lnGahJHeKDqMG+c/K8OHx9HiQQl+aqhCNb0QtnDAdhzE3Xs7gP0uXf93ESO9Demrnl0XFCqHVUBsU9oppkmgVQ==
MAC:javax.crypto.Mac#1ce92674
Desired sample output
Key: lqC5SNoKYPnQRVFxTp2YhvBQpWiZU7sWTjziVXgMmcFkxvBJQA81PoTqrvscOyj05pvm6MBtlvP6gkqJvisiNQ==
MAC: xca73kbvEEZBKwb0aWMhGA==
The Mac class itself isn't the data - it holds the data and updates it on calls to update and doFinal.
Currently you're only calling init with the key - you then need to call update (optionally) and then doFinal. When you call doFinal, that will return a byte[] of the actual hash. Currently we can't see any data that you want to hash, but your sample would be changed like this:
Mac mac = Mac.getInstance("HmacSHA1");
mac.init(key);
mac.update(data1);
mac.update(data2);
mac.update(data3);
// Etc...
byte[] hash = mac.doFinal();
String base64Hash = Base64.getEncoder().encodeToString(hash);
You can also call doFinal passing in data - if you only have a single piece of data to hash, this means you don't need to call update at all:
Mac mac = Mac.getInstance("HmacSHA1");
mac.init(key);
byte[] hash = mac.doFinal(data);
String base64Hash = Base64.getEncoder().encodeToString(hash);
HmacSHA1 is a hash so it means it works only one way, you cannot get the original value from it. You would need to use algorithm that is reversible.

AES-256-CBC encrypted with PHP and decrypt in Java

I am in a situation where a JSON is encrypted in PHP's openssl_encrypt and needs to be decrypted in JAVA.
$encrypted = "...ENCRYPTED DATA...";
$secretFile = "/path/to/secret/saved/in/text_file";
$secret = base64_decode(file_get_contents($secretFile));
var_dump(strlen($secret)); // prints : int(370)
$iv = substr($encrypted, 0, 16);
$data = substr($encrypted, 16);
$decrypted = openssl_decrypt($data, "aes-256-cbc", $secret, null, $iv);
This $decrypted has correct data which is now decrypted.
Now, the problem is when I try to do same things in Java it doesn't work :(
String path = "/path/to/secret/saved/in/text";
String payload = "...ENCRYPTED DATA...";
StringBuilder output = new StringBuilder();
String iv = payload.substring(0, 16);
byte[] secret = Base64.getDecoder().decode(Files.readAllBytes(Paths.get(path)));
String data = payload.substring(16);
Cipher cipher = Cipher.getInstance("AES/CBC/PKCS5Padding");
SecretKeySpec secretKeySpec = new SecretKeySpec(secret, "AES");
IvParameterSpec ivParameterSpec = new IvParameterSpec(iv.getBytes(), 0, cipher.getBlockSize());
cipher.init(Cipher.DECRYPT_MODE, secretKeySpec, ivParameterSpec); // This line throws exception :
cipher.doFinal(data.getBytes(StandardCharsets.UTF_8));
Here it is:
Exception in thread "main" java.security.InvalidKeyException: Invalid AES key length: 370 bytes
at com.sun.crypto.provider.AESCrypt.init(AESCrypt.java:87)
at com.sun.crypto.provider.CipherBlockChaining.init(CipherBlockChaining.java:91)
at com.sun.crypto.provider.CipherCore.init(CipherCore.java:591)
at com.sun.crypto.provider.AESCipher.engineInit(AESCipher.java:346)
at javax.crypto.Cipher.init(Cipher.java:1394)
at javax.crypto.Cipher.init(Cipher.java:1327)
at com.sample.App.main(App.java:70)
I have already visited similar question like
AES-256 CBC encrypt in php and decrypt in Java or vice-versa
openssl_encrypt 256 CBC raw_data in java
Unable to exchange data encrypted with AES-256 between Java and PHP
and list continues.... but no luck there
btw, this is how encryption is done in PHP
$secretFile = "/path/to/secret/saved/in/text_file";
$secret = base64_decode(file_get_contents($secretFile));
$iv = bin2hex(openssl_random_pseudo_bytes(8));
$enc = openssl_encrypt($plainText, "aes-256-cbc", $secret, false, $iv);
return $iv.$enc;
and yes, I forgot to mention that my JRE is already at UnlimitedJCEPolicy and I can't change PHP code.
I am totally stuck at this point and can't move forward. Please help out.
EDIT#1
byte[] payload = ....;
byte[] iv = ....;
byte[] secret = ....; // Now 370 bits
byte[] data = Base64.getDecoder().decode(payload);
Cipher cipher = Cipher.getInstance("AES/CBC/NoPadding");
SecretKeySpec secretKeySpec = new SecretKeySpec(Arrays.copyOfRange(secret, 0, 32), "AES");
IvParameterSpec ivParameterSpec = new IvParameterSpec(iv, 0, cipher.getBlockSize());
cipher.init(Cipher.DECRYPT_MODE, secretKeySpec, ivParameterSpec);
byte[] output = cipher.doFinal(data);
System.out.println(new String(output).trim());
Above snippet seems to be working with openssl_encrypt
EDIT#2
I am not sure if this is correct, but following is what I have done and encryption-decryption on both side are working fine.
Encrypt in PHP, Decrypt in JAVA use AES/CBC/NoPadding
Encrypt in JAVA, Decrypt in PHP use AES/CBC/PKCS5Padding
I won't provide a complete solution, but there are a few differences you should take care of
Encoding:
String iv = payload.substring(0, 16);
String data = payload.substring(16);
are you sure the IV and data are the same in Java and PHP (The IV is string?)? If the data are encrypted, they should be treated as a byte array, not string. Just REALLY make sure they are THE SAME (print hex/base64 in php and java)
For the IV you at the end call iv.getBytes(), but the locale encoding may/will corrupt your values. The String should be use only when it's really string (text). Don't use string for binaries.
Simply treat data and iv as byte[]
Key generation according to the openssl
AES key must have length of 256 bit for aes-256-cbc used. The thing is - openssl by default doesn't use the provided secret as a key (I believe it can, but I don't know how it is to be specified in PHP).
see OpenSSL EVP_BytesToKey issue in Java
and here is the EVP_BytesToKey implementation: https://olabini.com/blog/tag/evp_bytestokey/
you should generate a 256 bit key usging the EVP_BytesToKey function (it's a key derivation function used by openssl).
Edit:
Maarten (in the comments) is right. The key parameter is the key. Seems the PHP function is accepting parameter of any length which is misleading. According to some articles (e.g. http://thefsb.tumblr.com/post/110749271235/using-opensslendecrypt-in-php-instead-of) the key is trucated or padded to necessary length (so seems 370 bit key is truncated to length of 256 bits).
According to your example, I wrote fully working code for PHP and Java:
AesCipher class: https://gist.github.com/demisang/716250080d77a7f65e66f4e813e5a636
Notes:
-By default algo is AES-128-CBC.
-By default init vector is 16 bytes.
-Encoded result = base64(initVector + aes crypt).
-Encoded/Decoded results present as itself object, it gets more helpful and get possibility to check error, get error message and get init vector value after encode/decode operations.
PHP:
$secretKey = '26kozQaKwRuNJ24t';
$text = 'Some text'
$encrypted = AesCipher::encrypt($secretKey, $text);
$decrypted = AesCipher::decrypt($secretKey, $encrypted);
$encrypted->hasError(); // TRUE if operation failed, FALSE otherwise
$encrypted->getData(); // Encoded/Decoded result
$encrypted->getInitVector(); // Get used (random if encode) init vector
// $decrypted->* has identical methods
JAVA:
String secretKey = "26kozQaKwRuNJ24t";
String text = "Some text";
AesCipher encrypted = AesCipher.encrypt(secretKey, text);
AesCipher decrypted = AesCipher.decrypt(secretKey, encrypted);
encrypted.hasError(); // TRUE if operation failed, FALSE otherwise
encrypted.getData(); // Encoded/Decoded result
encrypted.getInitVector(); // Get used (random if encode) init vector
// decrypted.* has identical methods

Difference in HMAC signature between python and java

I am trying to take some working python code and convert it to java for my usage. The python code below produces the correct signature. The java code using the same key, salt, produces something different and I am at a loss for why. In the Java code I am using the key generated in python (_key) to create the signature.
What I don't understand is, if I print the value of _key in python I get "34ee7983-5ee6-4147-aa86-443ea062abf774493d6a-2a15-43fe-aace-e78566927585". Now if I take that and place it directly into the hmac(new) call I get a different result than if I just leave the _key variable. I assume this has something to do with encoding of some type but I am at a loss.
_s1 = base64.b64decode('VzeC4H4h+T2f0VI180nVX8x+Mb5HiTtGnKgH52Otj8ZCGDz9jRW'
'yHb6QXK0JskSiOgzQfwTY5xgLLSdUSreaLVMsVVWfxfa8Rw==')
_s2 = base64.b64decode('ZAPnhUkYwQ6y5DdQxWThbvhJHN8msQ1rqJw0ggKdufQjelrKuiG'
'GJI30aswkgCWTDyHkTGK9ynlqTkJ5L4CiGGUabGeo8M6JTQ==')
# bitwise and of _s1 and _s2 ascii, converted to string
_key = ''.join([chr(ord(c1) ^ ord(c2)) for (c1, c2) in zip(_s1, _s2)])
#classmethod
def get_signature(cls, song_id, salt=None):
"""Return a (sig, salt) pair for url signing."""
if salt is None:
salt = str(int(time.time() * 1000))
mac = hmac.new(cls._key, song_id, sha1)
mac.update(salt)
sig = base64.urlsafe_b64encode(mac.digest())[:-1]
return sig, salt
This is my Java code. I think ultimately my issue is how I am handling or encoding the AA_KEY but I cannot figure it out.
private static final String AA_KEY = "34ee7983-5ee6-4147-aa86-443ea062abf774493d6a-2a15-43fe-aace-e78566927585";
public void someFunc(String songId) {
salt = "1431875768596"
String sig = hmacSha1(songId + salt, AA_KEY);
sig = StringUtils.replaceChars(sig, "+/=", "-_.");
}
static String hmacSha1(String value, String key) {
try {
// Get an hmac_sha1 key from the raw key bytes
byte[] keyBytes = key.getBytes();
SecretKeySpec signingKey = new SecretKeySpec(keyBytes, "HmacSHA1");
// Get an hmac_sha1 Mac instance and initialize with the signing key
Mac mac = Mac.getInstance("HmacSHA1");
mac.init(signingKey);
// Compute the hmac on input data bytes
byte[] rawHmac = mac.doFinal(value.getBytes());
return Base64.encodeBytes(rawHmac);
} catch (Exception e) {
throw new RuntimeException(e);
}
}
I found a couple of similar questions but they didn't help me figure it out sadly. Thanks!
Python HMAC-SHA256 signature differs from PHP signature
Python HMAC-SHA1 vs Java HMAC-SHA1 different results

Java equivalent of Fantom HMAC using SHA1

I'm having trouble doing the following in Java. Below is the Fantom code from the documentation for the the tool I am using.
// compute salted hmac
hmac := Buf().print("$username:$userSalt").hmac("SHA-1", password.toBuf).toBase64
// now compute login digest using nonce
digest := "${hmac}:${nonce}".toBuf.toDigest("SHA-1").toBase64
// our example variables
username: "jack"
password: "pass"
userSalt: "6s6Q5Rn0xZP0LPf89bNdv+65EmMUrTsey2fIhim/wKU="
nonce: "3da210bdb1163d0d41d3c516314cbd6e"
hmac: "IjJOApgvDoVDk9J6NiyWdktItl0="
digest: "t/nzXF3n0zzH4JhXtihT8FC1N3s="
I've been searching various examples through Google but none of them produce the results the documentation claims should be returned.
Can someone with Fantom knowledge verify if the example in the documentation is correct?
As for the Java side, here is my most recent attempt
public static String hmacSha1(String value, String key) {
try {
// Get an hmac_sha1 key from the raw key bytes
byte[] keyBytes = key.getBytes("UTF-8");
SecretKeySpec signingKey = new SecretKeySpec(keyBytes, "HmacSHA1");
// Get an hmac_sha1 Mac instance and initialize with the signing key
Mac mac = Mac.getInstance("HmacSHA1");
mac.init(signingKey);
// Compute the hmac on input data bytes
byte[] rawHmac = mac.doFinal(value.getBytes("UTF-8"));
// Convert raw bytes to Hex
byte[] hexBytes = new Hex().encode(rawHmac);
// Covert array of Hex bytes to a String
return new String(hexBytes, "UTF-8");
} catch (Exception e) {
throw new RuntimeException(e);
}
}
However, when I call the method with the following parameters
jack:6s6Q5Rn0xZP0LPf89bNdv+65EmMUrTsey2fIhim/wKU=
pass
I get
22324e02982f0e854393d27a362c96764b48b65d
Not sure where the docs came from - but they could be out-of-date - or wrong. I would actually run the Fantom code to use as your reference to make sure you're testing the right stuff ;)
You can take a look at the Java source for sys::Buf.hmac: MemBuf.java
I would also recommend separating out the 3 transformations. Make sure your raw byte array matches in both Fantom and Java, then verify the digest matches, and finally the Base64 encoding. Be alot easier to verify each stage in your code.
Turns out it was just my own lack of knowledge and with enough trial and error I was able to figure it out by doing the following:
//username: "jack"
//password: "pass"
//userSalt: "6s6Q5Rn0xZP0LPf89bNdv+65EmMUrTsey2fIhim/wKU="
//nonce: "3da210bdb1163d0d41d3c516314cbd6e"
//hmac: "IjJOApgvDoVDk9J6NiyWdktItl0="
//digest: "t/nzXF3n0zzH4JhXtihT8FC1N3s="
...
// initialize a Mac instance using a signing key from the password
SecretKeySpec signingKey = new SecretKeySpec(password.getBytes(), "HmacSHA1");
Mac mac = Mac.getInstance("HmacSHA1");
mac.init(signingKey);
// compute salted hmac
byte[] hmacByteArray = mac.doFinal((username + ':' + userSalt).getBytes());
String hmacString = new String(Base64.encodeBase64(hmacByteArray));
// hmacString == hmac
// now compute login digest using nonce
MessageDigest md = MessageDigest.getInstance("SHA-1");
md.update((hmacString + ':' + nonce).getBytes());
byte[] digestByteArray = md.digest();
String digestString = new String(Base64.encodeBase64(digestByteArray));
// digestString == digest
Used org.apache.commons.codec.binary.Base64 to encode the byte arrays.

Categories

Resources