I have a Object which contains a list of another object which contains a list of another object and so on... suppose I want to get count of nested list elements(lets say last one), what should be best approach rather than using traditional for loop in java as I have done in below example -
public static void main(String[] args) {
Statement statement = new Statement();
statement.getInvAccount().add(new InvestmentAccount());
statement.getInvAccount().get(0).getSecAccountStmt().add(new SecurityStatement());
statement.getInvAccount().get(0).getSecAccountStmt().get(0).getTransactionStatement().add(new TransactionStatement());
statement.getInvAccount().get(0).getSecAccountStmt().get(0).getTransactionStatement().add(new TransactionStatement());
statement.getInvAccount().get(0).getSecAccountStmt().get(0).getTransactionStatement().add(new TransactionStatement());
// method to count the number of TransactionStatement
System.out.println("Size of TransactionStatement is : " + count(statement));
}
private static int count(Statement stmt) {
int countOfTransStmt = 0;
for (InvestmentAccount invAcc : stmt.getInvAccount()) {
if (invAcc != null) {
for (SecurityStatement secStmt : invAcc.getSecAccountStmt()) {
if (secStmt != null) {
countOfTransStmt = countOfTransStmt + secStmt.getTransactionStatement().size();
}
}
}
}
return countOfTransStmt;
}
In Java 7 you're not going to do better than two for loops. I wouldn't bother with anything different.
In Java 8 you can use streams to flatten it out:
private static int count(Statement stmt) {
return stmt.getInvAccount().stream()
.filter(Objects::nonNull)
.flatMap(InvestmentAccount::getSecAccountStmt)
.filter(Objects::nonNull)
.flatMap(SecurityStatement::getTransactionStatement)
.count();
}
I would encourage you to get rid of the null checks. If you're going to ignore nulls, better to just expect them not to be inserted in the first place. It'll get rid of a lot of extra if checks throughout your code, I expect.
I'd also encourage you not to abbreviate your variables and methods. Spell out "statement" and "investment" and the like. The abbreviations are harder to read and the brevity isn't really a win.
Similarly, try to use more descriptive method names. countTransactions is better for the main method. And for the various getters, methods that return lists ought to be plural: "getAccounts" rather than "getAccount". Notice how the getters now match the class names; if you know the class name, you know the getter name. You don't have to guess if one or the other is abbreviated:
private static int countTransactions(Statement statement) {
return statement.getInvestmentAccounts().stream()
.flatMap(InvestmentAccount::getSecurityStatements)
.flatMap(SecurityStatement::getTransactionStatements)
.count();
}
Recursion could work in this case:
General idea below:
private int countTransactions(object t)
{
int sum = 0;
if (t == null) return 0;
for (int i = 0; i < t.getAllSub().count; i++)
{
sum += countTransactions(t.subAt(i));
}
return sum;
}
I am making an implementation of the ArrayList class from scratch, using just Object[] and the standard functions. I'm trying to make a "size" method, which returns an int that is the size of the Object[] array.
public class MyArraryList{
Object[] Objects = new Object[0];
public int sizeOf(Object[] o)
{
int i = 1;
while(i > 0)
{
if()
}
}
This is what I have so far. In the if statement, I essentially want to check if there's an error along the lines of "index out of range of array". I'm not sure what the syntax for this is. Can someone explain how to do this please? thanks!
You can find the length of an array using
objects.length
It would be possible to write a version of ArrayList where the length of the array is always equal to the size of the list. In this case the size method would just be
public int size() {
return objects.length;
}
Such a list would be very slow. Because arrays are fixed-length, you would have to create a new array on every addition or removal for this to work.
ArrayList does not work like this. An ArrayList has 2 fields; an Object[] and an int called size. The point is that the length of the array is often higher than the size of the list, because there are unused slots at the end of the array. If you do it this way the size method is just
public int size() {
return size;
}
The most useful thing you can do is read the source code for ArrayList to see how it works.
I essentially want to check if there's an error along the lines of "index out of range of array"
You can find the length of an array like this:
int length = 0;
try {
while (true) {
Object o = objects[length];
length++;
}
} catch (ArrayIndexOutOfBoundsException e) {
// ignore
}
However you should not use exceptions in such a way. They should be reserved for genuinely exceptional situations.
you could use a try catch with ArrayIndexOutOfBoundsException e, which was made for these kinds of instances.
http://www.tutorialspoint.com/javaexamples/exception_multiple1.htm
I want to return odd numbers of an array yet Eclipse doesn't seem to accept my return array[i]; code. I think it requires returning a whole array since I set an array as a parameter to my method.
As I said before, I need to pass an array and get a specific element of that array in return. Even if I make that array static, how do I return a single element?
Edit : Alright then, here it is:
public class newClass{
public static void main(String[] args)
{
int [] newArray= new int [4];
int [] array = {4,5,6,7};
newArray[0] = array[0]+array[1]+array[2]+array[3];
newArray[1] = array[0]*array[1]*array[2]*array[3];
newArray[2] = findOut(array);
}
public static int findOut (int [] array3)
{
int e1=0;
int e2=0;
for (int i=0; i<array3.length; i++)
{
if (array3[i]%2==0)
{
e1+=array3[i];
array3[i]=e1
return array3[i];
}
else
{
e2+=array3[i];
array3[i]=e2;
return array3[i];
}
}
}
}
I know there are probably more than a few mistakes here but I'm working on it and I'm not only returning odd numbers, I also add them together.
You code should look like this:
public int getElement(int[] arrayOfInts, int index) {
return arrayOfInts[index];
}
Main points here are method return type, it should match with array elements type and if you are working from main() - this method must be static also.
I want to return odd numbers of an array
If i read that correctly, you want something like this?
List<Integer> getOddNumbers(int[] integers) {
List<Integer> oddNumbers = new ArrayList<Integer>();
for (int i : integers)
if (i % 2 != 0)
oddNumbers.add(i);
return oddNumbers;
}
Make sure return type of you method is same what you want to return.
Eg:
`
public int get(int[] r)
{
return r[0];
}
`
Note : return type is int, not int[], so it is able to return int.
In general, prototype can be
public Type get(Type[] array, int index)
{
return array[index];
}
(Edited.) There are two reasons why it doesn't compile: You're missing a semi-colon at the end of this statement:
array3[i]=e1
Also the findOut method doesn't return any value if the array length is 0. Adding a return 0; at the end of the method will make it compile. I've no idea if that will make it do what you want though, as I've no idea what you want it to do.
I need to create a recursive Boolean method named isMemeber. The method should accept two arguments ONLY: an array and a value. The method should return true if the value is found in the array, or false if the value is not found in the array.
I think that the base case will be if the passed array is empty, but I need help with the recursive case:
public static boolean isMember(int[] array, int value)
{
if(array.length==0){
return false;
}else{
return isMember(???);
}
}
Here is how it looks with position variable:
public static boolean isMember(int[] array, int value, int position)
{
if (position > -1)
{
if (array[position] == value)
{
return true;
}
else
{
return isMember(array, value, position - 1);
}
}
return false;
}
If you need to use recursion you can copy the array on each recursion. This is inefficent, but using recursion is inefficient compared with using a loop. e.g. Arrays.indexOf()
public static boolean isMember(int[] array, int value) {
if(array.length == 0) return false;
if(array[0] == value) return true;
int[] array2 = new int[array.length-1];
System.arraycopy(array,1,array2,0,array2.length);
return isMember(array2, value);
}
There is a slight issue with your problem. If you are going to use recursion then each array element needs to have a subsey of elements otherwise whay do you passed to the recursive method? If this is not the casr and the case is as you stated then solving this problem with recursion isnot appropriate. Also you are missing the value comparison.
See the MSDN Array class. This looks like it is c#. Maybe try the Array.Find<T> method.
Update:
For Java, I'd recommend looking at Arrays (Java 2 Platform):
binarySearch
public static int binarySearch(int[]
a,
int key)
Searches the specified array of ints for the specified value using the binary search algorithm. The array must be sorted (as by the sort method above) prior to making this call. If
it is not sorted, the results are
undefined. If the array contains
multiple elements with the specified
value, there is no guarantee which one
will be found.
Parameters:
a - the array to be searched.
key - the value to be searched for.
Returns:
index of the search key, if it is contained in the list; otherwise,> (-(insertion point) - 1).
The insertion point is defined as the point at which the key would be inserted into the list: the index of the first element greater than the key, or list.size(), if all elements
in the list are less than the specified key. Note that this guarantees that the return value will be >= 0 if and only if the key is found. See Also: sort(int[])
If this is homework and they want it recursive, then maybe you should:
1 look for the middle value of the array and check if it matches. If it matches, return true
2 apply the function to the first half of the array. If it returns true, return true
3 apply the function to the second half of the aray. If it returns true, return true
4 return false
No code since it is homework.
EDIT: Is the array ordered?
I was just doing the question, and checking answers for alternative ways. Maybe this might be useful when you have to match names to String arrays.
public class Recursion {
public static void main(String[] args) {
String[] array = {"Tom", "Mary"};
if(isMember(array,"John"))
System.out.print("Found!");
else
System.out.println("Not Found!");
}
public static boolean isMember(String[] array, String name)
{
int i = array.length;
if(array.length == 0)
return false;
if(array[i - 1].equals(name))
return true;
else
{
String[] array2 = new String[array.length - 1];
for(int b = 0; b< array.length -1; b++)
{
array2[b] = array[b];
}
return isMember(array2, name);
}
}
}
I'm pretty new to the idea of recursion and this is actually my first attempt at writing a recursive method.
I tried to implement a recursive function Max that passes an array, along with a variable that holds the array's size in order to print the largest element.
It works, but it just doesn't feel right!
I have also noticed that I seem to use the static modifier much more than my classmates in general...
Can anybody please provide any general tips as well as feedback as to how I can improve my code?
public class RecursiveTry{
static int[] n = new int[] {1,2,4,3,3,32,100};
static int current = 0;
static int maxValue = 0;
static int SIZE = n.length;
public static void main(String[] args){
System.out.println(Max(n, SIZE));
}
public static int Max(int[] n, int SIZE) {
if(current <= SIZE - 1){
if (maxValue <= n[current]) {
maxValue = n[current];
current++;
Max(n, SIZE);
}
else {
current++;
Max(n, SIZE);
}
}
return maxValue;
}
}
Your use of static variables for holding state outside the function will be a source of difficulty.
An example of a recursive implementation of a max() function in pseudocode might be:
function Max(data, size) {
assert(size > 0)
if (size == 1) {
return data[0]
}
maxtail = Max(data[1..size], size-1)
if (data[0] > maxtail) {
return data[0]
} else {
return maxtail
}
}
The key here is the recursive call to Max(), where you pass everything except the first element, and one less than the size. The general idea is this function says "the maximum value in this data is either the first element, or the maximum of the values in the rest of the array, whichever is larger".
This implementation requires no static data outside the function definition.
One of the hallmarks of recursive implementations is a so-called "termination condition" which prevents the recursion from going on forever (or, until you get a stack overflow). In the above case, the test for size == 1 is the termination condition.
Making your function dependent on static variables is not a good idea. Here is possible implementation of recursive Max function:
int Max(int[] array, int currentPos, int maxValue) {
// Ouch!
if (currentPos < 0) {
raise some error
}
// We reached the end of the array, return latest maxValue
if (currentPos >= array.length) {
return maxValue;
}
// Is current value greater then latest maxValue ?
int currentValue = array[currentPos];
if (currentValue > maxValue) {
// currentValue is a new maxValue
return Max(array, currentPos + 1, currentValue);
} else {
// maxValue is still a max value
return Max(array, currentPos + 1, maxValue);
}
}
...
int[] array = new int[] {...};
int currentPos = 0;
int maxValue = array[currentPos] or minimum int value;
maxValue = Max(array, currentPos, maxValue);
A "max" function is the wrong type of thing to write a recursive function for -- and the fact you're using static values for "current" and "maxValue" makes your function not really a recursive function.
Why not do something a little more amenable to a recursive algorithm, like factorial?
"not-homework"?
Anyway. First things first. The
static int[] n = new int[] {1,2,4,3,3,32,100};
static int SIZE = n.length;
have nothing to do with the parameters of Max() with which they share their names. Move these over to main and lose the "static" specifiers. They are used only once, when calling the first instance of Max() from inside main(). Their scope shouldn't extend beyond main().
There is no reason for all invocations of Max() to share a single "current" index. "current" should be local to Max(). But then how would successive recurrences of Max() know what value of "current" to use? (Hint: Max() is already passing other Max()'s lower down the line some data. Add "current" to this data.)
The same thing goes for maxValue, though the situation here is a bit more complex. Not only do you need to pass a current "maxValue" down the line, but when the recursion finishes, you have to pass it back up all the way to the first Max() function, which will return it to main(). You may need to look at some other examples of recursion and spend some time with this one.
Finally, Max() itself is static. Once you've eliminated the need to refer to external data (the static variables) however; it doesn't really matter. It just means that you can call Max() without having to instantiate an object.
As others have observed, there is no need for recursion to implement a Max function, but it can be instructive to use a familiar algorithm to experiment with a new concept. So, here is the simplified code, with an explanation below:
public class RecursiveTry
{
public static void main(String[] args)
{
System.out.println(Max(new int[] {1,2,4,3,3,32,100}, 0, 0));
}
public static int Max(int[] n, int current, int maxValue)
{
if(current < n.Length)
{
if (maxValue <= n[current] || current == 0))
{
return Max(n, current+1, n[current]);
}
return Max(n, current+1, maxValue);
}
return maxValue;
}
}
all of the static state is gone as unnecessary; instead everything is passed on the stack. the internal logic of the Max function is streamlined, and we recurse in two different ways just for fun
Here's a Java version for you.
public class Recursion {
public static void main(String[] args) {
int[] data = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
System.out.println("Max: " + max(0, data));
}
public static int max(int i, int[] arr) {
if(i == arr.length-1) {
return arr[i];
}
int memo = max(i+1, arr);
if(arr[i] > memo) {
return arr[i];
}
return memo;
}
}
The recurrence relation is that the maximum element of an array is either the first element, or the maximum of the rest of the array. The stop condition is reached when you reach the end of the array. Note the use of memoization to reduce the recursive calls (roughly) in half.
You are essentially writing an iterative version but using tail recursion for the looping. Also, by making so many variables static, you are essentially using global variables instead of objects. Here is an attempt at something closer to a typical recursive implementation. Of course, in real life if you were using a language like Java that doesn't optimize tail calls, you would implement a "Max" function using a loop.
public class RecursiveTry{
static int[] n;
public static void main(String[] args){
RecursiveTry t = new RecursiveTry(new int[] {1,2,4,3,3,32,100});
System.out.println(t.Max());
}
RecursiveTry(int[] arg) {
n = arg;
}
public int Max() {
return MaxHelper(0);
}
private int MaxHelper(int index) {
if(index == n.length-1) {
return n[index];
} else {
int maxrest = MaxHelper(index+1);
int current = n[index];
if(current > maxrest)
return current;
else
return maxrest;
}
}
}
In Scheme this can be written very concisely:
(define (max l)
(if (= (length l) 1)
(first l)
(local ([define maxRest (max (rest l))])
(if (> (first l) maxRest)
(first l)
maxRest))))
Granted, this uses linked lists and not arrays, which is why I didn't pass it a size element, but I feel this distills the problem to its essence. This is the pseudocode definition:
define max of a list as:
if the list has one element, return that element
otherwise, the max of the list will be the max between the first element and the max of the rest of the list
A nicer way of getting the max value of an array recursively would be to implement quicksort (which is a nice, recursive sorting algorithm), and then just return the first value.
Here is some Java code for quicksort.
Smallest codesize I could get:
public class RecursiveTry {
public static void main(String[] args) {
int[] x = new int[] {1,2,4,3,3,32,100};
System.out.println(Max(x, 0));
}
public static int Max(int[] arr, int currPos) {
if (arr.length == 0) return -1;
if (currPos == arr.length) return arr[0];
int len = Max (arr, currPos + 1);
if (len < arr[currPos]) return arr[currPos];
return len;
}
}
A few things:
1/ If the array is zero-size, it returns a max of -1 (you could have another marker value, say, -MAX_INT, or throw an exception). I've made the assumption for code clarity here to assume all values are zero or more. Otherwise I would have peppered the code with all sorts of unnecessary stuff (in regards to answering the question).
2/ Most recursions are 'cleaner' in my opinion if the terminating case is no-data rather than last-data, hence I return a value guaranteed to be less than or equal to the max when we've finished the array. Others may differ in their opinion but it wouldn't be the first or last time that they've been wrong :-).
3/ The recursive call just gets the max of the rest of the list and compares it to the current element, returning the maximum of the two.
4/ The 'ideal' solution would have been to pass a modified array on each recursive call so that you're only comparing the first element with the rest of the list, removing the need for currPos. But that would have been inefficient and would have bought down the wrath of SO.
5/ This may not necessarily be the best solution. It may be that by gray matter has been compromised from too much use of LISP with its CAR, CDR and those interminable parentheses.
First, let's take care of the static scope issue ... Your class is defining an object, but never actually instantiating one. Since main is statically scoped, the first thing to do is get an object, then execute it's methods like this:
public class RecursiveTry{
private int[] n = {1,2,4,3,3,32,100};
public static void main(String[] args){
RecursiveTry maxObject = new RecursiveTry();
System.out.println(maxObject.Max(maxObject.n, 0));
}
public int Max(int[] n, int start) {
if(start == n.length - 1) {
return n[start];
} else {
int maxRest = Max(n, start + 1);
if(n[start] > maxRest) {
return n[start];
}
return maxRest;
}
}
}
So now we have a RecursiveTry object named maxObject that does not require the static scope. I'm not sure that finding a maximum is effective using recursion as the number of iterations in the traditional looping method is roughly equivalent, but the amount of stack used is larger using recursion. But for this example, I'd pare it down a lot.
One of the advantages of recursion is that your state doesn't generally need to be persisted during the repeated tests like it does in iteration. Here, I've conceded to the use of a variable to hold the starting point, because it's less CPU intensive that passing a new int[] that contains all the items except for the first one.