Hadoop is skipping reduce phase entirely - java

I have set up a Hadoop job like so:
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
Job job = Job.getInstance(conf, "Legion");
job.setJarByClass(Legion.class);
job.setMapperClass(CallQualityMap.class);
job.setReducerClass(CallQualityReduce.class);
// Explicitly configure map and reduce outputs, since they're different classes
job.setMapOutputKeyClass(CallSampleKey.class);
job.setMapOutputValueClass(CallSample.class);
job.setOutputKeyClass(NullWritable.class);
job.setOutputValueClass(Text.class);
job.setInputFormatClass(CombineRepublicInputFormat.class);
job.setOutputFormatClass(TextOutputFormat.class);
CombineRepublicInputFormat.setMaxInputSplitSize(job, 128000000);
CombineRepublicInputFormat.setInputDirRecursive(job, true);
CombineRepublicInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
job.waitForCompletion(true);
}
This job completes, but something strange happens. I get one output line per input line. Each output line consists of the output from a CallSampleKey.toString() method, then a tab, then something like CallSample#17ab34d.
This means that the reduce phase is never running and the CallSampleKey and CallSample are getting passed directly to the TextOutputFormat. But I don't understand why this would be the case. I've very clearly specified job.setReducerClass(CallQualityReduce.class);, so I have no idea why it would skip the reducer!
Edit: Here's the code for the reducer:
public static class CallQualityReduce extends Reducer<CallSampleKey, CallSample, NullWritable, Text> {
public void reduce(CallSampleKey inKey, Iterator<CallSample> inValues, Context context) throws IOException, InterruptedException {
Call call = new Call(inKey.getId().toString(), inKey.getUuid().toString());
while (inValues.hasNext()) {
call.addSample(inValues.next());
}
context.write(NullWritable.get(), new Text(call.getStats()));
}
}

What if you try to change your
public void reduce(CallSampleKey inKey, Iterator<CallSample> inValues, Context context) throws IOException, InterruptedException {
to use Iterable instead of Iterator?
public void reduce(CallSampleKey inKey, Iterable<CallSample> inValues, Context context) throws IOException, InterruptedException {
You'll have to then use inValues.iterator() to get the actual iterator.
If the method signature doesn't match then it's just falling through to the default identity reducer implementation. It's perhaps unfortunate that the underlying default implementation doesn't make it easy to detect this kind of typo, but the next best thing is to always use #Override in all methods you intend to override so that the compiler can help.

Related

Using MultipleOutputs without context.write results empty files

I don't know how to use MultipleOutputs class. I'm using it to create multiple output files. Following is my Driver class's code snippet
Configuration conf = new Configuration();
Job job = Job.getInstance(conf);
job.setJarByClass(CustomKeyValueTest.class);//class with mapper and reducer
job.setOutputKeyClass(CustomKey.class);
job.setOutputValueClass(Text.class);
job.setMapOutputKeyClass(CustomKey.class);
job.setMapOutputValueClass(CustomValue.class);
job.setMapperClass(CustomKeyValueTestMapper.class);
job.setReducerClass(CustomKeyValueTestReducer.class);
job.setInputFormatClass(TextInputFormat.class);
Path in = new Path(args[1]);
Path out = new Path(args[2]);
out.getFileSystem(conf).delete(out, true);
FileInputFormat.setInputPaths(job, in);
FileOutputFormat.setOutputPath(job, out);
MultipleOutputs.addNamedOutput(job, "islnd" , TextOutputFormat.class, CustomKey.class, Text.class);
LazyOutputFormat.setOutputFormatClass(job, TextOutputFormat.class);
MultipleOutputs.setCountersEnabled(job, true);
boolean status = job.waitForCompletion(true);
and in Reducer, I used MultipleOutputs like this,
private MultipleOutputs<CustomKey, Text> multipleOutputs;
#Override
public void setup(Context context) throws IOException, InterruptedException {
multipleOutputs = new MultipleOutputs<>(context);
}
#Override
public void reduce(CustomKey key, Iterable<CustomValue> values, Context context) throws IOException, InterruptedException {
...
multipleOutputs.write("islnd", key, pop, key.toString());
//context.write(key, pop);
}
public void cleanup() throws IOException, InterruptedException {
multipleOutputs.close();
}
}
When I use context.write I get output files with data in it. But When I remove context.write the output files are empty. But I don't want to call context.write because it creates extra file part-r-00000. As Stated here(last para in the description of class) I used LazyOutputFormat to avoid part-r-00000 file. But still didn't work.
LazyOutputFormat.setOutputFormatClass(job, TextOutputFormat.class);
This means , in case you are not creating any output, dont create empty files.
Can you please look at hadoop counters and find
1. map.output.records
2. reduce.input.groups
3. reduce.input.records to verify if your mappers are sending any data to mapper.
Code with IT for multioutput is
http://bytepadding.com/big-data/map-reduce/multipleoutputs-in-map-reduce/

Hadoop: NullPointerException with Custom InputFormat

I've developed a custom InputFormat for Hadoop (including a custom InputSplit and a custom RecordReader) and I'm experiencing a rare NullPointerException.
These classes are going to be used for querying a third-party system which exposes a REST API for records retrieving. Thus, I got inspiration in DBInputFormat, which is a non-HDFS InputFormat as well.
The error I get is the following:
Error: java.lang.NullPointerException at
org.apache.hadoop.mapred.MapTask$NewTrackingRecordReader.initialize(MapTask.java:524)
at org.apache.hadoop.mapred.MapTask.runNewMapper(MapTask.java:762)
at org.apache.hadoop.mapred.MapTask.run(MapTask.java:339)
at org.apache.hadoop.mapred.YarnChild$2.run(YarnChild.java:162)
at java.security.AccessController.doPrivileged(Native Method)
at javax.security.auth.Subject.doAs(Subject.java:396)
at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1491)
at org.apache.hadoop.mapred.YarnChild.main(YarnChild.java:157)
I've searched the code for MapTask (2.1.0 version of Hadoop) and I've seen the problematic part is the initialization of the RecordReader:
472 NewTrackingRecordReader(org.apache.hadoop.mapreduce.InputSplit split,
473 org.apache.hadoop.mapreduce.InputFormat<K, V> inputFormat,
474 TaskReporter reporter,
475 org.apache.hadoop.mapreduce.TaskAttemptContext taskContext)
476 throws InterruptedException, IOException {
...
491 this.real = inputFormat.createRecordReader(split, taskContext);
...
494 }
...
519 #Override
520 public void initialize(org.apache.hadoop.mapreduce.InputSplit split,
521 org.apache.hadoop.mapreduce.TaskAttemptContext context
522 ) throws IOException, InterruptedException {
523 long bytesInPrev = getInputBytes(fsStats);
524 real.initialize(split, context);
525 long bytesInCurr = getInputBytes(fsStats);
526 fileInputByteCounter.increment(bytesInCurr - bytesInPrev);
527 }
Of course, the relevant parts of my code:
# MyInputFormat.java
public static void setEnvironmnet(Job job, String host, String port, boolean ssl, String APIKey) {
backend = new Backend(host, port, ssl, APIKey);
}
public static void addResId(Job job, String resId) {
Configuration conf = job.getConfiguration();
String inputs = conf.get(INPUT_RES_IDS, "");
if (inputs.isEmpty()) {
inputs += restId;
} else {
inputs += "," + resId;
}
conf.set(INPUT_RES_IDS, inputs);
}
#Override
public List<InputSplit> getSplits(JobContext job) {
// resulting splits container
List<InputSplit> splits = new ArrayList<InputSplit>();
// get the Job configuration
Configuration conf = job.getConfiguration();
// get the inputs, i.e. the list of resource IDs
String input = conf.get(INPUT_RES_IDS, "");
String[] resIDs = StringUtils.split(input);
// iterate on the resIDs
for (String resID: resIDs) {
splits.addAll(getSplitsResId(resID, job.getConfiguration()));
}
// return the splits
return splits;
}
#Override
public RecordReader<LongWritable, Text> createRecordReader(InputSplit split, TaskAttemptContext context) {
if (backend == null) {
logger.info("Unable to create a MyRecordReader, it seems the environment was not properly set");
return null;
}
// create a record reader
return new MyRecordReader(backend, split, context);
}
# MyRecordReader.java
#Override
public void initialize(InputSplit split, TaskAttemptContext context) throws IOException, InterruptedException {
// get start, end and current positions
MyInputSplit inputSplit = (MyInputSplit) this.split;
start = inputSplit.getFirstRecordIndex();
end = start + inputSplit.getLength();
current = 0;
// query the third-party system for the related resource, seeking to the start of the split
records = backend.getRecords(inputSplit.getResId(), start, end);
}
# MapReduceTest.java
public static void main(String[] args) throws Exception {
int res = ToolRunner.run(new Configuration(), new MapReduceTest(), args);
System.exit(res);
}
#Override
public int run(String[] args) throws Exception {
Configuration conf = this.getConf();
Job job = Job.getInstance(conf, "MapReduce test");
job.setJarByClass(MapReduceTest.class);
job.setMapperClass(MyMap.class);
job.setCombinerClass(MyReducer.class);
job.setReducerClass(MyReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
job.setInputFormatClass(MyInputFormat.class);
MyInputFormat.addInput(job, "ca73a799-9c71-4618-806e-7bd0ca1911f4");
InputFormat.setEnvironmnet(job, "my.host.com", "443", true, "my_api_key");
FileOutputFormat.setOutputPath(job, new Path(args[0]));
return job.waitForCompletion(true) ? 0 : 1;
}
Any ideas about what is wrong?
BTW, which is the "good" InputSplit the RecordReader must use, the one given to the constructor or the one given in the initialize method? Anyway I've tried both options and the resulting error is the same :)
The way I read your strack trace real is null on line 524.
But don't take my word for it. Slip an assert or system.out.println in there and check the value of real yourself.
NullPointerException almost always means you dotted off something you didn't expect to be null. Some libraries and collections will throw it at you as their way of saying "this can't be null".
Error: java.lang.NullPointerException at
org.apache.hadoop.mapred.MapTask$NewTrackingRecordReader.initialize(MapTask.java:524)
To me this reads as: in the org.apache.hadoop.mapred package the MapTask class has an inner class NewTrackingRecordReader with an initialize method that threw a NullPointerException at line 524.
524 real.initialize( blah, blah) // I actually stopped reading after the dot
this.real was set on line 491.
491 this.real = inputFormat.createRecordReader(split, taskContext);
Assuming you haven't left out any more closely scoped reals that are masking the this.real then we need to look at inputFormat.createRecordReader(split, taskContext); If this can return null then it might be the culprit.
Turns out it will return null when backend is null.
#Override
public RecordReader<LongWritable, Text> createRecordReader(
InputSplit split,
TaskAttemptContext context) {
if (backend == null) {
logger.info("Unable to create a MyRecordReader, " +
"it seems the environment was not properly set");
return null;
}
// create a record reader
return new MyRecordReader(backend, split, context);
}
It looks like setEnvironmnet is supposed to set backend
# MyInputFormat.java
public static void setEnvironmnet(
Job job,
String host,
String port,
boolean ssl,
String APIKey) {
backend = new Backend(host, port, ssl, APIKey);
}
backend must be declared somewhere outside setEnvironment (or you'd be getting a compiler error).
If backend hasn't been set to something non-null upon construction and setEnvironmnet was not called before createRecordReader then you should expect to get exactly the NullPointerException you got.
UPDATE:
As you've noted, since setEnvironmnet() is static backend must be static as well. This means that you must be sure other instances aren't setting it to null.
Solved. The problem is the backend variable is declared as static, i.e. it belongs to the java class and thus any other object changing that variable (e.g. to null) affects all the other objects of the same class.
Now, setEnvironment adds the host, port, ssl usage and the API key as configuration (the same than setResId already did with the resource ID); when createRecordReader is invoked this configuration is got and the backend object is created.
Thanks to CandiedOrange who put me in the right path!

Is Hadoop's TooRunner thread-safe?

I would like to trigger a few Hadoop jobs simultaneously. I’ve created a pool of threads using Executors.newFixedThreadPool. Idea is that if the pool size is 2, my code will trigger 2 Hadoop jobs at the same exact time using ‘ToolRunner.run’. In my testing, I noticed that these 2 threads keep stepping on each other.
When I looked under the hood, I noticed that ToolRunner creates GenericOptionsParser which in turn calls a static method ‘buildGeneralOptions’. This method uses ‘OptionBuilder.withArgName’ which uses an instance variable called, ‘argName’. This doesn’t look thread safe to me and I believe is the root cause of issues I am running into.
Any thoughts?
Confirmed that ToolRunner is NOT thread-safe:
Original code (which runs into problems):
public static int run(Configuration conf, Tool tool, String[] args)
throws Exception{
if(conf == null) {
conf = new Configuration();
}
GenericOptionsParser parser = new GenericOptionsParser(conf, args);
//set the configuration back, so that Tool can configure itself
tool.setConf(conf);
//get the args w/o generic hadoop args
String[] toolArgs = parser.getRemainingArgs();
return tool.run(toolArgs);
}
New Code(which works):
public static int run(Configuration conf, Tool tool, String[] args)
throws Exception{
if(conf == null) {
conf = new Configuration();
}
GenericOptionsParser parser = getParser(conf, args);
tool.setConf(conf);
//get the args w/o generic hadoop args
String[] toolArgs = parser.getRemainingArgs();
return tool.run(toolArgs);
}
private static synchronized GenericOptionsParser getParser(Configuration conf, String[] args) throws Exception {
return new GenericOptionsParser(conf, args);
}

job.setOutputKeyClass and setOutputValueClass in Driver is mismatching with the reducer's context.write method,still program is running fine.how?

Driver code:
public class WcDriver {
public static void main(String[] args) throws IOException,
InterruptedException, ClassNotFoundException {
Configuration conf = new Configuration();
Job job = new Job(conf, "WcDriver");
job.setJarByClass(WcDriver.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(LongWritable.class);
job.setInputFormatClass(TextInputFormat.class);
job.setOutputFormatClass(TextOutputFormat.class);
FileInputFormat.setInputPaths(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
job.setMapperClass(WcMapper.class);
job.setReducerClass(WcReducer.class);
job.waitForCompletion(true);
}
}
Reducer code
public class WcReducer extends Reducer<Text, LongWritable, Text,String>
{
#Override
public void reduce(Text key, Iterable<LongWritable> values, Context context) throws IOException, InterruptedException {
String key1 = null;
int total = 0;
for (LongWritable value : values) {
total += value.get();
key1= key.toString();
}
context.write(new Text(key1), "ABC");
}
}
Here, in driver class I have set job.setOutputKeyClass(Text.class) and job.setOutputValueClass(LongWritable.class), but in reducer class I am writing a string context.write(new Text(key1), "ABC");. I think there should be an error while running the program because output types are not matching, and also reducer's key should implement WritableComparable and value should implement Writable interface. Strangely, this program is running good. I do not understand why there is not an exception.
try to do this :
// job.setOutputFormatClass(TextOutputFormat.class);
// comment this line, and you'll sure get exception of casting.
This is because, TextOutputFormat assumes LongWritable as key, and Text as value, if you'll not define the outPutFormat class, it will expect to get default behaviour of writable, which is by default, but if u'll mention it, it would implicitly cast it to the given type.;
try this
//job.setOutputValueClass(LongWritable.class); if you comment this line you get an error
this will for only define the key value pair by defaul it depent on the output format and
it will be text so this is not giving any error

How can I use MultipleoutputFormai in Hadoop 0.20?

I am working with Hadoop 0.20 and I want to have two reduce output files instead of one output. I know that MultipleOutputFormat doesn't work in Hadoop 0.20. I added the hadoop1.1.1-core jar file in the build path of my project in Eclipse. But it still shows the last error.
Here is my code:
public static class ReduceStage extends Reducer<IntWritable, BitSetWritable, IntWritable, Text>
{
private MultipleOutputs mos;
public ReduceStage() {
System.out.println("ReduceStage");
}
public void setup(Context context) {
mos = new MultipleOutputs(context);
}
public void reduce(final IntWritable key, final Iterable<BitSetWritable> values, Context output ) throws IOException, InterruptedException
{
mos.write("text1", key, new Text("Hello"));
}
public void cleanup(Context context) throws IOException {
try {
mos.close();
} catch (InterruptedException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
}
}
And in the run():
FileOutputFormat.setOutputPath(job, ConnectedComponents_Nodes);
job.setOutputKeyClass(MultipleTextOutputFormat.class);
MultipleOutputs.addNamedOutput(job, "text1", TextOutputFormat.class,
IntWritable.class, Text.class);
The error is:
java.lang.NoSuchMethodError: org.apache.hadoop.mapreduce.lib.output.FileOutputFormat.setOutputName(Lorg/apache/hadoop/mapreduce/JobContext;Ljava/lang/String;)V
at org.apache.hadoop.mapreduce.lib.output.MultipleOutputs.getRecordWriter(MultipleOutputs.java:409)
at org.apache.hadoop.mapreduce.lib.output.MultipleOutputs.write(MultipleOutputs.java:370)
at org.apache.hadoop.mapreduce.lib.output.MultipleOutputs.write(MultipleOutputs.java:348)
at bitsetmr$ReduceStage.reduce(bitsetmr.java:179)
at bitsetmr$ReduceStage.reduce(bitsetmr.java:1)
at org.apache.hadoop.mapreduce.Reducer.run(Reducer.java:176)
at org.apache.hadoop.mapred.ReduceTask.runNewReducer(ReduceTask.java:566)
at org.apache.hadoop.mapred.ReduceTask.run(ReduceTask.java:408)
at org.apache.hadoop.mapred.LocalJobRunner$Job.run(LocalJobRunner.java:216)
What can I do to have MultipleOutputFormat? Did I use the code right?
You may go for an overridden extension of MultipleTextOutputFormat and then make all the contents of the record to be the part of 'value', while make the file-name or path to be the key.
There is an oddjob library. They have a range of outputformat implementations. The one which you want is MultipleLeafValueOutputFormat : Writes to the file specified by the key, and only writes the value.
Now,say you have to write the following pairs and your separator is say the tab character ('\t'):
<"key1","value1"> (you want this to be written in filename1)
<"key2","value2"> (you want this to be written in filename2)
So, now the output from reducer would transform into follows:
<"filename1","key1\tvalue1">
<"filename2","key2\tvalue2">
Also, don't forget that the above defined class should be added as the outformat class to the job:
conf.setOutputFormat(MultipleLeafValueOutputFormat.class);
One thing to note here is that you will need to work with the old mapred package rather than the mapreduce package. But that shouldn't be a problem.
Firstly, you should make sure FileOutputFormat.setOutputName has the same code between versions 0.20 and 1.1.1. If not, you must have compatible version to compile your code. If the same, there must be some parameter error in your command.
I encountered the same issue and I removed -Dmapreduce.user.classpath.first=true from run command and it works. hope that helps!

Categories

Resources