I am making a CSP solver that calculates all the combinatory solutions of a specific problem like this (briefly put):
// Say we are in a Solver class
public void solve() {
// find solution...
}
// This would be in a Problem class
problem.getSolver().solve();
There is a good chance that the resolution process takes a long time to finish, like more than a couple of minutes. So far, when it has been taking so long I have just stopped the process via console.
But eventually I am going to post my application as a web application in a host that allows Java apps (side-question: I have seen I can do it in Google Cloud and I have been told also about AWS; are they good options?). This means I, or the user, cannot terminate the process anymore if it takes too long.
I want to add the funcionality of having the option of cancelling the resolution process at will.
So I would declare a new method in the Solver class that would terminate the process, which would effectively stop the resolution process:
public void stopResolutionProcess() {
// kill the process, therefore, stop the resolution process
}
I cannot just call problem.getSolver().stopResolutionProcess() after the resolution process has already started, because the thread is already running and until that process ends, that method call will never be executed.
So how could I do this? How could a client signal the service hosted in the cloud to terminate a running process?
Put the long running process in a different thread. You can stop it from the main thread if necessary. See:
How to stop a thread by another thread?
Since you haven't chosen a cloud host yet this question is really difficult to answer. Generally speaking you need a synchronization object. Something like
volatile boolean keepRunning = true;
and your method would do
public void stopResolutionProcess(){
keepRunning = false;
}
then in your solve you have to regularly check for that variable
public void solve(){
while(keepRunning){
// doSomething();
Thread.sleep(500);
}
}
Now i use a variable here but that may not be sufficient. In App Engine your application could run in different instances where static variables are not synchronized. You would need a sync object that is accessible to all your solve threads. In App Engine that would be a datastore object that is also cached in the memcache. But you could use Pub/Sub or other mechanisms to propagate the completion of the task. The specifics are tightly coupled to the environment you'll choose to run this on.
Requests for product recommendations are generally off-topic on Stackoverflow. Choose a product for hosting and if you run into trouble return with a more concrete question.
Related
I have a scenario in which I am running unreliable code in java (the scenario is not unlike this). I am providing the framework classes, and the intent is for the third party to overwrite a base class method called doWork(). However, if the client doWork() enters a funked state (such as an infinite loop), I need to be able to terminate the worker.
Most of the solutions (I've found this example and this example) revolve around a loop check for a volatile boolean:
while (keepRunning) {
//some code
}
or checking the interrupted status:
while (isInterrupted()) {
//some code
}
However, neither of these solutions deal with the the following in the '//some code' section:
for (int i = 0; i < 10; i++) {
i = i - 1;
}
I understand the reasons thread.stop() was depreciated, and obviously, running faulty code isn't desirable, though my situation forces me to run code I can't verify myself. But I find it hard to believe Java doesn't have some mechanism for handling threads which get into an unacceptable state. So, I have two questions:
Is it possible to launch a Thread or Runnable in Java which can be reliably killed? Or does Java require cooperative multithreading to the point where a thread can effectively hose the system?
If not, what steps can be taken to pass live objects such that the code can be run in a Process instead (such as passing active network connections) where I can actually kill it.?
If you really don't want to (or probably cannot due to requirement of passing network connections) spawn new processes, you can try to instrument code of this 'plugin' when you load it's class. I mean change it's bytecode so it will include static calls to some utility method (eg ClientMentalHealthChecker.isInterrupted()). It's actually not that hard to do. Here you can find some tools that might help: https://java-source.net/open-source/bytecode-libraries. It won't be bullet proof because there are other ways of blocking execution. Also keep in mind that clients code can catch InterruptedExceptions.
i just started to learn programming (2 weeks ago), and i am trying to make a bot for a game. In the main class of the bot, there are 3 methods that needs to be returned within 2second, or it will return null. I want to avoid returning null and return what it has calculate during 2sec instead.
public ArrayList<PlaceArmiesMove> getPlaceArmiesMoves(BotState state, Long timeOut){
ArrayList<PlaceArmiesMove> placeArmiesMoves = new ArrayList<PlaceArmiesMove>();
// caculations filling the ArrayList
return placeArmiesMoves;
}
what i want to do is after 2 second, returning placeArmiesMoves, wether the method finished running or not. I have read about guava SimpleTimeLimiter and callWithTimeout() but i am totally lost about how to use it (i read something about multithreading but i just don't understand what this is)
i would be incredibly grateful if someone could help me! thanks
Given a function like getPlaceArmiesMove, there are several techniques you might use to bound its execution time.
Trust the function to keep track of time itself
If the function runs a loop, it can check on every iteration whether the time has expired.
long startTime = System.currentTimeMillis()
for (;;) {
// do some work
long elapsed = System.currentTimeMillis() - startTime;
if (elapsed >= timeOut) {
break;
}
}
This technique is simple, but there is no guarantee it will complete before the timeout; it depends on the function and how granular you can make the work (of course, if it's too granular, you'll be spending more time testing if the timeout has expired than actually doing work).
Run the function in a thread, and ask it to stop
I'm not familiar with Guava, but this seems to be what SimpleTimeLimiter is doing. In Java, it isn't generally possible to forcibly stop a thread, though it is possible to ignore the thread after a timeout (the function will run to completion, but you've already used its partial result, and ignore the complete result that comes in too late). Guava says that it interrupts the thread if it has not returned before the timeout. This works only if your function is testing to see if it has been interrupted, much like the "trust your function" technique.
See this answer for an example on how to test if your thread has been interrupted. Note that some Java methods (like Thread.sleep) may throw InterruptedException if the thread is interrupted.
In the end, sprinkling checks for isInterrupted() all over your function won't be much different than sprinkling manual checks for the timeout. So running in a thread, you still must trust your function, but there may be nicer helpers available for that sort of thing (e.g. Guava).
Run the function in a separate process, and kill it
An example of how to do this is left as an exercise, but if you run your function in a separate process (or a thread in languages that support forcibly stopping threads, e.g. Erlang, Ruby, others), then you can use the operating system facilities to kill the process if it does not complete after a timeout.
Having that process return a partial result will be challenging. It could periodically send "work-in-progress" to the calling process over a pipe, or periodically save work to a file.
Use Java's Timer package , however this will require you to understand concepts such as threads and method overriding. Nevertheless, if this is what you require, the answer is quite similar to this question How to set a timer in java
I need to prevent a certain application function from being run concurrently with itself. The risk is significant because this function is in code submitted to java.util.Timer (to repeat every minute for several hours) and the process that sets up the function completes and goes back to the bash command line. The user might then invoke the same program. Another risk is from the user that has two or more console windows and they mistakenly run the program in both console windows.
I think an operating system-wide semaphore with a Java API might do the trick. Is there such a Java archive available?
I was asked if multiple JVMs are used. I think if multiple consoles are opened then multiple JVMs are implied.
This is my wrapper to use Java's Timer and TimerTask.
public final class TimedExecutorWrapper
{ ... various private members ...
public Timer go()
{
Timer myTimer = new Timer();
myTimer.scheduleAtFixedRate(this.myTask,
this.startTodayAtThisTime,
this.frequencyInSeconds * 1000);
TimerTask myTaskToInvokeCancel = new TaskToInvokeCancel(myTimer);
// use the same Timer to schedule the task that cancels and purges
myTimer.schedule(myTaskToInvokeCancel,
this.stopTodayAtThisTime);
return myTimer;
}
private final class TaskToInvokeCancel extends TimerTask
{
private Timer timer; // to be cancelled and purged
TaskToInvokeCancel(Timer timer)
{
this.timer = timer;
}
public void run()
{
this.timer.cancel(); // discards any scheduled tasks without
// interfering with any running task
this.timer.purge();
}
}
}
You could create a 0 byte file 'methodname.LOCK' in a shared directory when you begin the operation, and delete it when you are done. Creating it with a no recreate flag in Java should solve your problem.
Make sure to delete it in a 'finally' block so you are never left in a state where the file exists and continues to block the process from ever running
just open a serversocket at a specific port. if this succeeds there is no other application, if not an exception is thrown.
The only standard Java feature I've seen that prohibits multiple instances of the same program is the SingleInstanceService in Java WebStart.
http://download.oracle.com/javase/1.5.0/docs/guide/javaws/developersguide/examples.html#SingleInstanceService
It requires you to create a JNLP file for your application, which is a bit cumbersome but may be very useful to you anyway. Note that Java does not allow command line parameters to be passed to your program which may be very inconvenient in this situation. Depends on what your command line says.
If Java WebStart does not work for you, then you must ask the operating system for a resource which is denied for subsequent requests and have it automatically released. The only one of these not platform specific is the TCP/IP socket but these are rare and may be used by another program. Under Linux you may ask for shared memory but I do not have personal experience with this.
In my application which runs user submitted code[1] in separate threads, there might be some cases where the code might take very long to run or it might even have an infinite loop! In that case how do I stop that particular thread?
I'm not in control of the user code, so I cannot check for Thread.interrupted() from the inside. Nor can I use Thread.stop() carelessly. I also cannot put those code in separate processes.
So, is there anyway to handle this situation?
[1] I'm using JRuby, and the user code is in ruby.
With the constraints you've provided:
User submitted code you have no control over.
Cannot force checks for Thread.interrupted().
Cannot use Thread.stop().
Cannot put the user code in a process jail.
The answer to your question is "no, there is no way of handling this situation". You've pretty much systematically designed things so that you have zero control over untrusted third-party code. This is ... a suboptimal design.
If you want to be able to handle anything, you're going to have to relax one (or preferably more!) of the above constraints.
Edited to add:
There might be a way around this for you without forcing your clients to change code if that is a(nother) constraint. Launch the Ruby code in another process and use some form of IPC mechanism to do interaction with your main code base. To avoid forcing the Ruby code to suddenly have to be coded to use explicit IPC, drop in a set of proxy objects for your API that do the IPC behind the scenes which themselves call proxy objects in your own server. That way your client code is given the illusion of working inside your server while you jail that code in its own process (which you can ultimately kill -9 as the ultimate sanction should it come to that).
Later you're going to want to wean your clients from the illusion since IPC and native calls are very different and hiding that behind a proxy can be evil, but it's a stopgap you can use while you deprecate APIs and move your clients over to the new APIs.
I'm not sure about the Ruby angle (or of the threading angle) of things here, but if you're running user-submitted code, you had best run it in a separate process rather than in a separate thread of the same process.
Rule number one: Never trust user input. Much less if the input is code!
Cheers
Usually you have a variable to indicate to stop a thread. Some other thread then would set this variable to true. Finally you periodically check, whether the variable is set or not.
But given that you can't change user code , I am afraid there isn't a safe way of doing it.
For Running Thread Thread.Interrupt wont actually stop as sfussenegger mentioned aforth (thanks sfussenegger recollected after reading spec).
using a shared variable to signal that it should stop what it is doing. The thread should check the variable periodically,(ex : use a while loop ) and exit in an orderly manner.
private boolean isExit= false;
public void beforeExit() {
isExit= true;
}
public void run() {
while (!isExit) {
}
}
This question already has answers here:
How can I abort a running JDBC transaction?
(4 answers)
Closed 5 years ago.
I have a program that continually polls the database for change in value of some field. It runs in the background and currently uses a while(true) and a sleep() method to set the interval. I am wondering if this is a good practice? And, what could be a more efficient way to implement this? The program is meant to run at all times.
Consequently, the only way to stop the program is by issuing a kill on the process ID. The program could be in the middle of a JDBC call. How could I go about terminating it more gracefully? I understand that the best option would be to devise some kind of exit strategy by using a flag that will be periodically checked by the thread. But, I am unable to think of a way/condition of changing the value of this flag. Any ideas?
I am wondering if this is a good practice?
No. It's not good. Sometimes, it's all you've got, but it's not good.
And, what could be a more efficient way to implement this?
How do things get into the database in the first place?
The best change is to fix programs that insert/update the database to make requests which go to the database and to your program. A JMS topic is good for this kind of thing.
The next best change is to add a trigger to the database to enqueue each insert/update event into a queue. The queue could feed a JMS topic (or queue) for processing by your program.
The fall-back plan is your polling loop.
Your polling loop, however, should not trivially do work. It should drop a message into a queue for some other JDBC process to work on. A termination request is another message that can be dropped into the JMS queue. When your program gets the termination message, it absolutely must be finished with the prior JDBC request and can stop gracefully.
Before doing any of this, look at ESB solutions. Sun's JCAPS or TIBCO already have this. An open source ESB like Mulesource or Jitterbit may already have this functionality already built and tested.
This is really too big an issue to answer completely in this format. Do yourself a favour and go buy Java Concurrency in Practice. There is no better resource for concurrency on the Java 5+ platform out there. There are whole chapters devoted to this subject.
On the subject of killing your process during a JDBC call, that should be fine. I believe there are issues with interrupting a JDBC call (in that you can't?) but that's a different issue.
As others have said, the fact that you have to poll is probably indicative of a deeper problem with the design of your system... but sometimes that's the way it goes, so...
If you'd like to handle "killing" the process a little more gracefully, you could install a shutdown hook which is called when you hit Ctrl+C:
volatile boolean stop = false;
Runtime.getRuntime().addShutdownHook(new Thread("shutdown thread") {
public void run() {
stop = true;
}
});
then periodically check the stop variable.
A more elegant solution is to wait on an event:
boolean stop = false;
final Object event = new Object();
Runtime.getRuntime().addShutdownHook(new Thread("shutdown thread") {
public void run() {
synchronized(event) {
stop = true;
event.notifyAll();
}
}
});
// ... and in your polling loop ...
synchronized(event) {
while(!stop) {
// ... do JDBC access ...
try {
// Wait 30 seconds, but break out as soon as the event is fired.
event.wait(30000);
}
catch(InterruptedException e) {
// Log a message and exit. Never ignore interrupted exception.
break;
}
}
}
Or something like that.
Note that a Timer (or similar) would be better in that you could at least reuse it and let it do with all of the details of sleeping, scheduling, exception handling, etc...
There are many reasons your app could die. Don't focus on just the one.
If it's even theoretically possible for your JDBC work to leave things in a half-correct state, then you have a bug you should fix. All of your DB work should be in a transaction. It should go or not go.
This is Java. Move your processing to a second thread. Now you can
Read from stdin in a loop. If someone types "QUIT", set the while flag to false and exit.
Create a AWT or Swing frame with a STOP button.
Pretend you are a Unix daemon and create a server socket. Wait for someone to open the socket and send "QUIT". (This has the added bonus that you can change the sleep to a select with timeout.)
There must be hundreds of variants on this.
Set up a signal handler for SIGTERM that sets a flag telling your loop to exit its next time through.
Regarding the question "The program could be in the middle of a JDBC call. How could I go about terminating it more gracefully?" - see How can I abort a running jdbc transaction?
Note that using a poll with sleep() is rarely the correct solution - implemented improperly, it can end up hogging CPU resources (the JVM thread-scheduler ends up spending inordinate amount of time sleeping and waking up the thread).
I‘ve created a Service class in my current company’s utility library for these kinds of problems:
public class Service implements Runnable {
private boolean shouldStop = false;
public synchronized stop() {
shouldStop = true;
notify();
}
private synchronized shouldStop() {
return shouldStop;
}
public void run() {
setUp();
while (!shouldStop()) {
doStuff();
sleep(60 * 1000);
}
}
private synchronized sleep(long delay) {
try {
wait(delay);
} catch (InterruptedException ie1) {
/* ignore. */
}
}
}
Of course this is far from complete but you should get the gist. This will enable you to simply call the stop() method when you want the program to stop and it will exit cleanly.
If that's your application and you can modify it, you can:
Make it read a file
Read for the value of a flag.
When you want to kill it, you just modify the file and the application will exit gracefully.
Not need to work it that harder that that.
You could make the field a compound value that includes (conceptually) a process-ID and a timestamp. [Better yet, use two or more fields.] Start a thread in the process that owns access to the field, and have it loop, sleeping and updating the timestamp. Then a polling process that is waiting to own access to the field can observe that the timestamp has not updated in some time T (which is much greater than the time of the updating loop's sleep interval) and assume that the previously-owning process has died.
But this is still prone to failure.
In other languages, I always try to use flock() calls to synchronize on a file. Not sure what the Java equivalent is. Get real concurrency if you at all possibly can.
I'm surprised nobody mentioned the interrupt mechanism implemented in Java. It's supposed to be a solution to the problem of stopping a thread. All other solutions have at least one flaw, that's why this mechanism is needed to be implemented in the Java concurrency library.
You can stop a thread by sending it an interrupt() message, but there are others ways that threads get interrupted. When this happens an InterruptedException is thrown. That's why you have to handle it when calling sleep() for example. That's where you can do cleanup and end gracefully, like closing the database connection.
Java9 has another "potential" answer to this: Thread.onSpinWait():
Indicates that the caller is momentarily unable to progress, until the occurrence of one or more actions on the part of other activities. By invoking this method within each iteration of a spin-wait loop construct, the calling thread indicates to the runtime that it is busy-waiting. The runtime may take action to improve the performance of invoking spin-wait loop constructions.
See JEP 285 for more details.
I think you should poll it with timertask instead.
My computer is running a while loop 1075566 times in 10 seconds.
Thats 107557 times in one second.
How often is it truly needed to poll it? A TimerTask runs at its fastest 1000 times in 1 second. You give it a parameter in int (miliseconds) as parameters. If you are content with that - that means you strain your cpu 108 times less with that task.
If you would be happy with polling once each second that is (108 * 1000). 108 000 times less straining. That also mean that you could check 108 000 values with the same cpu strain that you had with your one while loop - beause the you dont assign your cpu to check as often. Remember the cpu has a clock cycle. Mine is 3 600 000 000 hertz (cycles per second).
If your goal is to have it updated for a user - you can run a check each time the user logs in (or manually let him ask for an update) - that would practically not strain the cpu whatsoever.
You can also use thread.sleep(miliseconds); to lower the strain of your polling thread (as it wont be polling as often) you where doing.