I have a requirement where I need to run a task every 15 seconds.
I have seen several articles suggesting to use ScheduledExecutorService rather than TimerTask which I'm doing.
Runnable runnable = new Runnable() {
#Override
public void run() {
//Some task
}
};
ScheduledExecutorService scheduler = Executors
.newScheduledThreadPool(5);
scheduler
.scheduleAtFixedRate(runnable, 0, 15000, TimeUnit.MILLISECONDS);
Th problem is that the runnable does not execute in between randomly, maybe for 1...2..5 minutes sometimes.
I have my try catch in place and there is no exception or error.
I added a date-time log
time2 : 2015-12-10T11:28:00.000+04:00
time2 : 2015-12-10T11:28:00.000+04:00
time2 : 2015-12-10T11:29:00.000+04:00
time2 : 2015-12-10T11:31:00.000+04:00
time2 : 2015-12-10T11:31:00.000+04:00
As you can see the runnable was not executed for 11:30
Why is this skip? The timer is doing the same task every time & I think it's unlikely that delay in the previous task causes this delay.
I tried increasing the pool-size from 1 to 5, but still the same result.
If this is a thread issue...Than I know I have certain options which I can use instead of newScheduledThreadPool. Like newCachedThreadPool ,newFixedThreadPool ,newSingleThreadScheduledExecutor .
All I want to do is execute a certain task every 15 seconds & execute it every time even if the previous task took long to complete or had any exception.
How can I achieve it?
Java doesn't give you real-time guarantees on time. I'd advise you to log both starting and ending time of your job. There is statement for scheduleAtFixedRate apidoc
If any execution of this task takes longer than its period, then subsequent executions may start late, but will not concurrently execute.
check that it is not your case.
https://docs.oracle.com/javase/7/docs/api/java/util/concurrent/ScheduledExecutorService.html#scheduleAtFixedRate(java.lang.Runnable,%20long,%20long,%20java.util.concurrent.TimeUnit)
Related
final Runnable refresh = new Refresh(params...);
service = Executors.newScheduledThreadPool(1);
service.scheduleAtFixedRate(refresh, 0, 2000, TimeUnit.MILLISECONDS);
// OR
final Thread refresh = new Refresh(params...);
refresh.start(); // In the run() method there is a loop with a sleep of 2000 ms
Which of the above methods to repeat a piece of code are preferred and why?
It is functionally equivalent but the former is more flexible and better separate responsibilities (SRP): a task should not be responsible for how or when it's run...
scheduling at fixed rate is not the same as sleeping. scheduleAtFixedRate calls run every n milliseconds after the start of the previous execution, whereas sleep will start sleeping after the end of the previous execution and thus every following execution will be delayed by the time it took to run. Therefore you should either use scheduleWithFixedDelay or measure the time it takes to run and extract from the sleep time
Using an ExecutorService is better for miltiple reasons. First, as assylias has mentioned, you separate the code from how you choose to run it. Second, an ExcutorService has additional code for managing a thread's lifecycle, execution and priority.
If you using 1 thread, take a look at Timer and TimerTask
public class MyTimerTask extends TimerTask{
#Override
public void run() {
int i = 0;
try {
Thread.sleep(100000);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println("Run Me ~" + ++i);
System.out.println("Test");
}
}
Case 1 :-
TimerTask task = new MyTimerTask();
Timer timer = new Timer();
timer.schedule(task, 1000,6000); // line 1
System.out.println("End"); // here is bebug point.
My Expectation of schedule() method (as per my understanding given in javadocs where each execution is scheduled once previous task execution is completed)
that two threads should be
created after line 1.
One for timer which spawns another thread for tasks. Once first task thread dies
another will be created and son on. But at debug point , i just see one thread corresponding to Timer. Why
not thread for tasks which implement Runnable?
Case 2 :-
TimerTask task = new MyTimerTask();
Timer timer = new Timer();
timer.scheduleAtFixedRate(task, 1000,6000); // line 1
System.out.println("End"); // here is bebug point.
My Expectation of scheduleAtFixedRate() method(as per my understanding given in javadocs where each execution is scheduled relative to the scheduled
execution time of the initial execution) that around 17 threads(dont pay much attention
to 17. It can be more or less to that. But it should be greater than 2 ) should be
created after line 1.
One for timer which should spawn 16 other thread corresponding two each task. At first task sleeps
for 100 second, Timer should create another thread corresponding to next task and similarly for other task.
But at debug point , i just see one thread corresponding to Timer. Here also i can see sequential execution of task. Why not 17 threads?
UPDATE :- As per ScheduleAtFixedRate javadocs , each execution is scheduled relative to the scheduled execution time of the initial execution. If an execution is delayed for any reason (such as garbage collection or other background activity), two or more executions will occur in rapid succession to "catch up. what does that mean? To me it gives impression, if second task is due even first task is not completed, then timer will create new thread for due task. Is n't it?
Timer uses the Active Object pattern under the hood, so there is only ever a single thread being used and scheduling a new task on the timer adds that task to the thread's tasks queue.
The timer thread keeps track of all the tasks in it's queue and sleeps until the next task is scheduled. Then, it wakes up and executes the task itself by invoking task.run() directly, meaning that it does not spawn another thread to execute the code.
This also means that if you schedule two tasks to execute at the same time then, true to the Active Object pattern, they will be executed sequentially (one after another) on the same thread of control. This means the second task will execute after it's scheduled time (but probably not by much).
Now, to unequivocally answer your question, here is the scheduling logic from Timer.class that schedules the next time that the task should be run again (from lines 262-272 here):
// set when the next task should be launched
if (task.fixedRate) {
// task is scheduled at fixed rate
task.when = task.when + task.period;
} else {
// task is scheduled at fixed delay
task.when = System.currentTimeMillis()
+ task.period;
}
// insert this task into queue
insertTask(task);
task.fixedRate is set to true if you use one of the timer.scheduleAtFixedRate() methods and is set to false if you use one of the timer.schedule() methods.
task.when is the "time" (ticks) that the task was scheduled to run.
task.period is the interval you passed to the timer.schedule*() method.
So, from the code we can see that if you use a fixed rate then a repeating task will be scheduled to run relative to when it was first started. If you don't use a fixed rate, then it is scheduled to run relative to when it was last run (which will drift relative to a fixed rate, unless your task is never delayed and takes less than one tick to execute).
This also means that if a task falls behind and it is on a fixed rate, then Timer will keep rescheduling the task for immediate execution until it catches up to the total number of times it should have ran over a given period.
So if you have a task, say a ping() that you schedule to run at a fixed rate every 10ms and there is temporary blocking in the ping() method to where it takes 20ms to execute, then the Timer will call ping() again immediately after the previous call finished, and it will keep doing so until the given rate is achieved.
The javadoc for Timer says
Corresponding to each Timer object is a single background thread that
is used to execute all of the timer's tasks, sequentially.
Basically it holds a queue of tasks to which it adds when you schedule them. It uses one thread to iterate over the queue and execute the tasks.
The timer class creates one thread per instance of the timer class and this thread do all tasks scheduled Timer#schedule or Timer#scheduleAtFixRate.
So, as you ovserved, the timer creates only one thread.
A task would have came start time before the preciding task has finished, then the follwing task has waited until the preciding task has finished.
So, Timer "never" create another thread although the preciding task hasn't finished and the time the following task has to start has come.
So, I advise you that:
if you want to schedule tasks and do the tasks on time whether a preciding task has finished or not, use ScheduledThreadPoolExecutor instead of Timer.
And though if you do not want, it's prefer to use ScheduledThreadPoolExecutor than Timer because for one thing, tasks scheduled by Timer would never have done if a task would have threw RuntimeException or Error.
Schedule will not execute the missed task if the start time is in the past.
scheduleAtFixedRate will execute the missed tasks if the start time is in the past.For the missed tasks, the start time will be calculated based last task's end time. When missed tasks are executed fully, the new normal tasks' start time will be calculated based on last task's start time.
BR Sanchez
I'm writing an Android application that records audio every 10 minutes. I am using a Timer to do that. But what is the difference between schedule and scheduleAtFixedRate? Is there any performance benefit in using one over the other?
The difference is best explained by this non-Android documentation:
Fixed-rate timers (scheduleAtFixedRate()) are based on the starting time (so each iteration will execute at startTime + iterationNumber * delayTime).
In fixed-rate execution, each execution is scheduled relative to the scheduled execution time of the initial execution. If an execution is delayed for any reason (such as garbage collection or other background activity), two or more executions will occur in rapid succession to "catch up."
Fixed-delay timers (schedule()) are based on the previous execution (so each iteration will execute at lastExecutionTime + delayTime).
In fixed-delay execution, each execution is scheduled relative to the actual execution time of the previous execution. If an execution is delayed for any reason (such as garbage collection or other background activity), subsequent executions will be delayed as well.
Aside from this, there is no difference. You will not find a significance performance difference, either.
If you are using this in a case where you want to stay synchronized with something else, you'll want to use scheduleAtFixedRate(). The delay from schedule() can drift and introduce error.
A simple schedule() method will execute at once while scheduleAtFixedRate() method takes and extra parameter which is for repetition of the task again & again on specific time interval.
by looking at syntax :
Timer timer = new Timer();
timer.schedule( new performClass(), 30000 );
This is going to perform once after the 30 Second Time Period Interval is over. A kind of timeoput-action.
Timer timer = new Timer();
//timer.schedule(task, delay, period)
//timer.schedule( new performClass(), 1000, 30000 );
// or you can write in another way
//timer.scheduleAtFixedRate(task, delay, period);
timer.scheduleAtFixedRate( new performClass(), 1000, 30000 );
This is going to start after 1 second and will repeat on every 30 seconds time interval.
According to java.util.Timer.TimerImpl.TimerHeap code
// this is a repeating task,
if (task.fixedRate) {
// task is scheduled at fixed rate
task.when = task.when + task.period;
} else {
// task is scheduled at fixed delay
task.when = System.currentTimeMillis() + task.period;
}
--
java.util.Timer.schedule(TimerTask task, long delay, long period)
will set task.fixedRate = false;
java.util.Timer.scheduleAtFixedRate(TimerTask task, long delay, long period)
will set task.fixedRate = true;
btw Timer doesn't work when screen is off.
You should use AlarmManager.
There is sample:http://developer.android.com/training/scheduling/alarms.html
In case of schedule it only executes once when the appropriate times came. On the other hand scheduleAtFixedRate has an extra parameter period which contains amount of time in milliseconds between subsequent executions.
More info can be find here
http://developer.android.com/reference/java/util/Timer.html#schedule(java.util.TimerTask, long)
I am using the ScheduledThreadPoolExecutor to execute periodic tasks.
It is essential that the execution be periodic, not with fixed delay.
I encountered the following problem: consider a period of 1 minute for a task. If the task takes 5 minutes to execute (e.g. because of a temporary network problem), the missed executions get queued up and dispatched immediately after the task finishes. Is there a way to get rid of the accumulated executions that were missed?
I tried using the remove method, but it removes the task completely, not only a specific execution.
Thanks
There might be a better way, but you could have your task reschedule itself. That way, one execution will always run 1 minute after the previous execution has finished:
final ScheduledExecutorService scheduler = Executors.newScheduledThreadPool(1);
Runnable yourTask = new Runnable() {
#Override
public void run() {
//do your stuff
scheduler.schedule(this, 1, TimeUnit.MINUTES);
}
};
scheduler.schedule(yourTask, 1, TimeUnit.MINUTES);
EDIT
If you want your task to run exactly at hh:mm:00 (exact minute) you can replace the code by
long millisToNextMinute = 60000 - System.currentTimeMillis() % 60000;
scheduler.schedule(this, millisToNextMinute, TimeUnit.MILLISECONDS);
You can build this logic into the task. Have the task record the last time it ran. Every time it starts, it should check whether enough time has passed since the last run. If not, then it should exit without doing any work.
In CronScheduler, there are SkippingToLatest methods (see Javadocs, "Skipping to latest runs" section that are particularly designed to handle this problem for you:
Duration syncPeriod = Duration.ofMinutes(1);
CronScheduler cron = CronScheduler.create(syncPeriod);
cron.scheduleAtFixedRateSkippingToLatest(0, 1, TimeUnit.MINUTES, runTimeMillis -> {
// Do your task
});
I'm interested in using ScheduledExecutorService to spawn multiple threads for tasks if task before did not yet finish. For example I need to process a file every 0.5s. First task starts processing file, after 0.5s if first thread is not finished second thread is spawned and starts processing second file and so on. This can be done with something like this:
ScheduledExecutorService executor = Executors.newScheduledThreadPool(4)
while (!executor.isShutdown()) {
executor.execute(task);
try {
Thread.sleep(500);
} catch (InterruptedException e) {
// handle
}
}
Now my question: Why I can't do it with executor.scheduleAtFixedRate?
What I get is if the first task takes longer, the second task is started as soon as first finished, but no new thread is started even if executor has pool of threads. executor.scheduleWithFixedDelay is clear - it executes tasks with same time span between them and it doesn't matter how long it takes to complete the task. So probably I misunderstood ScheduledExecutorService purpose.
Maybe I should look at another kind of executor? Or just use code which I posted here? Any thoughts?
I've solved the problem by launching a nested anonymous runnable in each scheduled execution:
final ScheduledExecutorService service = Executors.newScheduledThreadPool(POOL_SIZE);
final Runnable command = new SlowRunnable();
service.scheduleAtFixedRate(
new Runnable() {
#Override
public void run() {
service.execute(command);
}
}, 0, 1, TimeUnit.SECONDS);
With this example there will be 1 thread executing at every interval a fast instruction, so it will be surely be finished when the next interval is expired. The remaining POOL_SIZE-1 threads will be executing the SlowRunnable's run() in parallel, which may take longer time than the duration of the single interval.
Please note that while I like this solution as it minimize the code and reuse the same ScheduledExecutorService, it must be sized correctly and may not be usable in every context: if the SlowRunnable is so slow that up to POOL_SIZE jobs get executed together, there will be no threads to run the the scheduled task in time.
Also, if you set the interval at 1 TimeUnit.NANOSECONDS it will probably became too slow also the execution of the main runnable.
One of the scheduleAtFixedRate methods is what you're looking for. It starts a task in a thread from the pool at the given interval, even if previous tasks haven't finished. If you're running out of threads to do the processing, adjust the pool size constraints as detailed in the ThreadPoolExecutor docs.