JPA Locking in a Webapp - java

I'm trying to implement locking on a JPA/Hibernate application, to detect when a client is trying to push changes on an out-of-date version of an entity.
I've choose to expose dto's (representing a subset of the domain) over REST services. At the moment, I can easily detect concurrent transactions updates, but I can not make it work to detect "old" entities updates. I'll explain:
#1 2 concurrent transactions manipulating the same entity, each attached to their entity manager, are correctly protected against dirty reads (the last to commit gets an OptimisticLockingException)
#2 2 concurrent users, manipulating the same entity with their frontend and committing two different, non-concurrent transactions, do NOT get any lock exception. Thats because, using DTO's, the update part of the code is something like that:
start a transaction
get the persisted entity to update from manager
copy what is relevant from the dto to that entity
commit
... but nothing (JPA, Hibernate or whatever) never checks for the consistency between the dto's version and the entity's one... (ps: trying to set the #Version field with the version given in the dto, as specified by JPA, lead to weird results)
Based on what I've seen and lots of debugging and docs read, I've ended up writing a code like that:
abstract class AbstractBusinessService {
private static final Logger LOG = LoggerFactory.getLogger(AbstractBusinessService.class);
protected final void checkEntityVersion(Long givenVersion, VersionedEntity<?> entity) {
if (givenVersion == null) {
LOG.warn("no version have been provided. unable to check for concurrent modification");
} else if (entity == null) {
LOG.warn("the given entity is null");
} else if (entity.getVersion() != givenVersion.longValue()) {
throw new LockingException("The persistent entity " + entity.getClass().getName() + "#" + entity.getId()
+ " has a newer version than expected (" + givenVersion + " vs. " + entity.getVersion() + ")");
}
}
}
... invoked before every "update" operation... It obviously works like a charm, but adds some complexity on the business layer, for a topic that is purely persistence-related and should not be visible on the business layer...
Am I right in the sense that this is a DIY thing and nothing is available out-of-the-box to implement #2? Am I missing something?? How do you address that problem in your development?
Thank you very much for reading,
SP
EDIT : as per indicated in comments, the best way seems to
get a persistent entity from context (A)
create a new, clean (detached/transient) entity (B)
copy every properties of (A) to (B)
set every properties in (B) with what comes from the DTO (conversion may be needed)
merge (B) --> get LockException if #Version mismatch

Related

Multiple entityManager in Spring application. Persistence of duplicate objects issue

My Spring component gets a request from a client, asks a web-service about some data and saves received objects to a database.
I identify all objects and save only new ones.
The issue occurs when the client makes two or more same requests in the same time (or due to even different user requests I receive same objects from web-service).
To describe the issue with persistence here some details. For each client request my component starts execution in a separate thread, I get a new entityManager, begin a transaction, receive a data from web-service, then I identify objects and persist new ones using given entityManager in a current transaction.
If in separate transactions I receive the same objects from web-service and if they are new ones that are not yet in database I am not able to identify them in not-commited transactions and so they are persisted in all transactions. Then all duplicate objects will be commited and saved to database.
What could be good solutions in this case? Is there any way to identify new objects properly even in different transactions? Or what approaches can be applied?
May be Spring provides some approaches to manage transactions or entityManagers so that it can help with this issue...
Note. Of course I can use database instruments to avoid saving duplicate objects but in this case it is not a very good solution.
Check if objects are present in a database before saving.
Use #UniqueConstraint or #Column(unique = true) to prevent duplicate rows, handle exceptions appropriately.
Use #Version to manage concurrent modification for existing entities. More about optimistic and pesimistic locking: Chapter 5. Locking. Related discussions: Hibernate Automatic Versioning and When to use #Version and #Audited in Hibernate?
You may use thread locks / synchronization mechanisms to ensure that requests for the same user will happen in order. However, this won't work if your service in running on more than 1 node.
So the solution in my case is the following:
Make transactions pretty small and commit every object separately.
Make unique constraints in database to prevent duplicating of
objects. This point will not help us a lot but needed for point 3.
Every commit() method we insert in try-catch block. If we try to
commit duplicate object in parallel transactions then we will receive an exception and in catch block we can check the database, select the object that is already there and work with it futher.
The example:
boolean reidentifyNeed = false;
try {
DofinService.getEntityManagerThreadLocal().getTransaction().begin();
DofinService.getEntityManagerThreadLocal().persist(entity);
try {
DofinService.getEntityManagerThreadLocal().getTransaction().commit();
//if commit is successfull
entityIdInDB = (long) entity.getId();
DofinService.getEntityManagerThreadLocal().clear();
} catch (Exception ex) {
logger.error("Error committing " + entity.getClass().getSimpleName() + " in DB. Possibly duplicate object. Will try to re-identify object. Error: " + ex.toString());
reidentifyNeed = true;
}
if(reidentifyNeed){
//need clear entityManager, because if duplicated object was persisted then during *select* an object flush() method will be executed and it will thrown ConstrainViolationException
DofinService.getEntityManagerThreadLocal().clear();
CheckSimilarObject checkSimilarObject = new CheckSimilarObject();
long objectId = checkSimilarObject.checkObject(dofinObject);
logger.warn("Re-identifying was done. EntityId = " + objectId);
entityIdInDB = objectId;
}
} catch (Exception ex) {
logger.error("Error persisting and commiting object: " + ex.toString());
}

JPA handle merge() of relationship

I have a unidirectional relation Project -> ProjectType:
#Entity
public class Project extends NamedEntity
{
#ManyToOne(optional = false)
#JoinColumn(name = "TYPE_ID")
private ProjectType type;
}
#Entity
public class ProjectType extends Lookup
{
#Min(0)
private int progressive = 1;
}
Note that there's no cascade.
Now, when I insert a new Project I need to increment the type progressive.
This is what I'm doing inside an EJB, but I'm not sure it's the best approach:
public void create(Project project)
{
em.persist(project);
/* is necessary to merge the type? */
ProjectType type = em.merge(project.getType());
/* is necessary to set the type again? */
project.setType(type);
int progressive = type.getProgressive();
type.setProgressive(progressive + 1);
project.setCode(type.getPrefix() + progressive);
}
I'm using eclipselink 2.6.0, but I'd like to know if there's a implementation independent best practice and/or if there are behavioral differences between persistence providers, about this specific scenario.
UPDATE
to clarify the context when entering EJB create method (it is invoked by a JSF #ManagedBean):
project.projectType is DETACHED
project is NEW
no transaction (I'm using JTA/CMT) is active
I am not asking about the difference between persist() and merge(), I'm asking if either
if em.persist(project) automatically "reattach" project.projectType (I suppose not)
if it is legal the call order: first em.persist(project) then em.merge(projectType) or if it should be inverted
since em.merge(projectType) returns a different instance, if it is required to call project.setType(managedProjectType)
An explaination of "why" this works in a way and not in another is also welcome.
You need merge(...) only to make a transient entity managed by your entity manager. Depending on the implementation of JPA (not sure about EclipseLink) the returned instance of the merge call might be a different copy of the original object.
MyEntity unmanaged = new MyEntity();
MyEntity managed = entityManager.merge(unmanaged);
assert(entityManager.contains(managed)); // true if everything worked out
assert(managed != unmanaged); // probably true, depending on JPA impl.
If you call manage(entity) where entity is already managed, nothing will happen.
Calling persist(entity) will also make your entity managed, but it returns no copy. Instead it merges the original object and it might also call an ID generator (e.g. a sequence), which is not the case when using merge.
See this answer for more details on the difference between persist and merge.
Here's my proposal:
public void create(Project project) {
ProjectType type = project.getType(); // maybe check if null
if (!entityManager.contains(type)) { // type is transient
type = entityManager.merge(type); // or load the type
project.setType(type); // update the reference
}
int progressive = type.getProgressive();
type.setProgressive(progressive + 1); // mark as dirty, update on flush
// set "code" before persisting "project" ...
project.setCode(type.getPrefix() + progressive);
entityManager.persist(project);
// ... now no additional UPDATE is required after the
// INSERT on "project".
}
UPDATE
if em.persist(project) automatically "reattach" project.projectType (I suppose not)
No. You'll probably get an exception (Hibernate does anyway) stating, that you're trying to merge with a transient reference.
Correction: I tested it with Hibernate and got no exception. The project was created with the unmanaged project type (which was managed and then detached before persisting the project). But the project type's progression was not incremented, as expected, since it wasn't managed. So yeah, manage it before persisting the project.
if it is legal the call order: first em.persist(project) then em.merge(projectType) or if it should be inverted
It's best practise to do so. But when both statements are executed within the same batch (before the entity manager gets flushed) it may even work (merging type after persisting project). In my test it worked anyway. But as I said, it's better to merge the entities before persisting new ones.
since em.merge(projectType) returns a different instance, if it is required to call project.setType(managedProjectType)
Yes. See example above. A persistence provider may return the same reference, but it isn't required to. So to be sure, call project.setType(mergedType).
Do you need to merge? Well it depends. According to merge() javadoc:
Merge the state of the given entity into the current persistence
context
How did you get the instance of ProjectType you attach to your Project to? If that instance is already managed then all you need to do is just
type.setProgessive(type.getProgressive() + 1)
and JPA will automatically issue an update effective on next context flush.
Otherwise if the type is not managed then you need to merge it first.
Although not directly related this quesetion has some good insight about persist vs merge: JPA EntityManager: Why use persist() over merge()?
With the call order of em.persist(project) vs em.merge(projectType), you probably should ask yourself what should happen if the type is gone in the database? If you merge the type first it will get re-inserted, if you persist the project first and you have FK constraint the insert will fail (because it's not cascading).
Here in this code. Merge basically store the record in different object, Let's say
One Account pojo is there
Account account =null;
account = entityManager.merge(account);
then you can store the result of this.
But in your code your are using merge different condition like
public void create(Project project)
{
em.persist(project);
/* is necessary to merge the type? */
ProjectType type = em.merge(project.getType());
}
here
Project and ProjectType two different pojo you can use merge for same pojo.
or is there any relationship between in your pojo then also you can use it.

How to refresh JPA entities when backend database changes asynchronously?

I have a PostgreSQL 8.4 database with some tables and views which are essentially joins on some of the tables. I used NetBeans 7.2 (as described here) to create REST based services derived from those views and tables and deployed those to a Glassfish 3.1.2.2 server.
There is another process which asynchronously updates contents in some of tables used to build the views. I can directly query the views and tables and see these changes have occured correctly. However, when pulled from the REST based services, the values are not the same as those in the database. I am assuming this is because JPA has cached local copies of the database contents on the Glassfish server and JPA needs to refresh the associated entities.
I have tried adding a couple of methods to the AbstractFacade class NetBeans generates:
public abstract class AbstractFacade<T> {
private Class<T> entityClass;
private String entityName;
private static boolean _refresh = true;
public static void refresh() { _refresh = true; }
public AbstractFacade(Class<T> entityClass) {
this.entityClass = entityClass;
this.entityName = entityClass.getSimpleName();
}
private void doRefresh() {
if (_refresh) {
EntityManager em = getEntityManager();
em.flush();
for (EntityType<?> entity : em.getMetamodel().getEntities()) {
if (entity.getName().contains(entityName)) {
try {
em.refresh(entity);
// log success
}
catch (IllegalArgumentException e) {
// log failure ... typically complains entity is not managed
}
}
}
_refresh = false;
}
}
...
}
I then call doRefresh() from each of the find methods NetBeans generates. What normally happens is the IllegalArgumentsException is thrown stating somethng like Can not refresh not managed object: EntityTypeImpl#28524907:MyView [ javaType: class org.my.rest.MyView descriptor: RelationalDescriptor(org.my.rest.MyView --> [DatabaseTable(my_view)]), mappings: 12].
So I'm looking for some suggestions on how to correctly refresh the entities associated with the views so it is up to date.
UPDATE: Turns out my understanding of the underlying problem was not correct. It is somewhat related to another question I posted earlier, namely the view had no single field which could be used as a unique identifier. NetBeans required I select an ID field, so I just chose one part of what should have been a multi-part key. This exhibited the behavior that all records with a particular ID field were identical, even though the database had records with the same ID field but the rest of it was different. JPA didn't go any further than looking at what I told it was the unique identifier and simply pulled the first record it found.
I resolved this by adding a unique identifier field (never was able to get the multipart key to work properly).
I recommend adding an #Startup #Singleton class that establishes a JDBC connection to the PostgreSQL database and uses LISTEN and NOTIFY to handle cache invalidation.
Update: Here's another interesting approach, using pgq and a collection of workers for invalidation.
Invalidation signalling
Add a trigger on the table that's being updated that sends a NOTIFY whenever an entity is updated. On PostgreSQL 9.0 and above this NOTIFY can contain a payload, usually a row ID, so you don't have to invalidate your entire cache, just the entity that has changed. On older versions where a payload isn't supported you can either add the invalidated entries to a timestamped log table that your helper class queries when it gets a NOTIFY, or just invalidate the whole cache.
Your helper class now LISTENs on the NOTIFY events the trigger sends. When it gets a NOTIFY event, it can invalidate individual cache entries (see below), or flush the entire cache. You can listen for notifications from the database with PgJDBC's listen/notify support. You will need to unwrap any connection pooler managed java.sql.Connection to get to the underlying PostgreSQL implementation so you can cast it to org.postgresql.PGConnection and call getNotifications() on it.
An an alternative to LISTEN and NOTIFY, you could poll a change log table on a timer, and have a trigger on the problem table append changed row IDs and change timestamps to the change log table. This approach will be portable except for the need for a different trigger for each DB type, but it's inefficient and less timely. It'll require frequent inefficient polling, and still have a time delay that the listen/notify approach does not. In PostgreSQL you can use an UNLOGGED table to reduce the costs of this approach a little bit.
Cache levels
EclipseLink/JPA has a couple of levels of caching.
The 1st level cache is at the EntityManager level. If an entity is attached to an EntityManager by persist(...), merge(...), find(...), etc, then the EntityManager is required to return the same instance of that entity when it is accessed again within the same session, whether or not your application still has references to it. This attached instance won't be up-to-date if your database contents have since changed.
The 2nd level cache, which is optional, is at the EntityManagerFactory level and is a more traditional cache. It isn't clear whether you have the 2nd level cache enabled. Check your EclipseLink logs and your persistence.xml. You can get access to the 2nd level cache with EntityManagerFactory.getCache(); see Cache.
#thedayofcondor showed how to flush the 2nd level cache with:
em.getEntityManagerFactory().getCache().evictAll();
but you can also evict individual objects with the evict(java.lang.Class cls, java.lang.Object primaryKey) call:
em.getEntityManagerFactory().getCache().evict(theClass, thePrimaryKey);
which you can use from your #Startup #Singleton NOTIFY listener to invalidate only those entries that have changed.
The 1st level cache isn't so easy, because it's part of your application logic. You'll want to learn about how the EntityManager, attached and detached entities, etc work. One option is to always use detached entities for the table in question, where you use a new EntityManager whenever you fetch the entity. This question:
Invalidating JPA EntityManager session
has a useful discussion of handling invalidation of the entity manager's cache. However, it's unlikely that an EntityManager cache is your problem, because a RESTful web service is usually implemented using short EntityManager sessions. This is only likely to be an issue if you're using extended persistence contexts, or if you're creating and managing your own EntityManager sessions rather than using container-managed persistence.
You can either disable caching entirely (see: http://wiki.eclipse.org/EclipseLink/FAQ/How_to_disable_the_shared_cache%3F ) but be preparedto a fairly large performance loss.
Otherwise, you can perform a clear cache programmatically with
em.getEntityManagerFactory().getCache().evictAll();
You can map it to a servlet so you can call it externally - this is better if your database is modify externally very seldom and you just want to be sure JPS will pick up the new version
Just a thought, but how do you receive your EntityManager/Session/whatever?
If you queried the entity in one session, it will be detached in the next one and you will have to merge it back into the persistence context to get it managed again.
Trying to work with detached entities may result in those not-managed exceptions, you should re-query the entity or you could try it with merge (or similar methods).
JPA doesn't do any caching by default. You have to explicitly configure it. I believe its the side effect of the architectural style you have chosen: REST. I think caching is happening at the web servers, proxy servers etc. I suggest you read this and debug more.

Find or insert based on unique key with Hibernate

I'm trying to write a method that will return a Hibernate object based on a unique but non-primary key. If the entity already exists in the database I want to return it, but if it doesn't I want to create a new instance and save it before returning.
UPDATE: Let me clarify that the application I'm writing this for is basically a batch processor of input files. The system needs to read a file line by line and insert records into the db. The file format is basically a denormalized view of several tables in our schema so what I have to do is parse out the parent record either insert it into the db so I can get a new synthetic key, or if it already exists select it. Then I can add additional associated records in other tables that have foreign keys back to that record.
The reason this gets tricky is that each file needs to be either totally imported or not imported at all, i.e. all inserts and updates done for a given file should be a part of one transaction. This is easy enough if there's only one process that's doing all the imports, but I'd like to break this up across multiple servers if possible. Because of these constraints I need to be able to stay inside one transaction, but handle the exceptions where a record already exists.
The mapped class for the parent records looks like this:
#Entity
public class Foo {
#Id
#GeneratedValue(strategy = IDENTITY)
private int id;
#Column(unique = true)
private String name;
...
}
My initial attempt at writting this method is as follows:
public Foo findOrCreate(String name) {
Foo foo = new Foo();
foo.setName(name);
try {
session.save(foo)
} catch(ConstraintViolationException e) {
foo = session.createCriteria(Foo.class).add(eq("name", name)).uniqueResult();
}
return foo;
}
The problem is when the name I'm looking for exists, an org.hibernate.AssertionFailure exception is thrown by the call to uniqueResult(). The full stack trace is below:
org.hibernate.AssertionFailure: null id in com.searchdex.linktracer.domain.LinkingPage entry (don't flush the Session after an exception occurs)
at org.hibernate.event.def.DefaultFlushEntityEventListener.checkId(DefaultFlushEntityEventListener.java:82) [hibernate-core-3.6.0.Final.jar:3.6.0.Final]
at org.hibernate.event.def.DefaultFlushEntityEventListener.getValues(DefaultFlushEntityEventListener.java:190) [hibernate-core-3.6.0.Final.jar:3.6.0.Final]
at org.hibernate.event.def.DefaultFlushEntityEventListener.onFlushEntity(DefaultFlushEntityEventListener.java:147) [hibernate-core-3.6.0.Final.jar:3.6.0.Final]
at org.hibernate.event.def.AbstractFlushingEventListener.flushEntities(AbstractFlushingEventListener.java:219) [hibernate-core-3.6.0.Final.jar:3.6.0.Final]
at org.hibernate.event.def.AbstractFlushingEventListener.flushEverythingToExecutions(AbstractFlushingEventListener.java:99) [hibernate-core-3.6.0.Final.jar:3.6.0.Final]
at org.hibernate.event.def.DefaultAutoFlushEventListener.onAutoFlush(DefaultAutoFlushEventListener.java:58) [hibernate-core-3.6.0.Final.jar:3.6.0.Final]
at org.hibernate.impl.SessionImpl.autoFlushIfRequired(SessionImpl.java:1185) [hibernate-core-3.6.0.Final.jar:3.6.0.Final]
at org.hibernate.impl.SessionImpl.list(SessionImpl.java:1709) [hibernate-core-3.6.0.Final.jar:3.6.0.Final]
at org.hibernate.impl.CriteriaImpl.list(CriteriaImpl.java:347) [hibernate-core-3.6.0.Final.jar:3.6.0.Final]
at org.hibernate.impl.CriteriaImpl.uniqueResult(CriteriaImpl.java:369) [hibernate-core-3.6.0.Final.jar:3.6.0.Final]
Does anyone know what is causing this exception to be thrown? Does hibernate support a better way of accomplishing this?
Let me also preemptively explain why I'm inserting first and then selecting if and when that fails. This needs to work in a distributed environment so I can't synchronize across the check to see if the record already exists and the insert. The easiest way to do this is to let the database handle this synchronization by checking for the constraint violation on every insert.
I had a similar batch processing requirement, with processes running on multiple JVMs. The approach I took for this was as follows. It is very much like jtahlborn's suggestion. However, as vbence pointed out, if you use a NESTED transaction, when you get the constraint violation exception, your session is invalidated. Instead, I use REQUIRES_NEW, which suspends the current transaction and creates a new, independent transaction. If the new transaction rolls back it will not affect the original transaction.
I am using Spring's TransactionTemplate but I'm sure you could easily translate it if you do not want a dependency on Spring.
public T findOrCreate(final T t) throws InvalidRecordException {
// 1) look for the record
T found = findUnique(t);
if (found != null)
return found;
// 2) if not found, start a new, independent transaction
TransactionTemplate tt = new TransactionTemplate((PlatformTransactionManager)
transactionManager);
tt.setPropagationBehavior(TransactionDefinition.PROPAGATION_REQUIRES_NEW);
try {
found = (T)tt.execute(new TransactionCallback<T>() {
try {
// 3) store the record in this new transaction
return store(t);
} catch (ConstraintViolationException e) {
// another thread or process created this already, possibly
// between 1) and 2)
status.setRollbackOnly();
return null;
}
});
// 4) if we failed to create the record in the second transaction, found will
// still be null; however, this would happy only if another process
// created the record. let's see what they made for us!
if (found == null)
found = findUnique(t);
} catch (...) {
// handle exceptions
}
return found;
}
You need to use UPSERT or MERGE to achieve this goal.
However, Hibernate does not offer support for this construct, so you need to use jOOQ instead.
private PostDetailsRecord upsertPostDetails(
DSLContext sql, Long id, String owner, Timestamp timestamp) {
sql
.insertInto(POST_DETAILS)
.columns(POST_DETAILS.ID, POST_DETAILS.CREATED_BY, POST_DETAILS.CREATED_ON)
.values(id, owner, timestamp)
.onDuplicateKeyIgnore()
.execute();
return sql.selectFrom(POST_DETAILS)
.where(field(POST_DETAILS.ID).eq(id))
.fetchOne();
}
Calling this method on PostgreSQL:
PostDetailsRecord postDetailsRecord = upsertPostDetails(
sql,
1L,
"Alice",
Timestamp.from(LocalDateTime.now().toInstant(ZoneOffset.UTC))
);
Yields the following SQL statements:
INSERT INTO "post_details" ("id", "created_by", "created_on")
VALUES (1, 'Alice', CAST('2016-08-11 12:56:01.831' AS timestamp))
ON CONFLICT DO NOTHING;
SELECT "public"."post_details"."id",
"public"."post_details"."created_by",
"public"."post_details"."created_on",
"public"."post_details"."updated_by",
"public"."post_details"."updated_on"
FROM "public"."post_details"
WHERE "public"."post_details"."id" = 1
On Oracle and SQL Server, jOOQ will use MERGE while on MySQL it will use ON DUPLICATE KEY.
The concurrency mechanism is ensured by the row-level locking mechanism employed when inserting, updating, or deleting a record, which you can view in the following diagram:
Code avilable on GitHub.
Two solution come to mind:
That's what TABLE LOCKS are for
Hibernate does not support table locks, but this is the situation when they come handy. Fortunately you can use native SQL thru Session.createSQLQuery(). For example (on MySQL):
// no access to the table for any other clients
session.createSQLQuery("LOCK TABLES foo WRITE").executeUpdate();
// safe zone
Foo foo = session.createCriteria(Foo.class).add(eq("name", name)).uniqueResult();
if (foo == null) {
foo = new Foo();
foo.setName(name)
session.save(foo);
}
// releasing locks
session.createSQLQuery("UNLOCK TABLES").executeUpdate();
This way when a session (client connection) gets the lock, all the other connections are blocked until the operation ends and the locks are released. Read operations are also blocked for other connections, so needless to say use this only in case of atomic operations.
What about Hibernate's locks?
Hibernate uses row level locking. We can not use it directly, because we can not lock non-existent rows. But we can create a dummy table with a single record, map it to the ORM, then use SELECT ... FOR UPDATE style locks on that object to synchronize our clients. Basically we only need to be sure that no other clients (running the same software, with the same conventions) will do any conflicting operations while we are working.
// begin transaction
Transaction transaction = session.beginTransaction();
// blocks until any other client holds the lock
session.load("dummy", 1, LockOptions.UPGRADE);
// virtual safe zone
Foo foo = session.createCriteria(Foo.class).add(eq("name", name)).uniqueResult();
if (foo == null) {
foo = new Foo();
foo.setName(name)
session.save(foo);
}
// ends transaction (releasing locks)
transaction.commit();
Your database has to know the SELECT ... FOR UPDATE syntax (Hibernate is goig to use it), and of course this only works if all your clients has the same convention (they need to lock the same dummy entity).
The Hibernate documentation on transactions and exceptions states that all HibernateExceptions are unrecoverable and that the current transaction must be rolled back as soon as one is encountered. This explains why the code above does not work. Ultimately you should never catch a HibernateException without exiting the transaction and closing the session.
The only real way to accomplish this it would seem would be to manage the closing of the old session and reopening of a new one within the method itself. Implementing a findOrCreate method which can participate in an existing transaction and is safe within a distributed environment would seem to be impossible using Hibernate based on what I have found.
The solution is in fact really simple. First perform a select using your name value. If a result is found, return that. If not, create a new one. In case the creation fail (with an exception), this is because another client added this very same value between your select and your insert statement. This is then logical that you have an exception. Catch it, rollback your transaction and run the same code again. Because the row already exist, the select statement will find it and you'll return your object.
You can see here explanation of strategies for optimistic and pessimistic locking with hibernate here : http://docs.jboss.org/hibernate/core/3.3/reference/en/html/transactions.html
a couple people have mentioned different parts of the overall strategy. assuming that you generally expect to find an existing object more often than you create a new object:
search for existing object by name. if found, return
start nested (separate) transaction
try to insert new object
commit nested transaction
catch any failure from nested transaction, if anything but constraint violation, re-throw
otherwise search for existing object by name and return it
just to clarify, as pointed out in another answer, the "nested" transaction is actually a separate transaction (many databases don't even support true, nested transactions).
Well, here's one way to do it - but it's not appropriate for all situations.
In Foo, remove the "unique = true" attribute on name. Add a timestamp that gets updated on every insert.
In findOrCreate(), don't bother checking if the entity with the given name already exists - just insert a new one every time.
When looking up Foo instances by name, there may be 0 or more with a given name, so you just select the newest one.
The nice thing about this method is that it doesn't require any locking, so everything should run pretty fast. The downside is that your database will be littered with obsolete records, so you may have to do something somewhere else to deal with them. Also, if other tables refer to Foo by its id, then this will screw up those relations.
Maybe you should change your strategy:
First find the user with the name and only if the user thoes not exist, create it.
I would try the following strategy:
A. Start a main transaction (at time 1)
B. Start a sub-transaction (at time 2)
Now, any object created after time 1 will not be visible in the main transaction. So when you do
C. Create new race-condition object, commit sub-transaction
D. Handle conflict by starting a new sub-transaction (at time 3) and getting the object from a query (the sub-transaction from point B is now out-of-scope).
only return the object primary key and then use EntityManager.getReference(..) to obtain the object you will be using in the main transaction. Alternatively, start the main transaction after D; it is not totally clear to me in how many race conditions you will have within your main transaction, but the above should allow for n times B-C-D in a 'large' transaction.
Note that you might want to do multi-threading (one thread per CPU) and then you can probably reduce this issue considerably by using a shared static cache for these kind of conflicts - and point 2 can be kept 'optimistic', i.e. not doing a .find(..) first.
Edit: For a new transaction, you need an EJB interface method call annotated with transaction type REQUIRES_NEW.
Edit: Double check that the getReference(..) works as I think it does.

How to use the Hibernate optimistic locking version property on the front end?

Optimistic locking using the version attribute for an entity works fine and is easy to implement:
<version property="VERSION" type="int" column="EX_VERSION" />
The entity has a property of the following type:
private int VERSION;
public int getVERSION() { return VERSION; }
public void setVERSION(int VERSION) { this.VERSION = VERSION; }
So far, so good. Now service methods return a data transfer object (DTO) for the entity above, which the views display in HTML. For update pages, the VERSION attribute is stored in an HTML hidden field and submitted with the form.
The intent is to use the version property to ensure that a user's update will fail if the information displayed is accompanied by an old version.
The controller responds to a users update request by invoking a service method with the DTO containing the updated information (including the version property), and the service method in turn uses a data access object (DAO) to persist the changes:
public void update(SimpleDTO dto) {
SimplyEntity entity = getSimpleDao().load(dto.getId());
copyProperties(dto, entity); // all properties, including VERSION copied to entity
getSimpleDao().update(entity);
}
The problem is that the version property copied into the entity by copyProperties(...) is not respected by Hibernate. I tracked down the reason in the following forum: https://forum.hibernate.org/viewtopic.php?f=1&t=955893&p=2418068
In short, when load() is called, Hibernate caches the version property in the session cache and it doesn't matter what it's value is subsequently changed to. I agree that this is the correct behavior, but I have been instructed by Bosses to pass the version via an HTML form property (if there is a better pattern for this, I'd love to hear it).
One solution I am exploring now is to evict the entity from the session after it's version has been set using hibernateTemplate.evict(simpleEntity) before the update happens. I hope this works, but it doesn't seem efficient.
I would like to ask Hibernate to check the version property on the instance itself, rather than only from the session cache.
Thanks in advance for answers!
--
LES
Do you really need to use DTO? You wouldn't have had this problem if you were passing the actual entity around - nor would you have to load the entity again, which isn't exactly great for performance.
But even if you do have a legitimate reason to use DTO, I'm not quite grasping why you would try to update the version number on your freshly reloaded entity prior to saving. Consider different scenarios possible in your workflow:
Entity is loaded initially, has version = V1
It's transferred to DTO which goes to UI, comes back and is ready to be saved.
Entity is loaded again, has version = V2
You have two possibilities now:
V1 == V2. Peachy, you don't have to do anything.
V1 is less than V2, meaning entity was updated by someone else while you were editing it. There's no reason to try to set version to V1 and attempt to save because saving will fail. You can either save it with V2 (thus overriding someone else's changes) or fail now.(without involving Hibernate).

Categories

Resources