java stack Underflow [closed] - java

Closed. This question needs debugging details. It is not currently accepting answers.
Edit the question to include desired behavior, a specific problem or error, and the shortest code necessary to reproduce the problem. This will help others answer the question.
Closed 7 years ago.
Improve this question
im work this assignment and keep getting Exception in thread
"main" java.lang.RuntimeException: Stack Underflow at Stack.pop(Postfix.java:74)
at Postfix.eval(Postfix.java:221)at Postfix.main(Postfix.java:112)
dont know why i look at the stack and write it correct , i cant see problem why it pop when (3*4)/5
import java.io.IOException;
class CharStack
{
private final int STACKSIZE= 80;
private int top;
private char[] items;
public CharStack(){
items = new char[STACKSIZE];
top =-1;
}
public boolean empty() {
if(top==-1){
return true;
}
return false;
}
public char pop() {
if(empty()){
throw new RuntimeException("Stack Underflow");
}
return items[top--];
}
public void push(char symb)
{
if(top == STACKSIZE -1) {
throw new RuntimeException("Stack Overflow");
}
items[++top] =symb;
}
public char peek() {
if(empty()){
throw new RuntimeException("Stack Underflow");
}
return items[top];
}
}
class Stack {
private final int STACKSIZE= 80;
private int top;
private double[] items;
public Stack(){
items = new double[STACKSIZE];
top =-1;
}
public void push(double x)
{
if(top == STACKSIZE -1) {
throw new RuntimeException("Stack Overflow");
}
items[++top] =x;
}
public double pop(){
if(empty()){
System.out.print(top);
throw new RuntimeException("Stack Underflow");
}
return items[top--];
}
public double peek() {
if(empty()){
throw new RuntimeException("Stack Underflow");
}
return items[top];
}
boolean empty()
{
if(top==-1){
return true;
}
return false;
}
}
public class Postfix {
public final static int MAXCOLS = 80;
public static void main(String[] args) throws IOException {
String infix, pfix;
System.out.println("Enter a infix String: ");
infix = readString().trim();
System.out.println("The original infix expr is: " + infix);
pfix = postfix(infix);
System.out.println("The Postfix expr is: " + pfix);
System.out.println("The value is : " + eval(pfix));
} // end main
public static boolean isOperand(char x)
{
if(x == '+')
{
return false;
}
else if(x == '-')
{
return false;
}
else if (x == '*')
{
return false;
}
else if (x == '/')
{
return false;
}
else if ( x== '$')
{
return false;
}
return true;
}
public static int operPrecedence(char oper)
{
if(oper == '+'||oper == '-' )
{
return 1;
}
else if (oper == '*' || oper == '/')
{
return 2;
}
else if (oper == '$')
{
return 3;
}
return 0;
}
public static boolean precedence(char top, char symb)
{
if ((top != '('||top != ')')&&symb == '(')
{
return false;
}
if (top == '(' && (symb != '('||symb != ')') )
{
return false;
}
else if((top != '('||top != ')')&&symb ==')' )
{
return true;
}
int opcode1, opcode2;
opcode1 =operPrecedence(top) ;
opcode2 =operPrecedence(symb) ;
if(opcode1>=opcode2){
return true;
}
return false;
}
public static String readString() throws IOException {
char[] charArray = new char[80];
int position = 0;
char c;
while ((c = (char) System.in.read()) != '\n') {
charArray[position++] = c;
}
return String.copyValueOf(charArray, 0, position); // turns a character array into a string, starting between zero and position-1
}// end read string
public static double eval(String infix) {
char c;
int position;
double opnd1, opnd2, value;
Stack opndstk = new Stack();
for (position = 0; position < infix.length(); position++) {
c = infix.charAt(position);
if (Character.isDigit(c)) // operand-convert the character represent of
// the digit into double and push it into the
// stack
{
opndstk.push((double) Character.digit(c, 10));
} else {
// operator
opnd2 = opndstk.pop();
opnd1 = opndstk.pop();
value = oper(c, opnd1, opnd2);
opndstk.push(value);
} // else
} // end for
return opndstk.pop();
}// end eval
public static String postfix(String infix) {
int position, outpos = 0;
char symb;
char[] postr = new char[MAXCOLS];
CharStack opstk = new CharStack();
for (position = 0; position < infix.length(); position++) {
symb = infix.charAt(position);
if (isOperand(symb)) {
postr[outpos++] = symb;
} else {
while (!opstk.empty() && precedence(opstk.peek(), symb)) {
postr[outpos++] = opstk.pop();
} // end while
if (symb != ')') {
opstk.push(symb);
} else {
opstk.pop();
}
} // end else
} // end for
while (!opstk.empty()) {
postr[outpos++] = opstk.pop();
}
return String.copyValueOf(postr, 0, outpos);
}// end pos
public static double oper(char symb, double op1, double op2) {
double value = 0;
switch (symb) {
case '+':
value = op1 + op2;
break;
case '-':
value = op1 - op2;
break;
case '*':
value = op1 * op2;
break;
case '/':
value = op1 / op2;
break;
case '$':
value = Math.pow(op1, op2);
break;
default:
throw new RuntimeException("illegal operator: " + symb);
}// end switch
return value;
}// end oper
}

At least part of the problem you're having is your isOperand method. The characters ( and ) are not operands, however, when they are passed to this method, it would return true. For a quick test, I added the following lines to the end of the method:
else if (x == '(')
{
return true;
}
else if (x == ')')
{
return true;
}
And your example input, (3*4)/5) runs successfully. However, this breaks your postfix output, as it leaves the brackets out of the postfix version and instead prints 34*5/, which I am guessing you don't want.
Then, I looked at your eval method, which is where the problem is coming from, according to the error message I'm receiving:
Exception in thread "main" java.lang.RuntimeException: Stack Underflow
at Stack.pop(Postfix.java:74)
at Postfix.eval(Postfix.java:221)
at Postfix.main(Postfix.java:112)
Note the line Postfix.java:221, which indicates the line that called the method which created the error. If you output your character c right before that line is called, you'll notice that c is the ( character, which means your eval method is recognizing ( as an operator, and is attempting to pop two operands after it, causing your underflow.
All of this is fairly simple to determine with some System.out.println() calls, and looking at your error. I'll leave the actual fixing to you, but at least you've hopefully got a direction to head in now.

Related

Illegal Argument Exception in Java

import java.util.ArrayDeque;
import java.util.Deque;
import java.util.Scanner;
import static java.lang.System.in;
import static java.lang.System.out;
/*
*
*
Use a stack to check parentheses, balanced and nesting
* The parentheses are: (), [] and {}
*
* See:
* - UseAStack
*
*/
public class Ex3CheckParen {
public static void main(String[] args) {
new Ex3CheckParen().program();
}
void program() {
// All should be true
out.println(checkParentheses("()"));
out.println(checkParentheses("(()())"));
out.println(!checkParentheses("(()))")); // Unbalanced
out.println(!checkParentheses("((())")); // Unbalanced
out.println(checkParentheses("({})"));
out.println(!checkParentheses("({)}")); // Bad nesting
out.println(checkParentheses("({} [()] ({}))"));
out.println(!checkParentheses("({} [() ({)})")); // Unbalanced and bad nesting
}
// This is interesting because have to return, but what if no match?!?
boolean checkParentheses(String str) {
Deque<Character> stack = new ArrayDeque<>();
String k = "({[";
String s = ")]}";
for (int i = 0; i < str.length(); i++) {
if (k.contains(String.valueOf(str.charAt(i)))) {
stack.push(str.charAt(i));
} else if (s.contains(String.valueOf(str.charAt(i)))) {
if (matching(stack.peek()) == str.charAt(i)) { //ILLEGAL ARGUMENT EXCEPTION HERE
return true;
}
} else {
return false;
}
}
return false;
}
char matching(char ch) {
//char c = must initialize but to what?!
switch (ch) {
case ')':
return '('; // c = '('
case ']':
return '[';
case '}':
return '{';
default:
// return c;
throw new IllegalArgumentException("No match found");
}
}
}
I'm getting an exception error in the if statement containing matching. Unable to figure out the cause.
Maybe something like this?
public class Ex3CheckParen {
public static void main(String[] args) {
new Ex3CheckParen().program();
}
void program() {
// All should be true
out.println(checkParentheses("()"));
out.println(checkParentheses("(()())"));
out.println(!checkParentheses("(()))")); // Unbalanced
out.println(!checkParentheses("((())")); // Unbalanced
out.println(checkParentheses("({})"));
out.println(!checkParentheses("({)}")); // Bad nesting
out.println(checkParentheses("({} [()] ({}))"));
out.println(!checkParentheses("({} [() ({)})")); // Unbalanced and bad nesting
}
// This is interesting because have to return, but what if no match?!?
boolean checkParentheses(String str) {
Deque<Character> stack = new ArrayDeque<>();
String k = "({[";
String s = ")]}";
for (int i = 0; i < str.length(); i++) {
if (k.contains(String.valueOf(str.charAt(i)))) {
stack.push(str.charAt(i));
} else if (s.contains(String.valueOf(str.charAt(i)))) {
if (matching(stack.peek(), str.charAt(i))) {
return true;
}
} else {
return false;
}
}
return false;
}
boolean matching(char ch1, char ch2) {
if ('(' == ch1 && ch2 == ')' || '[' == ch1 && ch2 == ']' || '{' == ch1 && ch2 == '}') {
return true;
}
return false;
}
}
In my opinion by the way, the method checkParentheses(String str) should look more like this:
boolean checkParentheses(String str) {
Deque<Character> stack = new ArrayDeque<>();
String open = "({[";
String close = ")]}";
int length = 0;
for (int i = 0; i < str.length(); i++) {
char currentChar = str.charAt(i);
if (open.contains(String.valueOf(currentChar))) {
stack.push(currentChar);
length++;
} else if (close.contains(String.valueOf(currentChar))) {
if (!stack.isEmpty() && matching(stack.peek(), currentChar)) {
stack.pop();
length--;
}
else {
return false;
}
} else {
return false;
}
}
if (length == 0)
return true;
return false;
}
But it is totally up to you...

Infix to Postfix conversion with stacks and queues. Trying to convert (A+B into AB+). Not worrying about parentheses right now

The program I have now works for stuff like A+B for all operators. It also works for examples like A+BxC however if you input AxB+C it comes out wrong. I'm just not seeing where I'm going wrong. (I know that "x" isn't the multiplication operator for Java but the asterisk wouldn't show up). Also, we're using a Stack and Queue class that we created.
Why won't A/B+C work?
Thanks in advance.
public class PostfixEval {
public static void main(String[] args) throws IOException {
File file = new File("infile.txt"); // infile contains single expression
Scanner kb = new Scanner(file);
Queue Q1 = new Queue();
Queue Q2 = new Queue();
Stack S1 = new Stack();
while (kb.hasNext()) {
String equation = kb.next();
char ch;
for (int i = 0; i < equation.length(); i++) {
ch = equation.charAt(i);
Q1.add2Rear(ch);
}
while (!Q1.ismtQ()) {
ch = Q1.removeFront();
if (Character.isLetter(ch)) {
Q2.add2Rear(ch);
} else if (isOperator(ch)) {
if (!S1.ismt() && checkPrecedence(ch) <= checkPrecedence(S1.top())) {
Q2.add2Rear(S1.pop());
;
}
S1.push(ch);
}
}
while (!S1.ismt()) {
Q2.add2Rear(S1.pop());
}
}
while (!Q2.ismtQ()) {
System.out.print(Q2.removeFront());
}
kb.close();
}
public static boolean isOperator(char ch) {
boolean retval = false;
if (ch == '+' || ch == '-' || ch == '/' || ch == '*')
retval = true;
return retval;
}
public static int checkPrecedence(char ch) {
switch (ch) {
case '+':
case '-':
return 1;
case '*':
case '/':
return 2;
}
return -1;
}
}
Static Class
public class Stack implements StackInterface {
ArrayList<Character> stack = new ArrayList<Character>();
public void push(char ch) {
stack.add(ch);
}
public char top() {
char myCh;
myCh = stack.get(stack.size() - 1);
return myCh;
}
public char pop() {
char myCh;
myCh = stack.get(stack.size() - 1);
stack.remove(stack.get(stack.size() - 1));
return myCh;
}
public boolean ismt() {
boolean retval = true;
retval = stack.isEmpty();
return retval;
}
}
Queue Class
public class Queue implements QueueInterface {
ArrayList<Character> que = new ArrayList<Character>();
#Override
public void add2Rear(char ch) { // add element to rear of queue
que.add(ch);
}
#Override
public char removeFront() { // returns first element AND removes it
char retval = '1';
retval = que.remove(0);
return retval;
}
#Override
public char front() { // returns first element
char retval = '1';
retval = que.get(0);
return retval;
}
#Override
public boolean ismtQ() { // true: if empty, false: if otherwise
boolean retval = true;
retval = que.isEmpty();
return retval;
}
}
So I'm new here and not sure if I should answer my own question but I figured it out (in terms of the assignment that I was tasked to complete) and maybe someone else needs the answer.
This is the updated code:
if (!S1.ismt()) {
if(checkPrecedence(ch) <= checkPrecedence(S1.top())){
Q2.add2Rear(S1.pop());
}
}
If anyone has any better options, feel free to post!

Having trouble checking to see if a string is balanced or not

package edu.bsu.cs121.mamurphy;
import java.util.Stack;
public class Checker {
char openPara = '(';
char openBracket = '[';
char openCurly = '{';
char openArrow = '<';
char closePara = ')';
char closeBracket = ']';
char closeCurly = '}';
char closeArrow = '>';
public boolean checkString(String stringToCheck) {
Stack<Character> stack = new Stack<Character>();
for (int i = 0; i < stringToCheck.length(); i++) {
char c = stringToCheck.charAt(i);
if (c == openPara || c == openBracket || c == openCurly || c == openArrow) {
stack.push(c);
System.out.println(stack);
;
}
if (c == closePara) {
if (stack.isEmpty()) {
System.out.println("Unbalanced");
break;
} else if (stack.peek() == openPara) {
stack.pop();
} else if (stack.size() > 0) {
System.out.println("Unbalanced");
break;
}
}
if (c == closeBracket) {
if (stack.isEmpty()) {
System.out.println("Unbalanced");
break;
} else if (stack.peek() == openBracket) {
stack.pop();
} else if (stack.size() > 0) {
System.out.println("Unbalanced");
break;
}
}
if (c == closeCurly) {
if (stack.isEmpty()) {
System.out.println("Unbalanced");
break;
} else if (stack.peek() == openCurly) {
stack.pop();
} else if (stack.size() > 0) {
System.out.println("Unbalanced");
break;
}
}
if (c == closeArrow) {
if (stack.isEmpty()) {
System.out.println("Unbalanced");
break;
} else if (stack.peek() == openArrow) {
stack.pop();
} else if (stack.size() > 0) {
System.out.println("Unbalanced");
break;
}
}
}
return false;
}
}
I am currently trying to create a program where I check to see if a string is balanced or not. A string is balanced if and only if each opening character: (, {, [, and < have a matching closing character: ), }, ], and > respectively.
What happens is when checking through the string, if an opening character is found, it is pushed into a stack, and it checks to see if there is the appropriate closing character.
If there is a closing character before the opening character, then that automatically means that the string is unbalanced. Also, the string is automatically unbalanced if after going to the next character there is something still inside of the stack.
I tried to use
else if (stack.size() > 0) {
System.out.println("Unbalanced");
break;
}
as a way of seeing if the stack still had anything in it, but it still isn't working for me. Any advice on what to do?
For example, if the string input were ()<>{() then the program should run through like normal until it gets to the single { and then the code should realize that the string is unbalanced and output Unbalanced.
For whatever reason, my code does not do this.
The following logic is flawed (emphasis mine):
For example, if the string input were ()<>{() then the program should run through like normal until it gets to the single { and then the code should realize that the string is unbalanced and output Unbalanced.
In fact, the code can't conclude that the string is unbalanced until it has scanned the entire string and established that the { has no matching }. For all it knows, the full input could be ()<>{()} and be balanced.
To achieve this, you need to add a check that ensures that the stack is empty after the entire string has been processes. In your example, it would still contain the {, indicating that the input is not balanced.
I took a shot at answering this. My solutions returns true if the string is balanced and enforces opening/closing order (ie ({)} returns false). I started with your code and tried to slim it down.
import java.util.HashMap;
import java.util.Map;
import java.util.Stack;
public class mamurphy {
private static final char openPara = '(';
private static final char openBracket = '[';
private static final char openCurly = '{';
private static final char openArrow = '<';
private static final char closePara = ')';
private static final char closeBracket = ']';
private static final char closeCurly = '}';
private static final char closeArrow = '>';
public static void main(String... args) {
System.out.println(checkString("{}[]()90<>"));//true
System.out.println(checkString("(((((())))"));//false
System.out.println(checkString("((())))"));//false
System.out.println(checkString(">"));//false
System.out.println(checkString("["));//false
System.out.println(checkString("{[(<>)]}"));//true
System.out.println(checkString("{[(<>)}]"));//false
System.out.println(checkString("( a(b) (c) (d(e(f)g)h) I (j<k>l)m)"));//true
}
public static boolean checkString(String stringToCheck) {
final Map<Character, Character> closeToOpenMap = new HashMap<>();
closeToOpenMap.put(closePara, openPara);
closeToOpenMap.put(closeBracket, openBracket);
closeToOpenMap.put(closeCurly, openCurly);
closeToOpenMap.put(closeArrow, openArrow);
Stack<Character> stack = new Stack<>();
final char[] stringAsChars = stringToCheck.toCharArray();
for (int i = 0; i < stringAsChars.length; i++) {
final char current = stringAsChars[i];
if (closeToOpenMap.values().contains(current)) {
stack.push(current); //found an opening char, push it!
} else if (closeToOpenMap.containsKey(current)) {
if (stack.isEmpty() || closeToOpenMap.get(current) != stack.pop()) {
return false;//found closing char without correct opening char on top of stack
}
}
}
if (!stack.isEmpty()) {
return false;//still have opening chars after consuming whole string
}
return true;
}
}
Here's an alternate approach:
private static final char[] openParens = "[({<".toCharArray();
private static final char[] closeParens = "])}>".toCharArray();
public static boolean isBalanced(String expression){
Deque<Character> stack = new ArrayDeque<>();
for (char c : expression.toCharArray()){
for (int i = 0; i < openParens.length; i++){
if (openParens[i] == c){
// This is an open - put it in the stack
stack.push(c);
break;
}
if (closeParens[i] == c){
// This is a close - check the open is at the top of the stack
if (stack.poll() != openParens[i]){
return false;
}
break;
}
}
}
return stack.isEmpty();
}
It simplifies the logic to have two corresponding arrays of open and close symbols. You could also do this with even and odd positions in one array - ie. "{}<>", for example:
private static final char[] symbols = "[](){}<>".toCharArray();
public static boolean isBalanced(String expression){
Deque<Character> stack = new ArrayDeque<>();
for (char c : expression.toCharArray()){
for (int i = 0; i < symbols.length; i += 2){
if (symbols[i] == c){
// This is an open - put it in the stack
stack.push(c);
break;
}
if (symbols[i + 1] == c){
// This is a close - check the open is at the top of the stack
if (stack.poll() != symbols[i]){
return false;
}
break;
}
}
}
return stack.isEmpty();
}
Note that poll returns null if the stack is empty, so will correctly fail the equality comparison if we run out of stack.
For example, if the string input were ()<>{() then the program should run through like normal until it gets to the single { and then the code should realize that the string is unbalanced and output Unbalanced.
It is not clear by your example whether the boundaries can be nested like ([{}]). If they can, that logic will not work, as the whole string has to be consumed to be sure any missing closing-chars aren't at the end, and so, the string cannot be reliably deemed unbalanced at the point you indicate.
Here is my take on your problem:
BalanceChecker class:
package so_q33378870;
import java.util.Stack;
public class BalanceChecker {
private final char[] opChars = "([{<".toCharArray();
private final char[] edChars = ")]}>".toCharArray();
//<editor-fold defaultstate="collapsed" desc="support functions">
public boolean isOPChar(char c) {
for (char checkChar : opChars) {
if (c == checkChar) {
return true;
}
}
return false;
}
public boolean isEDChar(char c) {
for (char checkChar : edChars) {
if (c == checkChar) {
return true;
}
}
return false;
}
//NOTE: Unused.
// public boolean isBoundaryChar(char c) {
// boolean result;
// if (result = isOPChar(c) == false) {
// return isEDChar(c);
// } else {
// return result;
// }
// }
public char getOpCharFor(char c) {
for (int i = 0; i < edChars.length; i++) {
if (c == edChars[i]) {
return opChars[i];
}
}
throw new IllegalArgumentException("The character (" + c + ") received is not recognized as a closing boundary character.");
}
//</editor-fold>
public boolean isBalanced(char[] charsToCheck) {
Stack<Character> checkStack = new Stack<>();
for (int i = 0; i < charsToCheck.length; i++) {
if (isOPChar(charsToCheck[i])) {
//beginning char found. Add to top of stack.
checkStack.push(charsToCheck[i]);
} else if (isEDChar(charsToCheck[i])) {
if (checkStack.isEmpty()) {
//ending char found without beginning chars on the stack. UNBALANCED.
return false;
} else if (getOpCharFor(charsToCheck[i]) == checkStack.peek()) {
//ending char found matches last beginning char on the stack. Pop and continue.
checkStack.pop();
} else {
//ending char found, but doesn't match last beginning char on the stack. UNBALANCED.
return false;
}
}
}
//the string is balanced if and only if the stack is empty at the end.
return checkStack.empty();
}
public boolean isBalanced(String stringToCheck) {
return isBalanced(stringToCheck.toCharArray());
}
}
Main class (used for testing):
package so_q33378870;
public class main {
private static final String[] tests = {
//Single - Balanced.
"()",
//Single - Unbalanced by missing end.
"(_",
//Multiple - Balanced.
"()[]{}<>",
//Multiple - Unbalanced by missing beginning.
"()[]_}<>",
//Nested - Balanced.
"([{<>}])",
//Nested - Unbalanced by missing end.
"([{<>}_)",
//Endurance test - Balanced.
"the_beginning (abcd) divider (a[bc]d) divider (a[b{c}d]e) divider (a[b{c<d>e}f]g) the_end"
};
/**
* #param args the command line arguments
*/
public static void main(String[] args) {
BalanceChecker checker = new BalanceChecker();
for (String s : tests) {
System.out.println("\"" + s + "\" is " + ((checker.isBalanced(s)) ? "BALANCED!" : "UNBALANCED!"));
}
}
}

What are the cases to be considered while parsing a mathematical expression(brackets)? [duplicate]

For example if the parenthesis/brackets is matching in the following:
({})
(()){}()
()
and so on but if the parenthesis/brackets is not matching it should return false, eg:
{}
({}(
){})
(()
and so on. Can you please check this code?
public static boolean isParenthesisMatch(String str) {
Stack<Character> stack = new Stack<Character>();
char c;
for(int i=0; i < str.length(); i++) {
c = str.charAt(i);
if(c == '{')
return false;
if(c == '(')
stack.push(c);
if(c == '{') {
stack.push(c);
if(c == '}')
if(stack.empty())
return false;
else if(stack.peek() == '{')
stack.pop();
}
else if(c == ')')
if(stack.empty())
return false;
else if(stack.peek() == '(')
stack.pop();
else
return false;
}
return stack.empty();
}
public static void main(String[] args) {
String str = "({})";
System.out.println(Weekly12.parenthesisOtherMatching(str));
}
Your code has some confusion in its handling of the '{' and '}' characters. It should be entirely parallel to how you handle '(' and ')'.
This code, modified slightly from yours, seems to work properly:
public static boolean isParenthesisMatch(String str) {
if (str.charAt(0) == '{')
return false;
Stack<Character> stack = new Stack<Character>();
char c;
for(int i=0; i < str.length(); i++) {
c = str.charAt(i);
if(c == '(')
stack.push(c);
else if(c == '{')
stack.push(c);
else if(c == ')')
if(stack.empty())
return false;
else if(stack.peek() == '(')
stack.pop();
else
return false;
else if(c == '}')
if(stack.empty())
return false;
else if(stack.peek() == '{')
stack.pop();
else
return false;
}
return stack.empty();
}
This code is easier to understand:
public static boolean CheckParentesis(String str)
{
if (str.isEmpty())
return true;
Stack<Character> stack = new Stack<Character>();
for (int i = 0; i < str.length(); i++)
{
char current = str.charAt(i);
if (current == '{' || current == '(' || current == '[')
{
stack.push(current);
}
if (current == '}' || current == ')' || current == ']')
{
if (stack.isEmpty())
return false;
char last = stack.peek();
if (current == '}' && last == '{' || current == ')' && last == '(' || current == ']' && last == '[')
stack.pop();
else
return false;
}
}
return stack.isEmpty();
}
public static boolean isValidExpression(String expression) {
Map<Character, Character> openClosePair = new HashMap<Character, Character>();
openClosePair.put(')', '(');
openClosePair.put('}', '{');
openClosePair.put(']', '[');
Stack<Character> stack = new Stack<Character>();
for(char ch : expression.toCharArray()) {
if(openClosePair.containsKey(ch)) {
if(stack.pop() != openClosePair.get(ch)) {
return false;
}
} else if(openClosePair.values().contains(ch)) {
stack.push(ch);
}
}
return stack.isEmpty();
}
The algorithm:
scan the string,pushing to a stack for every '(' found in the string
if char ')' scanned, pop one '(' from the stack
Now, parentheses are balanced for two conditions:
'(' can be popped from the stack for every ')' found in the string, and
stack is empty at the end (when the entire string is processed)
Actually, there is no need to check any cases "manually". You can just run the following algorithm:
Iterate over the given sequence. Start with an empty stack.
If the current char is an opening bracket, just push it to the stack.
If it's a closing bracket, check that the stack is not empty and the top element of the step is an appropriate opening bracket(that it is, matches this one). If it is not, report an error. Otherwise, pop the top element from the stack.
In the end, the sequence is correct iff the stack is empty.
Why is it correct? Here is a sketch of a proof: if this algorithm reported that the sequence is corrected, it had found a matching pair of all brackets. Thus, the sequence is indeed correct by definition. If it has reported an error:
If the stack was not empty in the end, the balance of opening and closing brackets is not zero. Thus, it is not a correct sequence.
If the stack was empty when we had to pop an element, the balance is off again.
If there was a wrong element on top of the stack, a pair of "wrong" brackets should match each other. It means that the sequence is not correct.
I have shown that:
If the algorithm has reported that the sequence is correct, it is correct.
If the algorithm has reported that the sequence is not correct, it is incorrect(note that I do not use the fact that there are no other cases except those that are mentioned in your question).
This two points imply that this algorithm works for all possible inputs.
public static boolean isBalanced(String s) {
Map<Character, Character> openClosePair = new HashMap<Character, Character>();
openClosePair.put('(', ')');
openClosePair.put('{', '}');
openClosePair.put('[', ']');
Stack<Character> stack = new Stack<Character>();
for (int i = 0; i < s.length(); i++) {
if (openClosePair.containsKey(s.charAt(i))) {
stack.push(s.charAt(i));
} else if ( openClosePair.containsValue(s.charAt(i))) {
if (stack.isEmpty())
return false;
if (openClosePair.get(stack.pop()) != s.charAt(i))
return false;
}
// ignore all other characters
}
return stack.isEmpty();
}
Ganesan's answer above is not correct and StackOverflow is not letting me comment or Edit his post. So below is the correct answer. Ganesan has an incorrect facing "[" and is missing the stack isEmpty() check.
The below code will return true if the braces are properly matching.
public static boolean isValidExpression(String expression) {
Map<Character, Character> openClosePair = new HashMap<Character, Character>();
openClosePair.put(')', '(');
openClosePair.put('}', '{');
openClosePair.put(']', '[');
Stack<Character> stack = new Stack<Character>();
for(char ch : expression.toCharArray()) {
if(openClosePair.containsKey(ch)) {
if(stack.isEmpty() || stack.pop() != openClosePair.get(ch)) {
return false;
}
} else if(openClosePair.values().contains(ch)) {
stack.push(ch);
}
}
return stack.isEmpty();
}
You're doing some extra checks that aren't needed. Doesn't make any diff to functionality, but a cleaner way to write your code would be:
public static boolean isParenthesisMatch(String str) {
Stack<Character> stack = new Stack<Character>();
char c;
for (int i = 0; i < str.length(); i++) {
c = str.charAt(i);
if (c == '(' || c == '{')
stack.push(c);
else if (stack.empty())
return false;
else if (c == ')') {
if (stack.pop() != '(')
return false;
} else if (c == '}') {
if (stack.pop() != '{')
return false;
}
}
return stack.empty();
}
There is no reason to peek at a paranthesis before removing it from the stack. I'd also consider wrapping instruction blocks in parantheses to improve readability.
public boolean isValid(String s) {
Map<Character, Character> map = new HashMap<>();
map.put('(', ')');
map.put('[', ']');
map.put('{', '}');
Stack<Character> stack = new Stack<>();
for(char c : s.toCharArray()){
if(map.containsKey(c)){
stack.push(c);
} else if(!stack.empty() && map.get(stack.peek())==c){
stack.pop();
} else {
return false;
}
}
return stack.empty();
}
Algorithm is:
1)Create a stack
2)while(end of input is not reached)
i)if the character read is not a sysmbol to be balanced ,ignore it.
ii)if the character is {,[,( then push it to stack
iii)If it is a },),] then if
a)the stack is empty report an error(catch it) i.e not balanced
b)else pop the stack
iv)if element popped is not corresponding to opening sysmbol,then report error.
3) In the end,if stack is not empty report error else expression is balanced.
In Java code:
public class StackDemo {
public static void main(String[] args) throws Exception {
System.out.println("--Bracket checker--");
CharStackArray stack = new CharStackArray(10);
stack.balanceSymbol("[a+b{c+(e-f[p-q])}]") ;
stack.display();
}
}
class CharStackArray {
private char[] array;
private int top;
private int capacity;
public CharStackArray(int cap) {
capacity = cap;
array = new char[capacity];
top = -1;
}
public void push(char data) {
array[++top] = data;
}
public char pop() {
return array[top--];
}
public void display() {
for (int i = 0; i <= top; i++) {
System.out.print(array[i] + "->");
}
}
public char peek() throws Exception {
return array[top];
}
/*Call this method by passing a string expression*/
public void balanceSymbol(String str) {
try {
char[] arr = str.toCharArray();
for (int i = 0; i < arr.length; i++) {
if (arr[i] == '[' || arr[i] == '{' || arr[i] == '(')
push(arr[i]);
else if (arr[i] == '}' && peek() == '{')
pop();
else if (arr[i] == ']' && peek() == '[')
pop();
else if (arr[i] == ')' && peek() == '(')
pop();
}
if (isEmpty()) {
System.out.println("String is balanced");
} else {
System.out.println("String is not balanced");
}
} catch (Exception e) {
System.out.println("String not balanced");
}
}
public boolean isEmpty() {
return (top == -1);
}
}
Output:
--Bracket checker--
String is balanced
Optimized implementation using Stacks and Switch statement:
public class JavaStack {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
Stack<Character> s = new Stack<Character>();
while (sc.hasNext()) {
String input = sc.next();
for (int i = 0; i < input.length(); i++) {
char c = input.charAt(i);
switch (c) {
case '(':
s.push(c); break;
case '[':
s.push(c); break;
case '{':
s.push(c); break;
case ')':
if (!s.isEmpty() && s.peek().equals('(')) {
s.pop();
} else {
s.push(c);
} break;
case ']':
if (!s.isEmpty() && s.peek().equals('[')) {
s.pop();
} else {
s.push(c);
} break;
case '}':
if (!s.isEmpty() && s.peek().equals('{')) {
s.pop();
} else {
s.push(c);
} break;
default:
s.push('x'); break;
}
}
if (s.empty()) {
System.out.println("true");
} else {
System.out.println("false");
s.clear();
}
}
} }
Cheers !
import java.util.*;
class StackDemo {
public static void main(String[] argh) {
boolean flag = true;
String str = "(()){}()";
int l = str.length();
flag = true;
Stack<String> st = new Stack<String>();
for (int i = 0; i < l; i++) {
String test = str.substring(i, i + 1);
if (test.equals("(")) {
st.push(test);
} else if (test.equals("{")) {
st.push(test);
} else if (test.equals("[")) {
st.push(test);
} else if (test.equals(")")) {
if (st.empty()) {
flag = false;
break;
}
if (st.peek().equals("(")) {
st.pop();
} else {
flag = false;
break;
}
} else if (test.equals("}")) {
if (st.empty()) {
flag = false;
break;
}
if (st.peek().equals("{")) {
st.pop();
} else {
flag = false;
break;
}
} else if (test.equals("]")) {
if (st.empty()) {
flag = false;
break;
}
if (st.peek().equals("[")) {
st.pop();
} else {
flag = false;
break;
}
}
}
if (flag && st.empty())
System.out.println("true");
else
System.out.println("false");
}
}
I have seen answers here and almost all did well. However, I have written my own version that utilizes a Dictionary for managing the bracket pairs and a stack to monitor the order of detected braces. I have also written a blog post for this.
Here is my class
public class FormulaValidator
{
// Question: Check if a string is balanced. Every opening bracket is matched by a closing bracket in a correct position.
// { [ ( } ] )
// Example: "()" is balanced
// Example: "{ ]" is not balanced.
// Examples: "()[]{}" is balanced.
// "{([])}" is balanced
// "{ ( [ ) ] }" is _not_ balanced
// Input: string, containing the bracket symbols only
// Output: true or false
public bool IsBalanced(string input)
{
var brackets = BuildBracketMap();
var openingBraces = new Stack<char>();
var inputCharacters = input.ToCharArray();
foreach (char character in inputCharacters)
{
if (brackets.ContainsKey(character))
{
openingBraces.Push(character);
}
if (brackets.ContainsValue(character))
{
var closingBracket = character;
var openingBracket = brackets.FirstOrDefault(x => x.Value == closingBracket).Key;
if (openingBraces.Peek() == openingBracket)
openingBraces.Pop();
else
return false;
}
}
return openingBraces.Count == 0;
}
private Dictionary<char, char> BuildBracketMap()
{
return new Dictionary<char, char>()
{
{'[', ']'},
{'(', ')'},
{'{', '}'}
};
}
}
Algorithm to use for checking well balanced parenthesis -
Declare a map matchingParenMap and initialize it with closing and opening bracket of each type as the key-value pair respectively.
Declare a set openingParenSet and initialize it with the values of matchingParenMap.
Declare a stack parenStack which will store the opening brackets '{', '(', and '['.
Now traverse the string expression input.
If the current character is an opening bracket ( '{', '(', '[' ) then push it to the
parenStack.
If the current character is a closing bracket ( '}', ')', ']' ) then pop from
parenStack and if the popped character is equal to the matching starting bracket in
matchingParenMap then continue looping else return false.
After complete traversal if no opening brackets are left in parenStack it means it is a well balanced expression.
I have explained the code snippet of the algorithm used on my blog. Check link - http://hetalrachh.home.blog/2019/12/25/stack-data-structure/
Problem Statement:
Check for balanced parentheses in an expression Or Match for Open Closing Brackets
If you appeared for coding interview round then you might have encountered this problem before. This is a pretty common question and can be solved by using Stack Data Structure
Solution in C#
public void OpenClosingBracketsMatch()
{
string pattern = "{[(((((}}])";
Dictionary<char, char> matchLookup = new Dictionary<char, char>();
matchLookup['{'] = '}';
matchLookup['('] = ')';
matchLookup['['] = ']';
Stack<char> stck = new Stack<char>();
for (int i = 0; i < pattern.Length; i++)
{
char currentChar = pattern[i];
if (matchLookup.ContainsKey(currentChar))
stck.Push(currentChar);
else if (currentChar == '}' || currentChar == ')' || currentChar == ']')
{
char topCharFromStack = stck.Peek();
if (matchLookup[topCharFromStack] != currentChar)
{
Console.WriteLine("NOT Matched");
return;
}
}
}
Console.WriteLine("Matched");
}
For more information, you may also refer to this link: https://www.geeksforgeeks.org/check-for-balanced-parentheses-in-an-expression/
here is my solution using c++
if brackets are matched then returns true if not then gives false
#include <iostream>
#include <stack>
#include <string.h>
using namespace std;
int matchbracket(string expr){
stack<char> st;
int i;
char x;
for(i=0;i<expr.length();i++){
if(expr[i]=='('||expr[i]=='{'||expr[i]=='[')
st.push(expr[i]);
if(st.empty())
return -1;
switch(expr[i]){
case ')' :
x=expr[i];
st.pop();
if(x=='}'||x==']')
return 0;
break;
case '}' :
x=expr[i];
st.pop();
if(x==')'||x==']')
return 0;
break;
case ']' :
x=expr[i];
st.pop();
if(x==')'||x=='}')
return 1;
break;
}
}
return(st.empty());
}
int main()
{
string expr;
cin>>expr;
if(matchbracket(expr)==1)
cout<<"\nTRUE\n";
else
cout<<"\nFALSE\n";
}
This is my implementation for this problem:
public class BalancedBrackets {
static final Set<Character> startBrackets = Set.of('(', '[', '{');
static final Map<Character, Character> bracketsMap = Map.of('(', ')', '[', ']', '{', '}');
public static void main(String[] args) {
// Here you can add test cases
Arrays.asList(
"(())",
"([])",
"()()(())({})"
).forEach(expTest -> System.out.printf("%s is %s balanced%n", expTest, isBalancedBrackets(expTest) ? "" : "not"));
}
public static boolean isBalancedBrackets(String exp) {
Deque<Character> stack = new ArrayDeque<>();
for (int i = 0; i < exp.length(); i++) {
Character chr = exp.charAt(i);
if (bracketsMap.containsKey(chr)) {
stack.push(chr);
continue;
}
if (stack.isEmpty()) {
return false;
}
Character check = stack.pop();
if (bracketsMap.get(check) != chr) {
return false;
}
}
return (stack.isEmpty());
}
}
https://github.com/CMohamed/ProblemSolving/blob/main/other/balanced-brackets/BalancedBrackets.java
//basic code non strack algorithm just started learning java ignore space and time.
/// {[()]}[][]{}
// {[( -a -> }]) -b -> replace a(]}) -> reverse a( }]))->
//Split string to substring {[()]}, next [], next [], next{}
public class testbrackets {
static String stringfirst;
static String stringsecond;
static int open = 0;
public static void main(String[] args) {
splitstring("(()){}()");
}
static void splitstring(String str){
int len = str.length();
for(int i=0;i<=len-1;i++){
stringfirst="";
stringsecond="";
System.out.println("loop starttttttt");
char a = str.charAt(i);
if(a=='{'||a=='['||a=='(')
{
open = open+1;
continue;
}
if(a=='}'||a==']'||a==')'){
if(open==0){
System.out.println(open+"started with closing brace");
return;
}
String stringfirst=str.substring(i-open, i);
System.out.println("stringfirst"+stringfirst);
String stringsecond=str.substring(i, i+open);
System.out.println("stringsecond"+stringsecond);
replace(stringfirst, stringsecond);
}
i=(i+open)-1;
open=0;
System.out.println(i);
}
}
static void replace(String stringfirst, String stringsecond){
stringfirst = stringfirst.replace('{', '}');
stringfirst = stringfirst.replace('(', ')');
stringfirst = stringfirst.replace('[', ']');
StringBuilder stringfirst1 = new StringBuilder(stringfirst);
stringfirst = stringfirst1.reverse().toString();
System.out.println("stringfirst"+stringfirst);
System.out.println("stringsecond"+stringsecond);
if(stringfirst.equals(stringsecond)){
System.out.println("pass");
}
else{
System.out.println("fail");
System.exit(0);
}
}
}
import java.util.Stack;
class Demo
{
char c;
public boolean checkParan(String word)
{
Stack<Character> sta = new Stack<Character>();
for(int i=0;i<word.length();i++)
{
c=word.charAt(i);
if(c=='(')
{
sta.push(c);
System.out.println("( Pushed into the stack");
}
else if(c=='{')
{
sta.push(c);
System.out.println("( Pushed into the stack");
}
else if(c==')')
{
if(sta.empty())
{
System.out.println("Stack is Empty");
return false;
}
else if(sta.peek()=='(')
{
sta.pop();
System.out.println(" ) is poped from the Stack");
}
else if(sta.peek()=='(' && sta.empty())
{
System.out.println("Stack is Empty");
return false;
}
}
else if(c=='}')
{
if(sta.empty())
{
System.out.println("Stack is Empty");
return false;
}
else if(sta.peek()=='{')
{
sta.pop();
System.out.println(" } is poped from the Stack");
}
}
else if(c=='(')
{
if(sta.empty())
{
System.out.println("Stack is empty only ( parenthesis in Stack ");
}
}
}
// System.out.print("The top element is : "+sta.peek());
return sta.empty();
}
}
public class ParaenthesisChehck {
/**
* #param args the command line arguments
*/
public static void main(String[] args) {
// TODO code application logic here
Demo d1= new Demo();
// d1.checkParan(" ");
// d1.checkParan("{}");
//d1.checkParan("()");
//d1.checkParan("{()}");
// d1.checkParan("{123}");
d1.checkParan("{{{}}");
}
}
import java.util.*;
public class Parenthesis
{
public static void main(String...okok)
{
Scanner sc= new Scanner(System.in);
String str=sc.next();
System.out.println(isValid(str));
}
public static int isValid(String a) {
if(a.length()%2!=0)
{
return 0;
}
else if(a.length()==0)
{
return 1;
}
else
{
char c[]=a.toCharArray();
Stack<Character> stk = new Stack<Character>();
for(int i=0;i<c.length;i++)
{
if(c[i]=='(' || c[i]=='[' || c[i]=='{')
{
stk.push(c[i]);
}
else
{
if(stk.isEmpty())
{
return 0;
//break;
}
else
{
char cc=c[i];
if(cc==')' && stk.peek()=='(' )
{
stk.pop();
}
else if(cc==']' && stk.peek()=='[' )
{
stk.pop();
}
else if(cc=='}' && stk.peek()=='{' )
{
stk.pop();
}
}
}
}
if(stk.isEmpty())
{
return 1;
}else
{
return 0;
}
}
}
}
I tried this using javascript below is the result.
function bracesChecker(str) {
if(!str) {
return true;
}
var openingBraces = ['{', '[', '('];
var closingBraces = ['}', ']', ')'];
var stack = [];
var openIndex;
var closeIndex;
//check for opening Braces in the val
for (var i = 0, len = str.length; i < len; i++) {
openIndex = openingBraces.indexOf(str[i]);
closeIndex = closingBraces.indexOf(str[i]);
if(openIndex !== -1) {
stack.push(str[i]);
}
if(closeIndex !== -1) {
if(openingBraces[closeIndex] === stack[stack.length-1]) {
stack.pop();
} else {
return false;
}
}
}
if(stack.length === 0) {
return true;
} else {
return false;
}
}
var testStrings = [
'',
'test',
'{{[][]()()}()}[]()',
'{test{[test]}}',
'{test{[test]}',
'{test{(yo)[test]}}',
'test{[test]}}',
'te()s[]t{[test]}',
'te()s[]t{[test'
];
testStrings.forEach(val => console.log(`${val} => ${bracesChecker(val)}`));
import java.util.*;
public class MatchBrackets {
public static void main(String[] argh) {
String input = "[]{[]()}";
System.out.println (input);
char [] openChars = {'[','{','('};
char [] closeChars = {']','}',')'};
Stack<Character> stack = new Stack<Character>();
for (int i = 0; i < input.length(); i++) {
String x = "" +input.charAt(i);
if (String.valueOf(openChars).indexOf(x) != -1)
{
stack.push(input.charAt(i));
}
else
{
Character lastOpener = stack.peek();
int idx1 = String.valueOf(openChars).indexOf(lastOpener.toString());
int idx2 = String.valueOf(closeChars).indexOf(x);
if (idx1 != idx2)
{
System.out.println("false");
return;
}
else
{
stack.pop();
}
}
}
if (stack.size() == 0)
System.out.println("true");
else
System.out.println("false");
}
}
If you want to have a look at my code. Just for reference
public class Default {
public static void main(String[] args) throws IOException {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
int numOfString = Integer.parseInt(br.readLine());
String s;
String stringBalanced = "YES";
Stack<Character> exprStack = new Stack<Character>();
while ((s = br.readLine()) != null) {
stringBalanced = "YES";
int length = s.length() - 1;
for (int i = 0; i <= length; i++) {
char tmp = s.charAt(i);
if(tmp=='[' || tmp=='{' || tmp=='('){
exprStack.push(tmp);
}else if(tmp==']' || tmp=='}' || tmp==')'){
if(!exprStack.isEmpty()){
char peekElement = exprStack.peek();
exprStack.pop();
if(tmp==']' && peekElement!='['){
stringBalanced="NO";
}else if(tmp=='}' && peekElement!='{'){
stringBalanced="NO";
}else if(tmp==')' && peekElement!='('){
stringBalanced="NO";
}
}else{
stringBalanced="NO";
break;
}
}
}
if(!exprStack.isEmpty()){
stringBalanced = "NO";
}
exprStack.clear();
System.out.println(stringBalanced);
}
}
}
public static bool IsBalanced(string input)
{
Dictionary<char, char> bracketPairs = new Dictionary<char, char>() {
{ '(', ')' },
{ '{', '}' },
{ '[', ']' },
{ '<', '>' }
};
Stack<char> brackets = new Stack<char>();
try
{
// Iterate through each character in the input string
foreach (char c in input)
{
// check if the character is one of the 'opening' brackets
if (bracketPairs.Keys.Contains(c))
{
// if yes, push to stack
brackets.Push(c);
}
else
// check if the character is one of the 'closing' brackets
if (bracketPairs.Values.Contains(c))
{
// check if the closing bracket matches the 'latest' 'opening' bracket
if (c == bracketPairs[brackets.First()])
{
brackets.Pop();
}
else
// if not, its an unbalanced string
return false;
}
else
// continue looking
continue;
}
}
catch
{
// an exception will be caught in case a closing bracket is found,
// before any opening bracket.
// that implies, the string is not balanced. Return false
return false;
}
// Ensure all brackets are closed
return brackets.Count() == 0 ? true : false;
}
public String checkString(String value) {
Stack<Character> stack = new Stack<>();
char topStackChar = 0;
for (int i = 0; i < value.length(); i++) {
if (!stack.isEmpty()) {
topStackChar = stack.peek();
}
stack.push(value.charAt(i));
if (!stack.isEmpty() && stack.size() > 1) {
if ((topStackChar == '[' && stack.peek() == ']') ||
(topStackChar == '{' && stack.peek() == '}') ||
(topStackChar == '(' && stack.peek() == ')')) {
stack.pop();
stack.pop();
}
}
}
return stack.isEmpty() ? "YES" : "NO";
}
Here's a solution in Python.
#!/usr/bin/env python
def brackets_match(brackets):
stack = []
for char in brackets:
if char == "{" or char == "(" or char == "[":
stack.append(char)
if char == "}":
if stack[-1] == "{":
stack.pop()
else:
return False
elif char == "]":
if stack[-1] == "[":
stack.pop()
else:
return False
elif char == ")":
if stack[-1] == "(":
stack.pop()
else:
return False
if len(stack) == 0:
return True
else:
return False
if __name__ == "__main__":
print(brackets_match("This is testing {([])} if brackets have match."))
Was asked to implement this algorithm at live coding interview, here's my refactored solution in C#:
Git Tests
package com.balance.braces;
import java.util.Arrays;
import java.util.Stack;
public class BalanceBraces {
public static void main(String[] args) {
String[] values = { "()]", "[()]" };
String[] rsult = match(values);
Arrays.stream(rsult).forEach(str -> System.out.println(str));
}
static String[] match(String[] values) {
String[] returnString = new String[values.length];
for (int i = 0; i < values.length; i++) {
String value = values[i];
if (value.length() % 2 != 0) {
returnString[i] = "NO";
continue;
} else {
Stack<Character> buffer = new Stack<Character>();
for (char ch : value.toCharArray()) {
if (buffer.isEmpty()) {
buffer.add(ch);
} else {
if (isMatchedBrace(buffer.peek(), ch)) {
buffer.pop();
} else {
buffer.push(ch);
}
}
if (buffer.isEmpty()) {
returnString[i] = "YES";
} else {
returnString[i] = "FALSE";
}
}
}
}
return returnString;
}
static boolean isMatchedBrace(char start, char endmatch) {
if (start == '{')
return endmatch == '}';
if (start == '(')
return endmatch == ')';
if (start == '[')
return endmatch == ']';
return false;
}
}
in java you don't want to compare the string or char by == signs. you would use equals method. equalsIgnoreCase or something of the like. if you use == it must point to the same memory location. In the method below I attempted to use ints to get around this. using ints here from the string index since every opening brace has a closing brace. I wanted to use location match instead of a comparison match. But i think with this you have to be intentional in where you place the characters of the string. Lets also consider that Yes = true and No = false for simplicity. This answer assumes that you passed an array of strings to inspect and required an array of if yes (they matched) or No (they didn't)
import java.util.Stack;
public static void main(String[] args) {
//String[] arrayOfBraces = new String[]{"{[]}","([{}])","{}{()}","{}","}]{}","{[)]()}"};
// Example: "()" is balanced
// Example: "{ ]" is not balanced.
// Examples: "()[]{}" is balanced.
// "{([])}" is balanced
// "{([)]}" is _not_ balanced
String[] arrayOfBraces = new String[]{"{[]}","([{}])","{}{()}","()[]{}","}]{}","{[)]()}","{[)]()}","{([)]}"};
String[] answers = new String[arrayOfBraces.length];
String openers = "([{";
String closers = ")]}";
String stringToInspect = "";
Stack<String> stack = new Stack<String>();
for (int i = 0; i < arrayOfBraces.length; i++) {
stringToInspect = arrayOfBraces[i];
for (int j = 0; j < stringToInspect.length(); j++) {
if(stack.isEmpty()){
if (openers.indexOf(stringToInspect.charAt(j))>=0) {
stack.push(""+stringToInspect.charAt(j));
}
else{
answers[i]= "NO";
j=stringToInspect.length();
}
}
else if(openers.indexOf(stringToInspect.charAt(j))>=0){
stack.push(""+stringToInspect.charAt(j));
}
else{
String comparator = stack.pop();
int compLoc = openers.indexOf(comparator);
int thisLoc = closers.indexOf(stringToInspect.charAt(j));
if (compLoc != thisLoc) {
answers[i]= "NO";
j=stringToInspect.length();
}
else{
if(stack.empty() && (j== stringToInspect.length()-1)){
answers[i]= "YES";
}
}
}
}
}
System.out.println(answers.length);
for (int j = 0; j < answers.length; j++) {
System.out.println(answers[j]);
}
}
Check balanced parenthesis or brackets with stack--
var excp = "{{()}[{a+b+b}][{(c+d){}}][]}";
var stk = [];
function bracket_balance(){
for(var i=0;i<excp.length;i++){
if(excp[i]=='[' || excp[i]=='(' || excp[i]=='{'){
stk.push(excp[i]);
}else if(excp[i]== ']' && stk.pop() != '['){
return false;
}else if(excp[i]== '}' && stk.pop() != '{'){
return false;
}else if(excp[i]== ')' && stk.pop() != '('){
return false;
}
}
return true;
}
console.log(bracket_balance());
//Parenthesis are balance then return true else false

How to do precedence with multiple exponentials, ^, in an arithmetic equation

I am working on a program that solves arithmetic equations. I have encountered a problem that occurs when there are multiple exponential statements in a row the program does not correctly solve them. An example would be: 2^3^2, the correct answer is 512 but the program outputs 64. This is because the program does 2^3 and then 8^2, instead of doing 3^2 and then 2^9. Let me know if you have any ideas on how to modify my current code or have something to add.
import java.text.DecimalFormat;
import java.util.EmptyStackException;
import myUtil.*;
public class PostFixEvaluator extends Asg6
{
public static class SyntaxErrorException extends Exception
{
SyntaxErrorException(String message)
{
super(message);
}
}
private static final String operators = "+-*/^()";
private AStack<Double> operandStack;
private double evaluateOP(char op) throws Exception
{
double rightside = operandStack.pop();
double leftside = operandStack.pop();
double result = 0;
if(op == '+')
{
result = leftside + rightside;
}
else if(op == '-')
{
result = leftside - rightside;
}
else if(op == '*')
{
result = leftside * rightside;
}
else if(op == '/')
{
if(rightside == 0)
{
throw new Exception("Can not divide by 0, the equation is undefined");
}
else
{
result = leftside / rightside;
}
}
else if(op == '^')
{
result = Math.pow(leftside, rightside);
}
return result;
}
private boolean isOperator(char ch)
{
return operators.indexOf(ch) != -1;
}
public double evaluate(String exp) throws Exception
{
operandStack = new AStack<Double>();
String[] tokens = exp.split("\\s+");
try
{
for(String nextToken : tokens)
{
char firstChar = nextToken.charAt(0);
if(Character.isDigit(firstChar))
{
double value = Double.parseDouble(nextToken);
operandStack.push(value);
}
else if (isOperator(firstChar))
{
double result = evaluateOP(firstChar);
operandStack.push(result);
}
else
{
throw new Exception("Invalid character: " + firstChar);
}
}
double answer = operandStack.pop();
if(operandStack.empty())
{
return answer;
}
else
{
throw new Exception("Syntax Error: Stack should be empty");
}
}
catch(EmptyStackException ex)
{
throw new Exception("Syntax Error: The stack is empty");
}
}
}
You're trying to use an LL(1) grammar (which is what a recursive descent parser can parse) to model a right-associative operator (^). A right-associative operator requires left recursion, which doesn't work so easily with LL(1) grammars. You'll want to look at left factoring: http://en.wikipedia.org/wiki/LL_parser#Left_Factoring
I would solve this with operator Priorities as you might want to have them anyway.
For testing i changed the class a bit, so i could test it and its sure not most efficient or readable but you should get
the idea how it works.
import java.text.DecimalFormat;
import java.util.EmptyStackException;
import java.util.*;
public class PostFixEvaluator
{
public static class SyntaxErrorException extends Exception
{
SyntaxErrorException(String message)
{
super(message);
}
}
private static final String operators = "+-*/^()";
private static int[] operatorPriority = {1,1,2,2,3,10,10};
private Stack<Double> operandStack;
private Stack<Character> operatorStack;
private double evaluateOP(char op) throws Exception
{
double rightside = operandStack.pop();
double leftside = operandStack.pop();
double result = 0;
if(op == '+')
{
result = leftside + rightside;
}
else if(op == '-')
{
result = leftside - rightside;
}
else if(op == '*')
{
result = leftside * rightside;
}
else if(op == '/')
{
if(rightside == 0)
{
throw new Exception("Can not divide by 0, the equation is undefined");
}
else
{
result = leftside / rightside;
}
}
else if(op == '^')
{
result = Math.pow(leftside, rightside);
}
return result;
}
private boolean isOperator(char ch)
{
return operators.indexOf(ch) != -1;
}
public double evaluate(String exp) throws Exception
{
operandStack = new Stack<Double>();
operatorStack = new Stack<Character>();
String[] tokens = exp.split("\\s+");
try
{
for(String nextToken : tokens)
{
char firstChar = nextToken.charAt(0);
if(Character.isDigit(firstChar))
{
double value = Double.parseDouble(nextToken);
operandStack.push(value);
}
else if (isOperator(firstChar))
{
// Try to evaluate the operators on the stack
while (!operatorStack.isEmpty())
{
char tmpOperator = operatorStack.pop();
// If Operator has higher Priority than the one before,
// Calculate it first if equal first calculate the second
// operator to get the ^ problem fixed
if (operatorPriority[operators.indexOf(firstChar)] >= operatorPriority[operators.indexOf(tmpOperator)])
{
operatorStack.push(tmpOperator);
// Operand has to be fetched first
break;
}
else
{
double result = evaluateOP(tmpOperator);
operandStack.push(result);
}
}
operatorStack.push(firstChar);
}
else
{
throw new Exception("Invalid character: " + firstChar);
}
}
// Here we need to calculate the operators left on the stack
while (!operatorStack.isEmpty())
{
char tmpOperator = operatorStack.pop();
// Operator Priority has to be descending,
// or the code before is wrong.
double result = evaluateOP(tmpOperator);
operandStack.push(result);
}
double answer = operandStack.pop();
if(operandStack.empty())
{
return answer;
}
else
{
throw new Exception("Syntax Error: Stack should be empty");
}
}
catch(EmptyStackException ex)
{
throw new Exception("Syntax Error: The stack is empty");
}
}
// For testing Only
public static void main(String[] args) throws Exception
{
PostFixEvaluator e = new PostFixEvaluator();
System.out.println(e.evaluate("2 ^ 3 ^ 2"));
}
}

Categories

Resources