Should I synchronize method in my example? - java

I'm not sure if I should synchronize method methodOne() in my example. I think not but I'm not 100% sure. Could you please give me advice what to do?
public class SynchroIssue {
class Test {
private double a = 0;
void methodOne() {
a++;
}
void go() {
new Thread(new Runnable() {
#Override
public void run() {
for (int i = 0; i < Integer.MAX_VALUE; i++) {
methodOne();
System.out.println(Thread.currentThread().getName() + ", a = " + a);
}
}
}).start();
}
}
public static void main(String... args) {
SynchroIssue mainObj = new SynchroIssue();
SynchroIssue.Test object1 = mainObj.new Test();
SynchroIssue.Test object2 = mainObj.new Test();
object1.go();
object2.go();
}
}

Assuming that you are actually going to use instances of the SynchroIssue class concurrently, which you are not doing currently, the answer is yes.
The increment operator is not atomic. It is actually 3 instructions:
Get the current value.
Add 1 to that.
Store new value.
If you are not synchronized, concurrent threads can overlap those steps resulting in strange behavior.
Another option, if you are truly only interested in integers, would be the use of AtomicInteger, which has methods to atomically increment.

object1 and object2 are different objects, each start only one thread, and the variable "a" is private and not static, so "a" are different objects too, and there is no interaction between threads. So there is no need to synchronise methodOne().

In this specific example there's no value to be gained by synchronising the methods because only a single thread ever actually interacts with a given instance.
If you called object1.go() twice you'd have a problem. Using synchronized would not be the best solution to that problem though, you should instead use a java.util.concurrent.atomic.DoubleAccumulator, although AtomicInteger would function just as well given that you start at 0 and only ever increment by 1.
In general, you should be wary of using synchronized to roll your own synchronisation protocols. Prefer instead known thread-safe classes where they're available. java.util.concurrent is a good place to look.

You should, but it wouldn't solve your problem.
If you would synchronize the method, only one thread would be able to increase the variable at a time. But the following System.out.println could still print another value, since by the time you call it, another thread may already have increased a.
The solution for your problem would be, that methodOne would also have to return the variable. Something like this:
synchronized double methodOne() {
return ++a;
}
And the thread should do:
for (int i = 0; i < Integer.MAX_VALUE; i++) {
System.out.println(Thread.currentThread().getName() + ", a = " + methodOne());
}
EDIT: as others already pointed out, you only have to do this if you intend to make the variable static. Otherwise you can leave your code as it is.

I want to add some hints to Brett Okken's answer:
Most of the times, when you have a member variable in your class which is modified by the methods of your class in a concurrent context by more than one thread, you should think about one of the synchronization scopes.
Always go for the smallest available scope of synchronization.
Hope this would be helpful.

Related

Share local variable value between barrier threads in java

I've been working on implementing a custom Cyclic Barrier which adds values passed into the await method and returns the sum to all threads when after notify is called.
The code:
public class Barrier {
private final int parties;
private int partiesArrived = 0;
private volatile int sum = 0;
private volatile int oldSum = 0;
public Barrier(int parties) {
if (parties < 1) throw new IllegalArgumentException("Number of parties has to be 1 or higher.");
this.parties = parties;
}
public int getParties() { return parties; }
public synchronized int waitBarrier(int value) throws InterruptedException {
partiesArrived += 1;
sum += value;
if (partiesArrived != parties) {
wait();
}
else {
oldSum = sum;
sum = 0;
partiesArrived = 0;
notifyAll();
}
return oldSum;
}
public int getNumberWaiting() { return partiesArrived; }
}
This works, but I hear that there is a way to change the values sum and oldSum (or at least oldSum) into local variables of the waitBarrier method. However, after racking my head over it, I don't see a way.
Is it possible and , if yes, how?
However, after racking my head over it, I don't see a way.
Quite so.
Is it possible and , if yes, how?
it is not possible.
For some proof:
Try marking a local var as volatile. It won't work: The compiler doesn't allow it. Why doesn't it? Because volatile is neccessarily a no-op: local vars simply cannot be shared with another thread.
One might think this is 'sharing' a local:
void test() {
int aLocalVar = 10;
Thread t = new Thread(() -> {
System.out.println("Wow, we're sharing it! " + aLocalVar);
});
t.start();
}
But it's some syntax sugar tripping you up there: Actually (and you can confirm this with javap -c -v to show the bytecode that javac makes for this code), a copy of the local var is handed to the block here. This then explains why, in java, the above fails to compile unless the variable you're trying to share is either [A] marked final or [B] could have been so marked without error (this is called 'the variable is effectively final'). Had java allowed you to access non-(effectively) finals like this, and had java used the copy mechanism that is available, that would be incredibly confusing.
Of course, in java, all non-primitives are references. Pointers, in the parlance of some other languages. Thus, you can 'share' (not really, it'll be a copy) a local var and nevertheless get what you want (share state between 2 threads), because whilst you get a copy of the variable, the variable is just a pointer. It's like this: If I have a piece of paper and it is mine, but I can toss it in a photocopier and give you a copy too, we can't, seemingly, share state. Whatever I scratch on my paper won't magically appear on yours; it's not voodoo paper. But, if there is an address to a house on my paper and I copy it and hand you a copy, it feels like we're sharing that: If you walk over to the house and, I dunno, toss a brick through a window, and I walk over later, I can see it.
Many objects in java are immutable (impervious to bricks), and the primitives aren't references. One solution is to use the AtomicX family which are just simplistic wrappers around a primitive or reference, making them mutable:
AtomicInteger v = new AtomicInteger();
Thread t = new Thread(() -> {v.set(10);});
t.start();
t.yield();
System.out.println(t.get());
// prints 10
But no actual sharing of a local happened here. The thread got a -copy- of the reference to a single AtomicInteger instance that lives on the heap, and both threads ended up 'walking over to the house', here.
You can return sum and have the first party clear it:
public synchronized int waitBarrier(int value) throws InterruptedException {
if (partiesArrived == 0) {
sum = 0;
}
partiesArrived++;
sum += value;
if (partiesArrived == parties) {
notifyAll();
} else {
while (partiesArrived < parties) {
wait();
}
}
return sum;
}
Note that the wait condition should always be checked in a loop in case of spurious wakeups. Also, sum doesn't need to be volatile if it's not accessed outside the synchronized block.

Why this Thread code print wrong unpredicted result sometimes? [duplicate]

This question already has answers here:
Java MultiThreading skips loop and gives wrong result [duplicate]
(3 answers)
Closed 1 year ago.
I'm java beginner and it's first time to use thread.
class Counter2 {
private int value = 0;
public void increment() {
value++;
printCounter();
}
public void decrement() {
value--;
printCounter();
}
public void printCounter() {
System.out.println(value);
}
}
class MyThread3 extends Thread {
Counter2 sharedCounter;
public MyThread3(Counter2 c) {
this.sharedCounter = c;
}
public void run() {
int i = 0;
while (i <= 100) {
sharedCounter.increment();
sharedCounter.decrement();
try {
sleep((int) (Math.random() * 2));
} catch (InterruptedException e) {
}
// System.out.println(i);
i++;
}
}
}
public class MyTest {
public static void main(String[] args) {
Thread t1, t2;
Counter2 c = new Counter2();
t1 = new MyThread3(c);
t1.start();
t2 = new MyThread3(c);
t2.start();
}
}
This code has 2 threads and 1 Counter, which is shared between the threads. The threads just repeat plus 1, minus 1 to the counter value. So, if I guess, the result should be 0. Because initial value was 0 and the number of incremented and decremented are the same. But some times the last printing number is not the 0, but -1 or -2 etc. please explain why this is this.
The Answer by Ranwala is correct.
AtomicInteger
An alternative solution I prefer is the use of the Atomic… classes. Specifically here, AtomicInteger. This class is a thread-safe wrapper around an integer.
Change your member field from Counter2 sharedCounter; to AtomicInteger sharedCounter;. Then use the various methods on that class to increment, to decrement, and to interrogate for current value.
You can then discard your Counter2 class entirely.
Executors
Also, you should know that in modern Java, we rarely need to address the Thread class directly. Instead we use the executors framework added to Java 5.
Define your tasks as either a Runnable or Callable. No need to extend from Thread.
See tutorial by Oracle, and search existing posts here on Stack Overflow.
There are two issues here. They are atomicity and visibility aspects of concurrency. Both increment and decrement are compound actions and need to be atomically performed in a multi-threaded environment. Apart from that you should not read a stale value whenever you read the counter. None of these are guaranteed by your current implementation.
Coming back to the solution, one naive way of achieving this is by using synchronized methods which uses a lock on the current instance to achieve the thread-safety. But that comes at a fairly high cost and incurs more lock overhead.
A much better approach would be to use CAS based non-blocking synchronization to achieve the task at hand. Here's how it looks in practice.
class Counter2 {
private LongAdder value = new LongAdder();
public void increment() {
value.increment();;
printCounter();
}
public void decrement() {
value.decrement();;
printCounter();
}
public void printCounter() {
System.out.println(value.intValue());
}
}
Since you are a beginner, I would recommend you to read the great book Java Concurrency in Practice 1st Edition which explains all these basics in a very nice, graspable manner by some of the great authors in our era ! If you have any questions about the contents of the book, you are welcome to post the questions here too. Read it from cover to cover at least twice !
Update
CAS is so called ComparaAndSwap is a lock free synchronization scheme achieved by using low level CPU instructions. Here it reads the value of the counter before the increment/decrement and then at the time it is updated, it checks whether the initial value is still there. If so, it updates the value successfully. Otherwise, chances are that another thread concurrently updating the value of the counter, hence the increment/decrement operation fails and it retries it again.

Using ThreadLocal in tandem with Volatile gives unpredictable results

I was reading through Java Memory model and was playing with volatile. I wanted to check how Volatile will work in tandem with ThreadLocal. As per definition ThreadLocal has its own, independently initialized copy of the variable whereas when you use volatile keyword then JVM guarantees that all writes and subsequent reads are done directly from the memory. Based on the high level definitions i knew what i was trying to do will give unpredictable results. But just out of curiosity wanted to ask if someone can explain in more details as if what is going on in the background. Here is my code for your reference...
public class MyMainClass {
public static void main(String[] args) throws InterruptedException {
ThreadLocal<MyClass> local = new ThreadLocal<>();
local.set(new MyClass());
for(int i=0;i<5; i++){
Thread thread = new Thread(local.get());
thread.start();
}
}
}
public class MyClass implements Runnable {
private volatile boolean flag = false;
public void printNameTillFlagIsSet(){
if(!flag)
System.out.println("Flag is on for : " + Thread.currentThread().getName());
else
System.out.println("Flag is off for : " + Thread.currentThread().getName());
}
#Override
public void run() {
printNameTillFlagIsSet();
this.flag = true;
}
}
In your code you create a ThreadLocal reference as a local variable of your main method. You then store an instance of MyClass in it and then give that same reference of MyClass to 5 threads created in the main method.
The resulting output of the program is unpredictable since the threads are not synchronized against each other. At least one thread will see the flag as false the other four could see the flag as either true or false depending on how the thread execution is scheduled by the OS. It is possible that all 5 threads could see the flag as false, or 1 could see it false and 4 see it true or anything in between.
The use of a ThreadLocal has no impact on this run at all based on the way you are using it.
As most have pointed out you have deeply misunderstood ThreadLocal. This is how I would write it to be more accurate.
public class MyMainClass {
private static final ThreadLocal<MyClass> local = new ThreadLocal<>(){
public MyClass initialValue(){
return new MyClass();
}
}
public static void main(String[] args) throws InterruptedException {
local.set(new MyClass());
for(int i=0;i<5; i++){
Thread thread = new Thread(new Runnable(){
public void run(){
local.get().printNameTillFlagIsSet();
local.get().run();
local.get().printNameTillFlagIsSet();
}
});
thread.start();
}
}
}
So here five different instances of MyClass are created. Each thread will have their own accessible copy of each MyClass. That is Thread created at i = 0 will always have a different instance of MyClass then i = 1,2,3,4 despite how many local.get() are done.
The inner workings are a bit complicated but it can be done similar to
ConcurrentMap<Long,Thread> threadLocalMap =...;
public MyClass get(){
long id = Thread.currentThread().getId();
MyClass value = threadLocalMap.get(id);
if(value == null){
value = initialValue();
threadLocalMap.put(id,value);
}
return value;
}
To further answer your question about the volatile field. It is in essence useless here. Since the field itself is 'thread-local' there will be no ordering/memory issues that can occur.
Just don't divinize the JVM. ThreadLocal is a regular class. Inside it uses a map from current thread ID into an object instance. So that the same ThreadLocal variable could have its own value for each thread. That's all. Your variable exists only in the main thread, so it doesn't make any sence.
The volatile is something about java code optimization, It just stops all possible optimizations which allow avoid redundant memory reads/writes and execution sequence re-orderings. It is important for expecting some particular behaviour in multi-threaded environment.
You have two big problems:
1) As many pointed out, you are not using ThreadLocal properly so you don't actually have any "thread local" variables.
2) Your code is equivalent to:
MyClass someInstance = new Class();
for (...)
... new Thread(someInstance);
so you should expect to see 1 on and 4 off. However your code is badly synchronized, so you get random results. The problem is that although you declare flag as volatile, this is not enough for good synchronization since you do the check on flag in printNameTillFlagSet and then change the flag value just after that method call in run. There is a gap here where many threads can see the flag as true. You should check the flag value and change it within a synchronized block.
You main thread where you have a ThreadLocal object is being passed to all the threads. So the same instance is being passed.
So its as good as
new Thread(new MyClass());
What you could try is have an object being called by different threads with a thread local variable. This will be a proper test for ThreadLocal where each thread will get its own instance of the variable.

Synchronization of non-final field

A warning is showing every time I synchronize on a non-final class field. Here is the code:
public class X
{
private Object o;
public void setO(Object o)
{
this.o = o;
}
public void x()
{
synchronized (o) // synchronization on a non-final field
{
}
}
}
so I changed the coding in the following way:
public class X
{
private final Object o;
public X()
{
o = new Object();
}
public void x()
{
synchronized (o)
{
}
}
}
I am not sure the above code is the proper way to synchronize on a non-final class field. How can I synchronize a non final field?
First of all, I encourage you to really try hard to deal with concurrency issues on a higher level of abstraction, i.e. solving it using classes from java.util.concurrent such as ExecutorServices, Callables, Futures etc.
That being said, there's nothing wrong with synchronizing on a non-final field per se. You just need to keep in mind that if the object reference changes, the same section of code may be run in parallel. I.e., if one thread runs the code in the synchronized block and someone calls setO(...), another thread can run the same synchronized block on the same instance concurrently.
Synchronize on the object which you need exclusive access to (or, better yet, an object dedicated to guarding it).
It's really not a good idea - because your synchronized blocks are no longer really synchronized in a consistent way.
Assuming the synchronized blocks are meant to be ensuring that only one thread accesses some shared data at a time, consider:
Thread 1 enters the synchronized block. Yay - it has exclusive access to the shared data...
Thread 2 calls setO()
Thread 3 (or still 2...) enters the synchronized block. Eek! It think it has exclusive access to the shared data, but thread 1 is still furtling with it...
Why would you want this to happen? Maybe there are some very specialized situations where it makes sense... but you'd have to present me with a specific use case (along with ways of mitigating the sort of scenario I've given above) before I'd be happy with it.
I agree with one of John's comment: You must always use a final lock dummy while accessing a non-final variable to prevent inconsistencies in case of the variable's reference changes. So in any cases and as a first rule of thumb:
Rule#1: If a field is non-final, always use a (private) final lock dummy.
Reason #1: You hold the lock and change the variable's reference by yourself. Another thread waiting outside the synchronized lock will be able to enter the guarded block.
Reason #2: You hold the lock and another thread changes the variable's reference. The result is the same: Another thread can enter the guarded block.
But when using a final lock dummy, there is another problem: You might get wrong data, because your non-final object will only be synchronized with RAM when calling synchronize(object). So, as a second rule of thumb:
Rule#2: When locking a non-final object you always need to do both: Using a final lock dummy and the lock of the non-final object for the sake of RAM synchronisation. (The only alternative will be declaring all fields of the object as volatile!)
These locks are also called "nested locks". Note that you must call them always in the same order, otherwise you will get a dead lock:
public class X {
private final LOCK;
private Object o;
public void setO(Object o){
this.o = o;
}
public void x() {
synchronized (LOCK) {
synchronized(o){
//do something with o...
}
}
}
}
As you can see I write the two locks directly on the same line, because they always belong together. Like this, you could even do 10 nesting locks:
synchronized (LOCK1) {
synchronized (LOCK2) {
synchronized (LOCK3) {
synchronized (LOCK4) {
//entering the locked space
}
}
}
}
Note that this code won't break if you just acquire an inner lock like synchronized (LOCK3) by another threads. But it will break if you call in another thread something like this:
synchronized (LOCK4) {
synchronized (LOCK1) { //dead lock!
synchronized (LOCK3) {
synchronized (LOCK2) {
//will never enter here...
}
}
}
}
There is only one workaround around such nested locks while handling non-final fields:
Rule #2 - Alternative: Declare all fields of the object as volatile. (I won't talk here about the disadvantages of doing this, e.g. preventing any storage in x-level caches even for reads, aso.)
So therefore aioobe is quite right: Just use java.util.concurrent. Or begin to understand everything about synchronisation and do it by yourself with nested locks. ;)
For more details why synchronisation on non-final fields breaks, have a look into my test case: https://stackoverflow.com/a/21460055/2012947
And for more details why you need synchronized at all due to RAM and caches have a look here: https://stackoverflow.com/a/21409975/2012947
I'm not really seeing the correct answer here, that is, It's perfectly alright to do it.
I'm not even sure why it's a warning, there is nothing wrong with it. The JVM makes sure that you get some valid object back (or null) when you read a value, and you can synchronize on any object.
If you plan on actually changing the lock while it's in use (as opposed to e.g. changing it from an init method, before you start using it), you have to make the variable that you plan to change volatile. Then all you need to do is to synchronize on both the old and the new object, and you can safely change the value
public volatile Object lock;
...
synchronized (lock) {
synchronized (newObject) {
lock = newObject;
}
}
There. It's not complicated, writing code with locks (mutexes) is actally quite easy. Writing code without them (lock free code) is what's hard.
EDIT: So this solution (as suggested by Jon Skeet) might have an issue with atomicity of implementation of "synchronized(object){}" while object reference is changing. I asked separately and according to Mr. erickson it is not thread safe - see: Is entering synchronized block atomic?. So take it as example how to NOT do it - with links why ;)
See the code how it would work if synchronised() would be atomic:
public class Main {
static class Config{
char a='0';
char b='0';
public void log(){
synchronized(this){
System.out.println(""+a+","+b);
}
}
}
static Config cfg = new Config();
static class Doer extends Thread {
char id;
Doer(char id) {
this.id = id;
}
public void mySleep(long ms){
try{Thread.sleep(ms);}catch(Exception ex){ex.printStackTrace();}
}
public void run() {
System.out.println("Doer "+id+" beg");
if(id == 'X'){
synchronized (cfg){
cfg.a=id;
mySleep(1000);
// do not forget to put synchronize(cfg) over setting new cfg - otherwise following will happend
// here it would be modifying different cfg (cos Y will change it).
// Another problem would be that new cfg would be in parallel modified by Z cos synchronized is applied on new object
cfg.b=id;
}
}
if(id == 'Y'){
mySleep(333);
synchronized(cfg) // comment this and you will see inconsistency in log - if you keep it I think all is ok
{
cfg = new Config(); // introduce new configuration
// be aware - don't expect here to be synchronized on new cfg!
// Z might already get a lock
}
}
if(id == 'Z'){
mySleep(666);
synchronized (cfg){
cfg.a=id;
mySleep(100);
cfg.b=id;
}
}
System.out.println("Doer "+id+" end");
cfg.log();
}
}
public static void main(String[] args) throws InterruptedException {
Doer X = new Doer('X');
Doer Y = new Doer('Y');
Doer Z = new Doer('Z');
X.start();
Y.start();
Z.start();
}
}
AtomicReference suits for your requirement.
From java documentation about atomic package:
A small toolkit of classes that support lock-free thread-safe programming on single variables. In essence, the classes in this package extend the notion of volatile values, fields, and array elements to those that also provide an atomic conditional update operation of the form:
boolean compareAndSet(expectedValue, updateValue);
Sample code:
String initialReference = "value 1";
AtomicReference<String> someRef =
new AtomicReference<String>(initialReference);
String newReference = "value 2";
boolean exchanged = someRef.compareAndSet(initialReference, newReference);
System.out.println("exchanged: " + exchanged);
In above example, you replace String with your own Object
Related SE question:
When to use AtomicReference in Java?
If o never changes for the lifetime of an instance of X, the second version is better style irrespective of whether synchronization is involved.
Now, whether there's anything wrong with the first version is impossible to answer without knowing what else is going on in that class. I would tend to agree with the compiler that it does look error-prone (I won't repeat what the others have said).
Just adding my two cents: I had this warning when I used component that is instantiated through designer, so it's field cannot really be final, because constructor cannot takes parameters. In other words, I had quasi-final field without the final keyword.
I think that's why it is just warning: you are probably doing something wrong, but it might be right as well.

Is it possible to update an attribut within a thread

Let say that I create an object and run it in a thread, something like this.
public class Main {
public static void main(String[] args) {
SomeClass p = new SomeClass (143);
p.start();
p.updateNumber(144);
}}
Is it possible to update the parameter passed in SomeClass with a methode updateNumber() as fallows:
# Updated
class SomeClass extends Thread {
volatile int number ;
SomeClass (int number ) {
this.number = number ;
}
public void run() {
while(true){
System.out.println(number);
}
}
public void updateNumber(int n){
number =n;
}
}
Result :
144
144
144
144
144
...
Thanks
Yes, but you need to declare number as volatile, or (preferably) use an AtomicLong instead of a long.
Declare number as volatile.
When is volatile needed ?
When multiple threads using the same
variable, each thread will have its
own copy of the local cache for that
variable. So, when it's updating the
value, it is actually updated in the
local cache not in the main variable
memory. The other thread which is
using the same variable doesn't know
anything about the values changed by
the another thread. To avoid this
problem, if you declare a variable as
volatile, then it will not be stored
in the local cache. Whenever thread
are updating the values, it is updated
to the main memory. So, other threads
can access the updated value
One other option not mentioned and which is the option you should use instead of synchronization as mentioned above is the make use of the Concurrency package introduced by Doug Lee in Java 1.5.
Use the Atomic classes, these take care of all you concurrency woes. (well to a point)
Something like this:
private AtomicInteger number = new AtomicInteger(0);
public void updateNumber(int n) {
number.getAndSet(n);
}
public int getNumber() {
return number.get();
}
Java 1.6 AtomicInteger JavaDoc
Java Concurrency in Practice
In my opinion the Java Concurrency in Practice is the best book on threading in Java
SomeClass even it is Runnable, it is just a normal class and objects of it can be accessed by any thread that has reference to it. In your example. you are not calling updateNumber() form anywhere, but if you call it after p.start(), you are acessing it from the thread that actually made the instance. If you are calling updateNumber() in run(), then you are accessing it from the thread you've just started.
The other question is: is it safe in your setup to change it form multiple threads? the answer is no. You have to declare it as volatile (let say), or synchronize if you changing it based on current value. How and what to synchronize depends on what you are actually doing with it.
You can use the keyword volatilewhen all the following criteria are met:
Writes to the variable do not depend on its current value, or you can ensure that only a single thread ever updates the value
The variable does not participate in invariants with other state variables
Locking is not required for any other reason while the variable is being accessed
Otherwise, I'd recommend using some sort of synchronization policy
class SomeClass implements Runnable {
private Integer number;
SomeClass (int number) {
this.number = Integer.valueOf(number);
}
#Override
public void run() {
while(true){
System.out.println(getNumber());
}
}
public void updateNumber(int n){
synchronized(number){
number = Integer.valueOf(n);
}
}
public int getNumber(){
synchronized(number){
return number.intValue();
}
}
}
Yes, you can just call p.updateNumber(...) but you will need to be careful of thread synchronization issues.

Categories

Resources