how can i use a superclass method in a subclass java - java

public void setName (String n){}
public void setAfm (String a){}
These are the Superclass methods i need to call.
SalariedEmployee (){
name = super.setName(String n);
afm = super.setAfm(String a);
salary = payment();
And thats the constructor in the subclass. How can i call the methods properly. I don't want to use any parameters in SalariedEmployee, i want to set the name and afm with the superclass methods. But my methods are void. So i guess i have to change that right ? Or am I missing something else?
Thanks in advance!

EDIT : You can also use setters. The "super" keyword is mandatory only if you want to call a method from the superclass that you have overridden in the subclass.
You should use constructors to set initial values but using setters is a possible solution too :
class Employee {
String name;
String afm;
public Employee() {
}
public Employee(String name, String afm) {
super();
this.name = name;
this.afm = afm;
}
public void setName(String name) {
this.name = name;
}
public void setAfm(String afm) {
this.afm = afm;
}
}
class SalariedEmployee extends Employee {
//Using constructors
public SalariedEmployee(String name, String afm) {
super(name, afm);
salary = payment();
}
//using setters
public SalariedEmployee() {
setAfm("afm");
setName("name");
salary = payment();
}
}
Also a setter method like 'setName' should be void because you don't expect it to return anything unlike a getter method like 'getName' for example.

There are two cases when you want to call a super method. The first case is that the method was not overriden by the subclass. If that is the case, you can call those methods simply by calling
setName("Dick Aceman");
or
setAtf("Acebook");
It is more descriptive if you call them like this:
this.setName("Dick Aceman");
this.setAtf("Acebook");
The bulletproof way to call them is this:
super.setName("Dick Aceman");
super.setAtf("Acebook");
This last one works even if the methods were overriden, but in general it is considered to be too descriptive, so this kind of method call should be used only when there is no alternative. Note, that since your methods are public, they are inherited by subclasses.
The problems with your try were that:
you tried to assign the return value of the methods to variables, when the methods do not return values
you declared the type at method call, which is invalid
you used the undefined variables of a and n
You should watch a few tutorial videos, you will get the basics then. After you watch such a video or two, you should return to this answer.

Related

Creating a superclass and subclass with constructors - Java

I am new to Java. I have a problem to solve, but I don't quite understand how constructors work. I understand how to create a superclass and a subclass but I don't understand the constuctors within them (or how they actually work - I have done rediculous amounts of research on constructors, but it's just not making much sense).
I am trying to write a program that creates a superclass called Employees. This Employee class has instance variables employeeId (which is an integer) and employeeName (which is a String).
The subclass is called Manager. The Manager subclass has an instance variable called employeeTitle (which is a String). It also has a method with the name of managerDetails(). ManagerDetails() is supposed to display the employeeId, employeeName, and the employeeTitle.
This is what I have so far:
package tryingoutjava;
public class TryingOutJava {
class Employee {
int employeeId;
String employeeName;
void Employee() {
}
}
class Manager extends Employee {
String employeeTitle;
void managerDetails() {
}
}
public static void main(String[] args) {
}
}
I am very confused on how to set up the constructors for the superclass and the subclass, or even what a constructor really looks like. I've seen examples all over the internet, but no one actually highlights the actual part that is the constructor, or how everything is linked visually, which is what helps me learn.
I guess I'm also having issues with understanding how to set up a method that calls on an object. If anyone has the time to help, it would greatly be appreciated. Thanks!
I guess you want something like this. Be noted, that it is a good idea to separate classes one-per-file in this case, as they are separate entities here. It is a good idea to limit data access to entity fields, as such using encapsulation.
Employee.java:
package tryingoutjava;
public class Employee {
// Protected access because we want it in Manager
protected int employeeId;
protected String employeeName;
public Employee(int employeeId, String employeeName) {
this.employeeId = employeeId;
this.employeeName = employeeName;
}
}
Manager.java:
package tryingoutjava;
public class Manager extends Employee {
private String employeeTitle;
public Manager(String employeeTitle, int employeeId, String employeeName) {
// Use super to invoke Employee constructor
super(employeeId, employeeName);
this.employeeTitle = employeeTitle;
}
// Just create a simple string describing manager
#Override
public String toString() {
return "Manager{" +
"employeeTitle='" + employeeTitle +
"employeeId=" + employeeId +
", employeeName='" + employeeName + '\'' +
'}';
}
}
Application.java:
package tryingoutjava;
public class Application {
// Example of construction plus printing of Manager data
public static void main(String[] args) {
Employee davie = new Employee(1, "Dave The Cable Guy");
Manager tom = new Manager("CFO", 2, "Tomas");
System.out.println(tom.toString());
}
}
Constructors (most often than not) just delegate construction of parent through super invocation. While there are other techniques, like Builder pattern, this is the most basic and understandable approach. There are several other ways to do this, but this should get you started, hope it helps!
Purpose of Constructor
constructor is a method like other method but it is called when instantiate (or create a object from your class) for initialize your object for first use or later use. for example a class like Student must created (instantiated) when we give it name and family name for example. Without them, create a Student is not good because maybe we forget to give it proper name and use it incorrectly. constructor forces us to provide minimum things needed for instantiating objects from classes.
Constructor implementation in inheritance
About inheritance, it is different. When you want to create a Student which is a Human (extends Human) you must first create Human inside your Student and set special feature for your Student like ID which is not for Human (Human has name and etc). so when you create a Student with constructor, the super constructor (for Human) is called too.
What do we do in constructor
as I mentioned, we provide default value for our properties which must set them before creating and using object. (for using them properly) every subclass call super class constructor implicitly with super() but if super class doesn't have any default constructor (constructor with no argument) you must explicitly say super(...) at the first lien of subclass constructor (otherwise compile error)
What is the program steps when using constructor (Advanced)
super class static constructor and static variable (read by self if you want to know more about things I say here)
subclass class static constructor and static variable
super class variable and block constructor
super class constructors
sub class variable and block constructor
sub class constructors
I only mentioned 4 & 6.
I try to explain completely. My English is not good. I'm sorry.
If you know how a method works, then you know how a constructor works. The constructor is simply a special method that allows you to execute some code before the object is created.
Person p = new Person("Bob", 25); // Calls constructor Person(String name, int age)
Then in the constructor you can do things like assign initial values to any instance variables.
private String name;
private int age;
public Person(String name, int age) {
this.name = name;
this.age = age;
}
If the class is a subclass you need to call a constructor of the parent class before the object is created unless the parent class has a constructor with no parameter in which case java can call it for you if you don't specify anything. Here Worker extends Person.
private String occupation;
public Worker(String name, int age, String occupation) {
super(name, age) // Calls constructor Person(String name, int age)
this.occupation = occupation;
}
I guess you can achieve what you want in a single file via the code snippet below:
You can copy paste it in your code and it should work.
You can see how the constructor of parent class is being called by the help of super() and also the methods. Here I have used methods like getEmployeeTitle() which should help you get an overview on how to write methods. I have also overridden the toString() method so that you can understand how to override Object class' useful methods like toString().
Note : Although I have created all the classes in one code snippet for the sake of simplicity , but it is highly recommended that you create a separate file for each of these classes.
class Employee {
int employeeId;
String employeeName;
Employee(int employeeId, String employeeName) {
this.employeeId = employeeId;
this.employeeName = employeeName;
}
}
class Manager extends Employee {
private String employeeTitle;
Manager(int employeeId, String employeeName, String employeeTitle) {
super(employeeId, employeeName);
this.employeeTitle = employeeTitle;
}
public String getEmployeeTitle() {
return employeeTitle;
}
#Override
public String toString() {
return ("employeeId: " + employeeId + ", employeeName: " + employeeName + ", employeeTitle" + employeeTitle);
}
}
public class TryingOutJava {
public static void main(String[] args) {
Manager manager = new Manager(007, "John Doe", " Sr. Manager");
System.out.println(manager);
System.out.println(manager.getEmployeeTitle());
}
}

Is it possible to add to a class for example a premade Java class without overriding it? [duplicate]

Is there, in Java, a way to add some fields and methods to an existing class?
What I want is that I have a class imported to my code, and I need to add some fields, derived from the existing fields, and their returning methods.
Is there any way to do this?
You can create a class that extends the one you wish to add functionality to:
public class sub extends Original{
...
}
To access any of the private variables in the superclass, if there aren't getter methods, you can change them from "private" to "protected" and be able to reference them normally.
Hope that helps!
You can extend classes in Java. For Example:
public class A {
private String name;
public A(String name){
this.name = name;
}
public String getName(){
return this.name;
}
public void setName(String name) {
this.name = name;
}
}
public class B extends A {
private String title;
public B(String name, String title){
super(name); //calls the constructor in the parent class to initialize the name
this.title= title;
}
public String getTitle(){
return this.title;
}
public void setTitle(String title) {
this.title= title;
}
}
Now instances of B can access the public fields in A:
B b = new B("Test");
String name = b.getName();
String title = b.getTitle();
For more detailed tutorial take a look at Inheritance (The Java Tutorials > Learning the Java Language > Interfaces and Inheritance).
Edit: If class A has a constructor like:
public A (String name, String name2){
this.name = name;
this.name2 = name2;
}
then in class B you have:
public B(String name, String name2, String title){
super(name, name2); //calls the constructor in the A
this.title= title;
}
The examples only really apply if the class you're extending isn't final. For example, you cannot extend java.lang.String using this method. There are however other ways, such as using byte code injection using CGLIB, ASM or AOP.
Assuming this question is asking about the equivalent of C# extension methods or JavaScript prototypes then technically it is possible as this one thing that Groovy does a lot. Groovy compiles Java and can extend any Java class, even final ones. Groovy has metaClass to add properties and methods (prototypes) such as:
// Define new extension method
String.metaClass.goForIt = { return "hello ${delegate}" }
// Call it on a String
"Paul".goForIt() // returns "hello Paul"
// Create new property
String.metaClass.num = 123
// Use it - clever even on constants
"Paul".num // returns 123
"Paul".num = 999 // sets to 999
"fred".num // returns 123
I could explain how to do the same way as Groovy does, but maybe that would be too much for the poster. If they like, I can research and explain.

Is there any way to access this.toString()'s value when calling another constructor?

For everyone who is talking about the fact that the object is in an "unitialized state", please refer to the answer to this question which shows that an object reference can be passed around, dereferenced, have methods invoked from it, and have fields accessed before a constructor terminates and all fields have been assigned (including final fields).
So here's the use case:
public class Entity {
private final String name;
public Entity() {
this(toString()); //Nope, Chuck Testa
}
public Entity(String name) {
this.name = name;
}
}
The compiler error is:
Cannot refer to an instance method while explicitly invoking a constructor.
Note that toString() has not been overriden and is the default call from Object.
I'm certainly interested in the philosophical/technical reasons behind this, so if anyone can explain that, that would be an awesome bonus. But I'm looking for a way to call toString() from that default constructor as it refers down to the more specific one with more arguments. The actual use case is a bit more complicated and ends up referring all the way down to a constructor with four arguments, but that shouldn't really matter.
I know I could do something like this...
private static final String TO_STRING_CONSTRUCTOR_ARGUMENT = "aflhsdlkfjlkswf";
public Entity() {
this(TO_STRING_CONSTRUCTOR_ARGUMENT);
}
public Entity(String name) {
this.name = name == TO_STRING_CONSTRUCTOR_ARGUMENT ? toString() : name;
}
... but it seems like a pretty inelegant solution.
So, any way to pull it off? Or any recommended best practices to deal with this situation?
I would prefer not to pass this around until the object is created. Instead I would do this:
public class Entity {
private final String name;
public Entity() {
this(null); // or whatever
}
public Entity(String name) {
this.name = name;
}
public String getName() {
return name != null ? name : Objects.hashCode(this);
}
}
If you can live without the final name, you can use an initializer block:
public class Entity {
private String name;
{name = this.toString();}
public Entity() {
}
public Entity(String name) {
this.name = name;
}
}
this is only available after all calls to this() or super() are done. The initializer runs first after the constructors call to super() and is allowed to access this.
As for the reasons why that is a compiler error, please see section 8.8.7 of the JLS. The reasons why this was made a compiler error are not clear, but consider that the constructor chain has to be the first thing executed when new'ing an Object and look at the order of evaluation here:
public Entity() {
this(toString());
}
toString() is evaluated first before the even the super constructor is invoked. In general this leaves open all kinds of possibilities for uninitialized state.
As a personal preference, I would suggest that everything an object needs to have in order to create valid state should be available within its constructor. If you have no way of providing valid state in a default constructor without invoking other methods defined in the object hierarchy, then get rid of the default constructor and put the onus on the users of your class to supply a valid String to your other constructor.
If you are ultimately just trying invoke the other constructor with the value of toString(), then I would suggest the following instead:
public Entity() {
name = toString();
}
which accomplishes the same goal you set out to achieve and properly initializes name.
As explained in the JLS this is not allowed before the instance is initialized.
However, there are ways to handle your scenario in a consistent manner.
As I see your case, you want to signify either a generated value (toString()) or a user provided value, which can be null.
Given this constraints, using TO_STRING_CONSTRUCTOR_ARGUMENT is failing for at least one specific use case, however obscure it may be.
Essentially you will need to replace the String with an Optional similar to what exists in Google Guava and will be included in Java 8, and seen in many other languages.
Having a StringOptional/StringHolder or whatever you choose, similar to this:
public class StringOptional {
private String value;
private boolean set = false;
public StringOptional() {}
public StringOptional(String value) {
this.value = value;
this.set = true;
}
public boolean isSet() { return set; }
public String getValue() { return value; }
}
Then you can call constructors with the knowledge of the inferred path.
public class Entity {
public Entity() {
this(New StringOptional());
}
public Entity(String s) {
this(new StringOptional(s));
}
private Entity(StringOptional optional) {
super(optional);
}
}
And store this for subsquent need:
if (optional.isSet() ? optional.getValue() : toString();
This is how I usually would handle a maybe-null scenario, hope it augments as an answer.
You cannot 'use' an instance that has not been created yet. By calling a second constructor you are postponing the creation, you cannot use it before the call or in the action of calling.
You can use a static method factory in your class Entity, and put the constructor private:
public class Entity {
private String name;
private Entity() {
}
public Entity(String name) {
this.name = name;
}
public static Entity createEntity() {
Entity result = new Entity();
result.name = result.toString();
return result;
}
}

Class and accessor methods Java

I don't understand accessor methods and I'm stuck with creating setAge, getAge and getName.
This is the question:
Add three accessor methods, setAge, getAge and getName. These methods should set and get the values of the corresponding instance variables.
public class Player {
protected int age;
protected String name;
public Player(String namArg) {
namArg = name;
age = 15;
}
}
An accessor method is used to return the value of a private or protected field. It follows a naming scheme prefixing the word "get" to the start of the method name. For example let's add accessor methods for name:
class Player{
protected name
//Accessor for name
public String getName()
{
return this.name;
}
}
you can access the value of protected name through the object such as:
Player ball = new Player()
System.out.println(ball.getName())
A mutator method is used to set a value of a private field. It follows a naming scheme prefixing the word "set" to the start of the method name. For example, let's add mutator fields for name:
//Mutator for name
public void setName(String name)
{
this.name= name;
}
now we can set the players name using:
ball.setName('David');
Your instance variables are age and name. Your setter methods are void and set your passed arguments to the corresponding variable. Your getters are not void and return the appropriate variables.
Try this and come back with questions.
public class Player {
protected int age;
protected String name;
// mutator methods
public void setAge(String a) {
age = a;
}
public void setName(String n) {
name = n;
}
// accessor method
public string getAge() {
return age ;
}
public string getName() {
return name;
}
}
setAbcd methods are mutator methods which you use to set your protected data fields.
getAbcd methods are accessor methods which you use to return values of the data fields, as they are usually private and not available outside the class.
e.g
public void getvariableName() {
return variableName;
}
Answer for: I don't understand accessor methods
here is the thing:
why do we need accessor methods? Encapsulation !!!
Why do we need encapsulation?
1) Imagine you (programmer#1) gonna write those setAge, getAge and getName methods.
I am programmer#2. I most probably cant access age and name directly. So I have yo use your public accessor methods setAge, getAge and getName. This is to save your code and variables from mess. Cuz u cant trust all coders.
2) In setAge method u can provide VALIDATION
random evil programmer: ya I wanna make age equal to 234 so ur program results gonna crush hahaha
u: nah I gonna add validation condition into my setAge method so u can only make age equal from 0 to 90(whatever u want)
This is the most popular reason why we use accessor methods.
Code explanation:
setAge explanation( this is just to get main idea)
public void setAge(int ageInput) {
if ((ageInput > 10) && (ageInput <90))
{age = a;}}
Random evil programmer sends ageInput into your public method.
First of all, it checks if age value is correct. If yes, age instance(object) variable will become ageInput. If no, nothing will happen and your variables wont be messed up.
GetAge: it just returns current age value. Nothing fancy.
let me know if you have more questions ;) Best of luck to you.

How to do method chaining in Java? o.m1().m2().m3().m4()

I've seen in many Java code notation that after a method we call another, here is an example.
Toast.makeText(text).setGravity(Gravity.TOP, 0, 0).setView(layout).show();
As you see after calling makeText on the return we call setGravity and so far
How can I do this with my own classes? Do I have to do anything special?
This pattern is called "Fluent Interfaces" (see Wikipedia)
Just return this; from the methods instead of returning nothing.
So for example
public void makeText(String text) {
this.text = text;
}
would become
public Toast makeText(String text) {
this.text = text;
return this;
}
class PersonMethodChaining {
private String name;
private int age;
// In addition to having the side-effect of setting the attributes in question,
// the setters return "this" (the current Person object) to allow for further chained method calls.
public PersonMethodChaining setName(String name) {
this.name = name;
return this;
}
public PersonMethodChaining setAge(int age) {
this.age = age;
return this;
}
public void introduce() {
System.out.println("Hello, my name is " + name + " and I am " + age + " years old.");
}
// Usage:
public static void main(String[] args) {
PersonMethodChaining person = new PersonMethodChaining();
// Output: Hello, my name is Peter and I am 21 years old.
person.setName("Peter").setAge(21).introduce();
}
}
Without method chaining
class Person {
private String name;
private int age;
// Per normal Java style, the setters return void.
public void setName(String name) {
this.name = name;
}
public void setAge(int age) {
this.age = age;
}
public void introduce() {
System.out.println("Hello, my name is " + name + " and I am " + age + " years old.");
}
// Usage:
public static void main(String[] args) {
Person person = new Person();
// Not using chaining; longer than the chained version above.
// Output: Hello, my name is Peter and I am 21 years old.
person.setName("Peter");
person.setAge(21);
person.introduce();
}
}
Method chaining, also known as named parameter idiom, is a common syntax for invoking multiple method calls in object-oriented programming languages. Each method returns an object, allowing the calls to be chained together in a single statement. Chaining is syntactic sugar which eliminates the need for intermediate variables. A method chain is also known as a train wreck due to the increase in the number of methods that come one after another in the same line that occurs as more methods are chained together even though line breaks are often added between methods.
A similar syntax is method cascading, where after the method call the expression evaluates to the current object, not the return value of the method. Cascading can be implemented using method chaining by having the method return the current object itself (this). Cascading is a key technique in fluent interfaces, and since chaining is widely implemented in object-oriented languages while cascading isn't, this form of "cascading-by-chaining by returning this" is often referred to simply as "chaining". Both chaining and cascading come from the Smalltalk language.
From your example:
Toast.makeText(text).setGravity(Gravity.TOP, 0, 0).setView(layout).show();
Each method in the chain has to return a class or an interface. The next method in the chain has to be a part of the returned class.
We start with Toast. The method makeText, which is defined as a static method in the class Toast, has to return a class or an interface. Here, it returns an instance of the class Gravity.
The method setGravity, which is defined in the class Gravity, returns an instance of the class View,
The method setView, which is defined in the class View, returns an instance of the class JPanel.
This chain could be written out step by step.
Gravity gravity = Toast.makeText(text);
View view = gravity.setGravity(Gravity.TOP, 0, 0);
JPanel panel = view.setView(layout);
panel.show();
Writing the chain as a chain removes all of the intermediate instance variables from the source code.
Search for builder pattern or fluent interface on google to have more details about this.
Return 'this' at the end of your method can do the trick in most cases.
Adding return this; would surely help in chaining for this class but fail for sub-classes.
If you want to have the chaining behaviour inherited to the sub-classes also then change your class signature as below:
Class SuperClass < SubClass extends SuperClass >{}
This way all sub-classes will inherit method chaining.
Example:
public class SuperClass<SubClass extends SuperClass> {
public SubClass testMethod(){
return (SubClass)this;
}
public static void main(String[] args) {
SuperClass<SuperClass> superClass = new SuperClass<SuperClass>();
superClass.testMethod().testMethod().testMethod();
System.out.println(superClass.toString());
}
}
or you can use Diezel that generates all the interfaces you need based on a Regular expression of your fluent API.

Categories

Resources