Closed. This question is opinion-based. It is not currently accepting answers.
Want to improve this question? Update the question so it can be answered with facts and citations by editing this post.
Closed 2 years ago.
Improve this question
How can I produce 5 x 7 dot matrix type digits for a clock project?
Here's an example of what I'm looking for.
I manually coded the position of each dot in each digit.
Is there a better way to create dot matrix digits?
By better I mean easier to code, easier to verify, makes use of existing fonts or other components, or anything else an experienced Swing developer might consider as an important consideration.
The rest of this question is the context for the naysayers that claim I didn't put enough effort into formulating my question.
Since I'm providing an answer to this question, I'm not posting fake bad code in the question. Sure, we appreciate it when people show their efforts. The code and text in my answer should supplement the question, in my opinion.
A few days ago, as I'm writing this, someone posted a question about making a clock with dot-matrix digits. The person posting the question provided code and a picture of what they had created. The person had created a BufferedImage where they had hardcoded the position of each square dot in his 4 x 7 dot matrix digits.
I was impressed with how much work the person had put into his BufferedImage, so I went off to my Eclipse to figure out how to generalize what he had done.
While I was away, people commented and closed his question. By the time I got back with my answer, the person had deleted his question.
Since I had what I thought was a good answer, I searched for an appropriate question. When I didn't find an appropriate question, I created a question.
Sure, I focused more on my answer than my question. Silly me, I thought that the answer would help provide context for the question.
Well, I hope that this explanation sheds some more light on why I thought this topic was important enough to create a question and ask for answers.
Unfortunately, you have to code the position of each dot in each digit.
However, you can do this in a flexible way.
Here's what I mean. A 5 x 7 dot matrix digit can be represented as a two-dimensional int array. It could also be represented as a boolean array, but a matrix of 0 and 1 values is easier to visually verify.
As an example. here's a method to code the zero digit. You can see that the ones create a visual outline that can be easily verified.
private int[][] defineZeroMatrix() {
int[][] matrix = new int[7][];
matrix[0] = new int[] { 0, 1, 1, 1, 0 };
matrix[1] = new int[] { 1, 0, 0, 0, 1 };
matrix[2] = new int[] { 1, 0, 0, 0, 1 };
matrix[3] = new int[] { 1, 0, 0, 0, 1 };
matrix[4] = new int[] { 1, 0, 0, 0, 1 };
matrix[5] = new int[] { 1, 0, 0, 0, 1 };
matrix[6] = new int[] { 0, 1, 1, 1, 0 };
return matrix;
}
It took me about 15 minutes to code all of the dot matrix digit matrices.
It's possible to code a dot matrix digit using a sparse matrix. Unfortunately, that idea leads to more code that's visually harder to verify.
Here's an example of the dot matrix digit two coded as a sparse matrix of coordinates.
private Point[] defineTwoCoordinates() {
Point[] array = new Point[14];
array[0] = new Point(0, 1);
array[1] = new Point(1, 0);
array[2] = new Point(2, 0);
array[3] = new Point(3, 0);
array[4] = new Point(4, 1);
array[5] = new Point(4, 2);
array[6] = new Point(3, 3);
array[7] = new Point(2, 4);
array[8] = new Point(1, 5);
array[9] = new Point(0, 6);
array[10] = new Point(1, 6);
array[11] = new Point(2, 6);
array[12] = new Point(3, 6);
array[13] = new Point(4, 6);
return array;
}
After we've coded all of the digit matrices, we'll create an array of matrices.
private int[][][] matrices;
The leftmost index is the digit, from 0 to 9. The second index is the row of the digit matrix. The third index is the column of the digit matrix.
Finally, we extend a JPanel and override the paintComponent method to actually paint the dot matrix digit.
#Override
protected void paintComponent(Graphics g) {
super.paintComponent(g);
g.setColor(dotColor);
for (int row = 0; row < matrices[digit].length; row++) {
for (int column = 0; column < matrices[digit][row].length; column++) {
if (matrices[digit][row][column] != 0) {
int x = margin + column * pixelWidth;
int y = margin + row * pixelWidth;
g.fillOval(x, y, dotWidth, dotWidth);
}
}
}
}
Here's a complete runnable example of how you would create a dot matrix digit panel by extending a JPanel, and use several dot matrix digit panels to create whatever GUI you want.
import java.awt.BorderLayout;
import java.awt.Color;
import java.awt.Dimension;
import java.awt.Graphics;
import java.awt.Point;
import javax.swing.JFrame;
import javax.swing.JPanel;
import javax.swing.SwingUtilities;
public class DotMatrixDigits implements Runnable {
public static void main(String[] args) {
SwingUtilities.invokeLater(new DotMatrixDigits());
}
#Override
public void run() {
JFrame frame = new JFrame("Dot Matrix Digits");
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
frame.add(defineTopPanel(), BorderLayout.BEFORE_FIRST_LINE);
frame.add(defineBottomPanel(), BorderLayout.AFTER_LAST_LINE);
frame.pack();
frame.setLocationByPlatform(true);
frame.setVisible(true);
}
private JPanel defineTopPanel() {
JPanel panel = new JPanel();
panel.add(new DotMatrixDigit(0, Color.YELLOW, Color.BLACK));
panel.add(new DotMatrixDigit(1, Color.YELLOW, Color.BLACK));
panel.add(new DotMatrixDigit(2, Color.YELLOW, Color.BLACK));
panel.add(new DotMatrixDigit(3, Color.YELLOW, Color.BLACK));
panel.add(new DotMatrixDigit(4, Color.YELLOW, Color.BLACK));
return panel;
}
private JPanel defineBottomPanel() {
JPanel panel = new JPanel();
panel.add(new DotMatrixDigit(5, Color.YELLOW, Color.BLACK));
panel.add(new DotMatrixDigit(6, Color.YELLOW, Color.BLACK));
panel.add(new DotMatrixDigit(7, Color.YELLOW, Color.BLACK));
panel.add(new DotMatrixDigit(8, Color.YELLOW, Color.BLACK));
panel.add(new DotMatrixDigit(9, Color.YELLOW, Color.BLACK));
return panel;
}
/**
* <p>
* The <code>DotMatrixDigit</code> class creates a dot-matrix digit panel by
* extending <code>JPanel</code>. The dot matrix digit is 5 positions across and
* 7 positions down. The size of the dot and distance between dots are defined
* in the constructor of this class. The shape of the dot is determined in the
* <code>paintComponent</code> method.
* </p>
*
* #author Gilbert G. Le Blanc
* #version 1.8 - 20 October 2020
*
* #see JPanel
* #see Color
*/
public class DotMatrixDigit extends JPanel {
private static final long serialVersionUID = 1L;
/** int field to hold the digit to display **/
private int digit;
/** int field to hold the width of the dot in pixels **/
private int dotWidth;
/** int field to hold the distance between the
* top left corner of the dots in pixels **/
private int pixelWidth;
/** int field to hold the margin size in
* pixels surrounding the digit **/
private int margin;
private final Color dotColor;
private int[][][] matrices;
/**
* <p>
* This constructor creates a dot matrix digit panel. The preferred size of the
* panel is determined by the pixel width of each dot, including the space
* between the dots.
* </p>
*
* #param digit - The initial digit to display from 0 through 9.
* #param dotColor - The <code>Color</code> of the dots.
* #param backgroundColor - The background <code>Color</code> of the dot matrix
* digit panel.
*
*/
public DotMatrixDigit(int digit, Color dotColor, Color backgroundColor) {
this.digit = digit;
this.dotColor = dotColor;
this.dotWidth = 10;
this.pixelWidth = 15;
this.margin = dotWidth;
this.matrices = defineDigitMatricies();
int width = 4 * pixelWidth + dotWidth + margin + margin;
int height = 6 * pixelWidth + dotWidth + margin + margin;
this.setBackground(backgroundColor);
this.setPreferredSize(new Dimension(width, height));
}
private int[][][] defineDigitMatricies() {
int[][][] matrices = new int[10][][];
matrices[0] = defineZeroMatrix();
matrices[1] = defineOneMatrix();
matrices[2] = defineTwoMatrix();
matrices[3] = defineThreeMatrix();
matrices[4] = defineFourMatrix();
matrices[5] = defineFiveMatrix();
matrices[6] = defineSixMatrix();
matrices[7] = defineSevenMatrix();
matrices[8] = defineEightMatrix();
matrices[9] = defineNineMatrix();
return matrices;
}
private int[][] defineZeroMatrix() {
int[][] matrix = new int[7][];
matrix[0] = new int[] { 0, 1, 1, 1, 0 };
matrix[1] = new int[] { 1, 0, 0, 0, 1 };
matrix[2] = new int[] { 1, 0, 0, 0, 1 };
matrix[3] = new int[] { 1, 0, 0, 0, 1 };
matrix[4] = new int[] { 1, 0, 0, 0, 1 };
matrix[5] = new int[] { 1, 0, 0, 0, 1 };
matrix[6] = new int[] { 0, 1, 1, 1, 0 };
return matrix;
}
private int[][] defineOneMatrix() {
int[][] matrix = new int[7][];
matrix[0] = new int[] { 0, 0, 1, 0, 0 };
matrix[1] = new int[] { 0, 1, 1, 0, 0 };
matrix[2] = new int[] { 1, 0, 1, 0, 0 };
matrix[3] = new int[] { 0, 0, 1, 0, 0 };
matrix[4] = new int[] { 0, 0, 1, 0, 0 };
matrix[5] = new int[] { 0, 0, 1, 0, 0 };
matrix[6] = new int[] { 1, 1, 1, 1, 1 };
return matrix;
}
private int[][] defineTwoMatrix() {
int[][] matrix = new int[7][];
matrix[0] = new int[] { 0, 1, 1, 1, 0 };
matrix[1] = new int[] { 1, 0, 0, 0, 1 };
matrix[2] = new int[] { 0, 0, 0, 0, 1 };
matrix[3] = new int[] { 0, 0, 0, 1, 0 };
matrix[4] = new int[] { 0, 0, 1, 0, 0 };
matrix[5] = new int[] { 0, 1, 0, 0, 0 };
matrix[6] = new int[] { 1, 1, 1, 1, 1 };
return matrix;
}
private int[][] defineThreeMatrix() {
int[][] matrix = new int[7][];
matrix[0] = new int[] { 0, 1, 1, 1, 0 };
matrix[1] = new int[] { 1, 0, 0, 0, 1 };
matrix[2] = new int[] { 0, 0, 0, 0, 1 };
matrix[3] = new int[] { 0, 0, 1, 1, 0 };
matrix[4] = new int[] { 0, 0, 0, 0, 1 };
matrix[5] = new int[] { 1, 0, 0, 0, 1 };
matrix[6] = new int[] { 0, 1, 1, 1, 0 };
return matrix;
}
private int[][] defineFourMatrix() {
int[][] matrix = new int[7][];
matrix[0] = new int[] { 0, 0, 0, 1, 0 };
matrix[1] = new int[] { 0, 0, 1, 1, 0 };
matrix[2] = new int[] { 0, 1, 0, 1, 0 };
matrix[3] = new int[] { 1, 0, 0, 1, 0 };
matrix[4] = new int[] { 1, 1, 1, 1, 1 };
matrix[5] = new int[] { 0, 0, 0, 1, 0 };
matrix[6] = new int[] { 0, 0, 0, 1, 0 };
return matrix;
}
private int[][] defineFiveMatrix() {
int[][] matrix = new int[7][];
matrix[0] = new int[] { 1, 1, 1, 1, 1 };
matrix[1] = new int[] { 1, 0, 0, 0, 0 };
matrix[2] = new int[] { 1, 0, 0, 0, 0 };
matrix[3] = new int[] { 1, 1, 1, 1, 0 };
matrix[4] = new int[] { 0, 0, 0, 0, 1 };
matrix[5] = new int[] { 1, 0, 0, 0, 1 };
matrix[6] = new int[] { 0, 1, 1, 1, 0 };
return matrix;
}
private int[][] defineSixMatrix() {
int[][] matrix = new int[7][];
matrix[0] = new int[] { 0, 1, 1, 1, 0 };
matrix[1] = new int[] { 1, 0, 0, 0, 1 };
matrix[2] = new int[] { 1, 0, 0, 0, 0 };
matrix[3] = new int[] { 1, 1, 1, 1, 0 };
matrix[4] = new int[] { 1, 0, 0, 0, 1 };
matrix[5] = new int[] { 1, 0, 0, 0, 1 };
matrix[6] = new int[] { 0, 1, 1, 1, 0 };
return matrix;
}
private int[][] defineSevenMatrix() {
int[][] matrix = new int[7][];
matrix[0] = new int[] { 1, 1, 1, 1, 1 };
matrix[1] = new int[] { 0, 0, 0, 0, 1 };
matrix[2] = new int[] { 0, 0, 0, 0, 1 };
matrix[3] = new int[] { 0, 0, 0, 1, 0 };
matrix[4] = new int[] { 0, 0, 1, 0, 0 };
matrix[5] = new int[] { 0, 0, 1, 0, 0 };
matrix[6] = new int[] { 0, 0, 1, 0, 0 };
return matrix;
}
private int[][] defineEightMatrix() {
int[][] matrix = new int[7][];
matrix[0] = new int[] { 0, 1, 1, 1, 0 };
matrix[1] = new int[] { 1, 0, 0, 0, 1 };
matrix[2] = new int[] { 1, 0, 0, 0, 1 };
matrix[3] = new int[] { 0, 1, 1, 1, 0 };
matrix[4] = new int[] { 1, 0, 0, 0, 1 };
matrix[5] = new int[] { 1, 0, 0, 0, 1 };
matrix[6] = new int[] { 0, 1, 1, 1, 0 };
return matrix;
}
private int[][] defineNineMatrix() {
int[][] matrix = new int[7][];
matrix[0] = new int[] { 0, 1, 1, 1, 0 };
matrix[1] = new int[] { 1, 0, 0, 0, 1 };
matrix[2] = new int[] { 1, 0, 0, 0, 1 };
matrix[3] = new int[] { 0, 1, 1, 1, 1 };
matrix[4] = new int[] { 0, 0, 0, 0, 1 };
matrix[5] = new int[] { 1, 0, 0, 0, 1 };
matrix[6] = new int[] { 0, 1, 1, 1, 0 };
return matrix;
}
/**
* <p>
* The <code>setDigit</code> method sets the digit to display and repaints the
* panel.
* </p>
*
* #param digit - A digit from 0 through 9.
*/
public void setDigit(int digit) {
this.digit = digit;
this.repaint();
}
#Override
protected void paintComponent(Graphics g) {
super.paintComponent(g);
g.setColor(dotColor);
for (int row = 0; row < matrices[digit].length; row++) {
for (int column = 0; column < matrices[digit][row].length; column++) {
if (matrices[digit][row][column] != 0) {
int x = margin + column * pixelWidth;
int y = margin + row * pixelWidth;
g.fillOval(x, y, dotWidth, dotWidth);
}
}
}
}
}
}
Is there a better way to create dot matrix digits?
Don't know if 'better' (depends on whether effort or accuracy is the primary consideration) but there is a way to calculate the array based on the Shape of the digit.
Here is the result for a (bold) version of the default Monospaced font on this machine.
import java.awt.*;
import java.awt.event.*;
import java.awt.geom.*;
import java.awt.font.*;
import java.awt.image.BufferedImage;
import javax.swing.*;
import javax.swing.border.EmptyBorder;
public class FontToDotMatrix {
private JComponent ui = null;
Shape[] shapes = new Shape[10];
JComboBox fonts;
PixelArray[] pixelArrays = new PixelArray[10];
FontToDotMatrix() {
initUI();
}
public final void initUI() {
if (ui != null) {
return;
}
ui = new JPanel(new BorderLayout(4, 4));
ui.setBorder(new EmptyBorder(4, 4, 4, 4));
String[] fontFamilies = GraphicsEnvironment.
getLocalGraphicsEnvironment().getAvailableFontFamilyNames();
fonts = new JComboBox(fontFamilies);
ui.add(fonts, BorderLayout.PAGE_START);
JPanel digitPanel = new JPanel(new GridLayout(2, 5, 4, 4));
ui.add(digitPanel);
digitPanel.setBackground(Color.RED);
for (int ii = 0; ii < 10; ii++) {
PixelArray pixelArray = new PixelArray();
pixelArrays[ii] = pixelArray;
digitPanel.add(pixelArray);
}
ActionListener listener = (ActionEvent e) -> {
for (int ii = 0; ii < 10; ii++) {
pixelArrays[ii].updatePixels(getLitPixels("" + ii));
}
};
fonts.addActionListener(listener);
fonts.setSelectedItem("Monospaced");
}
private Shape moveShapeToCenter(Shape shape) {
int w = 50;
int h = 70;
Rectangle2D b = shape.getBounds2D();
double xOff = -b.getX() + ((w - b.getWidth()) / 2d);
double yOff = -b.getY() + ((h - b.getHeight()) / 2d);
AffineTransform move = AffineTransform.getTranslateInstance(xOff, yOff);
return move.createTransformedShape(shape);
}
private boolean[][] getLitPixels(String digit) {
Font font = new Font(fonts.getSelectedItem().toString(), Font.BOLD, 70);
Shape shape = getShapeOfCharacter(font, digit);
Rectangle2D rect = shape.getBounds2D();
double h = rect.getHeight();
double ratio = 70d / h;
AffineTransform scale = AffineTransform.getScaleInstance(ratio, ratio);
shape = moveShapeToCenter(scale.createTransformedShape(shape));
boolean[][] bools = new boolean[5][7];
for (int yy = 0; yy < 7; yy++) {
for (int xx = 0; xx < 5; xx++) {
Point point = new Point((xx * 10) + 5, (yy * 10) + 5);
bools[xx][yy] = shape.contains(point);
}
}
return bools;
}
public JComponent getUI() {
return ui;
}
private Shape getShapeOfCharacter(Font font, String digit) {
BufferedImage bi = new BufferedImage(
1, 1, BufferedImage.TYPE_INT_RGB);
Graphics2D g = bi.createGraphics();
FontRenderContext frc = g.getFontRenderContext();
GlyphVector gv = font.createGlyphVector(frc, digit);
return gv.getOutline();
}
public static void main(String[] args) {
Runnable r = () -> {
try {
UIManager.setLookAndFeel(UIManager.getSystemLookAndFeelClassName());
} catch (Exception useDefault) {
}
FontToDotMatrix o = new FontToDotMatrix();
JFrame f = new JFrame(o.getClass().getSimpleName());
f.setDefaultCloseOperation(JFrame.DISPOSE_ON_CLOSE);
f.setLocationByPlatform(true);
f.setContentPane(o.getUI());
f.pack();
f.setMinimumSize(f.getSize());
f.setVisible(true);
};
SwingUtilities.invokeLater(r);
}
}
class PixelArray extends JPanel {
JLabel[][] labels = new JLabel[5][7];
PixelArray() {
setLayout(new GridLayout(7, 5));
BufferedImage bi = new BufferedImage(10, 10, BufferedImage.TYPE_INT_ARGB);
ImageIcon icon = new ImageIcon(bi);
for (int yy = 0; yy < labels[0].length; yy++) {
for (int xx = 0; xx < labels.length; xx++) {
JLabel l = new JLabel(icon);
labels[xx][yy] = l;
l.setOpaque(true);
add(l);
}
}
}
public void updatePixels(boolean[][] bools) {
for (int xx = 0; xx < labels.length; xx++) {
for (int yy = 0; yy < labels[0].length; yy++) {
JLabel l = labels[xx][yy];
if (bools[xx][yy]) {
l.setBackground(Color.WHITE);
} else {
l.setBackground(Color.BLACK);
}
}
}
}
}
I would like to create a 2d Array with Java, or a Matrix with a int numbers.
I've already did that..but I still don't know how to assign labels to the rows/columns.
I would like to be able to access any number inside the matrix based on the row/columns
This is my java code
Gson gson = new Gson();
int[][] data = {{78, 0, 0, 0, 0}, {0, 54, 0, 0, 0}, {0, 0, 12, 0, 0}, {0, 0, 0, 74, 0}, {0, 0, 0, 0, 11}};
String json = gson.toJson(data);
// Convert JSON string into multidimensional array of int.
int[][] dataHeatMap = gson.fromJson(json, int[][].class);
for (int[] i : dataHeatMap) {
for (int j : i) {
System.out.print(j + " ");
}
System.out.println("");
}
return json;
You can use Enums:
public enum ROW {a, b, c, d, e}
public enum COL {f, g, h, i, j}
data[ROW.a.ordinal()][COL.f.ordinal()] = 3;
Use ENUM types which does represend the special index of your 2dim Array. Give them a field called value/name/... and create them with the index of them in the array. Afterwards you can easy call them with getting their letter-value which does represent the array index.
It´s very readable and ENUM.<VALUE> does not represent an INT value. So this is the way how you can do it.
public enum ROW {
A(0), B(1), C(2), D(3), E(4);
private final int value;
ROW(int value) { this.value = value; }
public int getValue() { return value; }
}
public enum COL {
F(0), G(1), H(2), I(3), J(4);
private final int value;
COL(int value) { this.value = value; }
public int getValue() { return value; }
}
public static void main(String []args){
int[][] matrix = {{78, 0, 0, 0, 0}, {0, 54, 0, 0, 0}, {0, 0, 12, 0, 0}, {0, 0, 0, 74, 0}, {0, 0, 0, 0, 11}};
System.out.println("Value: " + matrix[ROW.A.getValue()][COL.F.getValue()]);
}
I would prefer the way above because you see what directly happens and can assign any value you want. But you just can use ENUM.ordinal(), too.
Then data[ROW.a.ordinal()][...] will return 0 for ROW because it´s listed first. b will return 1,... It just depends on the way they are listed/created on the ENUM.